Supporting Information

A Selective Colorimetric and Ratiometric Fluorescent Probe for

Hydrogen Sulfide

Ming-Yu Wu, Kun Li*, Ji-Ting Hou, Zheng Huang and Xiao-Qi Yu*

College of Chemistry, Key Laboratory of Green Chemistry and Technology, Ministry of Education,

Chengdu, 610064, P. R. China

E-mail: xqyu@scu.edu.cn

Content:

1. Quantum Yields	S2
2. The isosbestic point of probe 1	S2
3. Detection limit	S2
4. The excitation spectrum of the probe 1, 2, 3 and their reaction product	S 3
5. The image of the probes in the absence and presence of H_2S under natural light as well	as
UV light	S4
6. HRMS	S 5
7. ¹ H NMR and ¹³ C NMR spectrums	S7

1. Quantum Yields.

Quantum yields were determined using fluorescein as a standard according to a published method.¹ The quantum yield was calculated according to the equation: $(\Phi_{sample} = \Phi_{standard} * (I_{sample} / I_{standard}) * (A_{sample} / A_{standard}))$; where Φ is the quantum yield, $\Phi_{standard} = 0.85$ in 0.1 M NaOH; I_{sample} and $I_{standard}$ are the integrated fluorescence intensities of the sample and the standard, A_{sample} and $A_{standard}$ are the optical densities, at the excitation wavelength, of the sample and the standard, respectively.

Quantum yield of Probe 1: $\Phi = 0.023$. Quantum yield of Probe 3: $\Phi = 0.029$

After the complete reaction with H₂S, the Quantum yield of Probe 1: $\Phi = 0.236$ Quantum yield of Probe 3: $\Phi = 0.386$

2. The isosbestic point of probe 1.

Fig. S1 The excitation spectrum of Probe 1 and Probe $+ H_2S$ in DMF (Slit: 2 nm/3 nm).

3. Detection limit.

The detection limit was calculated based on the fluorescence titration.² Probe 1 was employed at 10 μ M and the slit was adjusted to 2 nm/3 nm. To determine the S/N ratio, the emission intensity of Probe 1 without Na₂S was measured by 10 times and thestandard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the Na₂S concentration could be obtained in the 0 – 20 μ M (R = 0.9915), as shown in Fig. S7. The detection limit is then calculated with the equation: detection limit = $3\sigma_{bi}/m$, where σ_{bi} is the standard deviation of blank measurements, m is the slope between intensity versus sample concentration. The detection limit was measured to be 2.5 μ M at S/N = 3 (signal-to-noise ratio of 3:1).

Fig. S2 (A) Fluorescence response of Probe 1 (10 μ M) to H₂S (0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0 μ M, 0-2 eq) (λ_{ex} = 443 nm. Slit: 2 nm/3 nm, λ_{scan} = 450 – 700 nm) in DMF. (B) Fluorescence intensity ratio at 475 nm and 602nm (I₄₇₅/I₆₀₂) of Probe 1 (10 μ M) upon addition of H₂S (0–20 μ M, 0-2 eq) (λ_{ex} = 443 nm. Slit: 2 nm/3 nm) in DMF.

4. The excitation spectrum of the probe 1, 2, 3 and their reaction product.

5. The image of the probes in the absence and presence of H_2S under natural light (A) as well as UV light (B, $\lambda = 254$ nm).

В

Reference:

- 1. B. C. A. Parker, W. T. Rees, Analyst, 1960, 85, 587.
- 2. B. P. Joshi, J. Park, W. I. Lee and K. Lee, Talanta., 2009, 78, 903.

6. HRMS.

7. ¹H NMR and ¹³C NMR spectrums.

