SUPPORTING INFORMATION

Total synthesis of Noricumazole B establishes D-arabinose as glycon unit

Jenny Barbier^a, Klaus Gerth^b, Rolf Jansen^b, and Andreas Kirschning^{*a}

^aInstitut für Organische Chemie and Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany. Fax: +49 (0)511-7623011; Tel: +49 (0)511-7624614; E-mail: <u>andreas.kirschning@oci.uni-hannover.de</u> ^b Helmholtz Zentrum für Infektionsforschung (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.

Experimental

General Remarks

¹H and ¹³C NMR spectra were recorded with Bruker DPX-400, AVANCE-400 and DRX-500. The numbering of the protons relate to the numbering chosen in Fig. 1. High resolution mass spectra were obtained with a Micromass LCT via loop-mode injection from a Waters (Alliance 2695) HPLC system. Alternatively a Micromass Q-TOF in combination with a Waters Aquity Ultraperformance LC system was employed. Ionization was achieved by ESI or APCI. Modes of ionization, calculated and found mass are given. RP-HPLC was performed on RP-CN with CH₃CN/H₂O gradient eluation. CD spectra were obtained using a Jasco J-810 circular dichroism spectropolarimeter. Analytical thin-layer chromatography was performed using precoated silica gel 60 F_{254} plates (Merck, Darmstadt). Flash column chromatography was performed on Merck silica gel (230-400 mesh). Unless otherwise noted, all reactions were carried out under an atmosphere of nitrogen in dry glassware. Commercially available reagents and dry solvents were used as received.

Masamune ester 6:

To a solution of alcohol $\mathbf{5}^5$ (11.3 g, 21.0 mmol, 1.0 eq) in CH₂Cl₂ (250 mL) were sequentially added 4-methoxybenzyl 2,2,2-trichloroacetimidate (13.1 g, 46.5 mmol, 2.2 eq) and Campher-10-sulfonic acid (0.9 g, 3.7 mmol, 0.2 eq) at room temperature. The reaction was stirred 16 h at room temperature and terminated by addition of sat. aq. NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ and the combined organic extracts were dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (petroleum ether : ethyl acetate = $10:1 \rightarrow 3:1$) to furnish the PMB-ether **6** as light yellow oil (19.4 g, 29.6 mmol, quant).

[α]²⁵_D = +35.0 (*c* 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.35–7.08 (m, 12H, Bn, Mes, Ph), 6.79 (d, *J* = 7.9 Hz, 2H, PMB), 6.74 (d, *J* = 7.9 Hz, 2H, PMB), 5.72 (d, *J* = 4.4 Hz, 1H, OCHPh), 4.69 (d, *J* = 16.0 Hz, 1H, Bn), 4.42 (d, *J* = 11.0 Hz, 1H, PMB), 4.41 (d, *J* = 16.0 Hz, 1H, Bn), 4.38 (d, *J* = 11.0 Hz, 1H, PMB), 3.97 (dddd, *J* = 7.1, 7.1, 7.1, 4.4 Hz, 1H, H-9), .77 (s, 3H, PMB), 3.64 (ddd, *J* = 7.5, 6.4, 3.7 Hz, 1H, H-8), 2.75 (quin, *J* = 7.5 Hz, 1H, H-19), 2.46 (s, 6H, Mes), 2.30 (s, 3H, Mes), 1.60 (dddd, *J* = 14.0, 7.3, 7.3, 3.7 Hz, 1H, H-21), 1.48 (dddd, *J* = 14.0, 7.3, 7.3, 6.4 Hz, 1H, H-21'), 1.07 (d, *J* = 7.5 Hz, 3H, H-23), 1.03 (d, *J* = 7.1 Hz, 3H, NCHC*H*₃), 0.91 (t, *J* = 7.3 Hz, 3H, H-22) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 173.7 (q, C-18), 159.1 (q, PMB), 142.4 (q, Mes), 140.3 (q, Ph), 138.9 (q, Mes), 138.5 (q, Mes), 133.5 (q, Mes), 132.1 (2x t,), 130.5 (q, Bn), 129.4 (2x t, PMB), 129.3 (2x t, Bn), 129.26 (2x t, Mes), 128.3 (t, Ph), 128.2 (t, Ph), 127.9 (2x t, Bn), 127.7 (t, Ph), 127.0 (t, Bn), 125.9 (2x t, Ph), 113.7 (2x t, PMB), 80.6 (t, C-20), 77.9 (t, OCHPh), 71.4 (s, PMB), 56.8 (t, NCCH₃), 55.3 (p, PMB), 48.1 (s, Bn), 42.8 (t, C-19), 29.7 (s, C-21), 22.3 (2x p, Mes), 20.9 (p, Mes), 136. (p, C-23), 12.6 (p, NCCH₃), 8.3 (p, C-22) ppm; HRMS (ESI): *m/z*: calculated for C₃₉H₄₇NO₆SNa: 680.3022 [M+Na]⁺, found: 680.3016 [M+Na]⁺.

(2S,3R)-3-(4-methoxybenzyloxy)-2-methylpentan-1-ole (S1):

To a solution of PMB-ether **6** (9.7 g, 14.7 mmol, 1.0 eq) in THF (100 mL) was added DIBAL-H (1.0 mol/L in hexane, 44 mL, 44.0 mmol, 3.0 eq) at -78 °C. After 1 h, the reaction was warmed up to -20 °C. After 2 h a sat. aq. solution of Rochelle's salt was added and the mixture was stirred 30 min at room temperature. After extraction with CH_2Cl_2 the combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 5:1) furnished alcohol **S1** as colorless oil (3.2 g, 13.4 mmol, 91%).

 $[α]^{20}_{D}$ = -39.8 (c 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.26 (d, *J* = 8.5 Hz, 2H, PMB), 6.88 (d, *J* = 8.5 Hz, 2H, PMB), 4.56 (d, *J* = 10.9 Hz, 1H, PMB), 4.37 (d, *J* = 10.9 Hz, 1H, PMB), 3.80 (s, 3H, PMB), 3.64 (dd, *J* = 10.9, 3.8 Hz, 1H, H-18), 3.55 (dd, *J* = 10.9, 6.9 Hz, 1H, H-18'), 3.35 (ddd, *J* = 6.9, 4.8, 4.8 Hz, 1H, H-20), 2.69 (bs, 1H, OH), 1.90 (dsext, *J* = 6.9, 3.8 Hz, 1H, H-19), 1.74 (ddddd, *J* = 14.7, 7.5, 7.5, 7.5, 4.8 Hz, 1H, H-21), 1.60 (ddddd, *J* = 14.7, 7.5, 7.5, 7.5, 4.8 Hz, 1H, H-21'), 0.93 (t, *J* = 7.5 Hz, 3H, H-22), 0.89 (d, *J* = 6.9 Hz, 3H, H-23) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃)

= 77.0 ppm) δ 159.2 (q, PMB), 130.3 (q, PMB), 129.4 (2x t, PMB), 113.9 (2x t, PMB), 84.7 (t, C-20), 71.2 (s, PMB), 67.0 (s, C-18), 55.2 (p, PMB), 37.1 (t, C-19), 23.0 (s, C-21), 14.1 (t, C-23), 8.3 (p, C-22); **HRMS** (ESI): *m/z*: calculated for C₁₄H₂₂O₃Na: 261.1467 [M+Na]⁺, found: 261.1471 [M+Na]⁺.

(2S,3R)-3-(4-methoxybenzyloxy)-2-methylpentanal (S2):

To a solution of carbinol **S1** (1.6 g, 6.5 mmol, 1.0 eq) in CH_2Cl_2 (120 mL) were sequentially added NaHCO₃ (2.7 g, 32.5 mmol, 5.0 eq) and DESS-MARTIN periodinane (4.1 g, 9.8 mmol, 1.5 eq) at room temperature. After 30 min, the reaction was terminated by addition of a sat. aq. $Na_2S_2O_3$ solution and the aqueous layer was extracted with CH_2Cl_2 . The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The crude aldehyde **S2** was used in the next step without further purification.

(3*S*,4*R*,5*R*)-3-(*tert*-butyldimethylsilyloxy)-1-[(*R*)-4-isopropyl-2-thioxothiazolidin-3-yl]-5-(4-methoxybenzyloxy)-4-methylheptan-1-one (S3):

TiCl₄ (1.3 mL, 11.7 mmol, 1.8 eq) was added to a solution of 1-[(*R*)-4-isopropyl-2-thioxothiazolidin-3-yl]ethanone (**11**)⁶ (2.3 g, 11.1 mmol, 1.7 eq) in CH₂Cl₂ (250 mL) at -50 °C. After stirring for 20 min DIPEA (1.9 mL, 11.7 mmol, 1.8 eq) was added to the reaction mixture. After stirring for 2 h at -40 °C the reaction mixture was cooled to -78 °C and aldehyde **S2** (1.5 g, 6.5 mmol, 1.0 eq) in CH₂Cl₂ (80 mL) was added. After 2 h the reaction mixture was terminated by addition of a sat. aq. NH₄Cl solution and was warmed up to room temperature. The aqueous layer was extracted with CH₂Cl₂ and the combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure to furnish the crude product as an orange oil.

This material was dissolved in CH₂Cl₂ (250 mL) and 2,6-lutidine (1.3 mL, 11.4 mmol, 1.8 eq) as well as TBSOTf (2.1 mL, 9.1 mmol, 1.4 eq) were sequentially added at -78 °C. The mixture was warmed to room temperature and stirred for 3 h. The reaction was terminated by addition of a sat. aq. NH₄Cl solution and extracted with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 15:1) yields the TBS-PMB-ether **S3** as a yellow oil (3.5 g, 6.3 mmol, 97%).

[α]³⁰_D = -200.5 (*c* 2.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.28 (d, *J* = 8.7 Hz, 2H, PMB), 6.85 (d, *J* = 8.7 Hz, 2H, PMB), 5.04 [pt, *J* = 6.6 Hz, 1H, *CH*(CH₃)₂], 4.69 (ddd, *J* = 9.2, 3.8, 2.2 Hz, 1H, H-18), 4.46 (d, *J* = 10.9 Hz, 1H, PMB), 4.35 (d, *J* = 10.9 Hz, 1H, PMB), 3.79 (s, 3H, PMB), 3.57 (dd, *J* = 17.1, 9.2 Hz, 1H, H-17), 3.46 (dd, *J* = 11.4, 6.6 Hz, 1H, SCH₂), 3.20 (ddd, *J* = 7.7, 6.6, 3.9 Hz, 1H, H-20), 3.01 (dd, *J* = 11.4, 0.7 Hz, 1H, SCH₂), 2.97 (dd, *J* = 17.1, 2.2 Hz, 1H, H-17'), 2.40 [psext, *J* = 6.6 Hz, 1H, *CH*(CH₃)₂], 1.95 (ddq, *J* = 14.6, 6.6, 3.8 Hz, 1H, H-19), 1.70 (ddq, *J* = 14.6, 14.2, 3.9 Hz, 1H, H-21), 1.49 (ddq, *J* = 14.2, 7.7, 7.1 Hz, 1H, H-21'), 1.06 [d, *J* = 6.6 Hz, 3H, CH(CH₃)₂], 0.97 [d, *J* = 6.6 Hz, 3H, CH(CH₃)₂], 0.93 (t, *J* = 7.1 Hz, 3H, H-22), 0.84 (s, 9H, TBS), 0.82 (d, *J* = 7.2 Hz, 3H, H-23), 0.08 (s, 3H, TBS), 0.02 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 202.8 (q, CS₂), 172.5 (q, NCO), 159.0 (q, PMB), 30.9 (q, PMB), 129.4 (2x t, PMB), 113.7 (2x t, PMB), 80.7 (t, C-20), 71.7 (t, NCCH), 70.9 (s, PMB), 69.3 (t, C-18), 55.2 (p, PMB), 41.8 (t, C-19), 41.5 (s, C-17), 30.9 [t, *C*(C(H₃)₂], 30.8 (s, SCH₂), 25.8 (3x p, TBS), 23.1 (s, C-21), 19.2 [p, CH(CH₃)₂], 18.0 (q, TBS), 17.9 [p, CH(CH₃)₂], 10.7 (p, C-23), 8.7 (p, C-22), -4.66 (p, TBS), -4.7 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₈H₄₇NO₄S₂SiNa: 576.2614 [M+Na]⁺, found: 576.2604 [M+Na]⁺.

(3S,4R,5R)-3-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-4-methylheptanoic acid (7):

To a solution of **S3** (198 mg, 0.4 mmol, 1.0 eq) in THF/H₂O (4:1, 8.3 mL) were sequentially added H₂O₂ (30%, 88 μ L, 2.9 mmol, 8.0 eq) and 1 N aqueous LiOH (1.4 mL, *c* = 1 mol/L, 1.4 mmol, 4.0 eq) at 0 °C and the reaction mixture was allowed to warm to room temperature. After 3 h, the reaction was terminated by addition of a sat. aq. Na₂S₂O₃ solution and H₂O and the aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 5:1) furnished carboxylic acid **7** as a colorless oil (132 mg, 0.5 mmol, 90%).

[α]²³_D = -22.3 (*c* 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.27 (d, *J* = 8.7 Hz, 2H, PMB), 6.86 (d, *J* = 8.7 Hz, 2H, PMB), 4.48 (d, *J* = 11.1 Hz, 1H, PMB), 4.45 (dt, *J* = 7.9, 4.2 Hz, 1H, H-18), 4.35 (d, *J* = 11.1 Hz, 1H, PMB), 3.79 (s, 3H, PMB), 3.23 (ddd, *J* = 7.5, 4.6, 4.2 Hz, 1H, H-20), 2.46 (dd, *J* = 15.0, 4.2 Hz, 1H, H-17), 2.39 (dd, *J* = 15.0, 7.9 Hz, 1H, H-17[']), 1.98 (ddq, *J* = 7.9, 7.3, 4.2 Hz, 1H, H-19), 1.69 (pdddd, *J* = 14.7, 14.5, 7.3, 4.6 Hz, 1H, H-21), 1.49 (pdddd, *J* = 14.5, 13.2, 7.5, 7.3 Hz, 1H, H-21[']), 0.93 (t, *J* = 7.3 Hz, 3H, H-22), 0.87 (s, 9H, TBS), 0.86 (d, *J* = 7.3 Hz, 3H, H-23), 0.06 (s, 3H, TBS), 0.058 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 177.9 (q, C-16), 159.1 (q, PMB), 130.7 (q, PMB), 129.4 (2x t, PMB), 113.7 (2x t, PMB), 80.2 (t, C-20), 70.7 (s, PMB), 69.8 (t, C-18), 55.2 (p, PMB), 41.3 (t, C-19), 38.4 (s, C-17), 25.8 (3x p, TBS), 22.7 (s, C-21), 18.0 (q, TBS), 10.5 (p, C-23), 8.5 (p, C-22), -4.7 (p, TBS), -4.8 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₂H₃₇O₅Si: 409.2410 [M-H]⁻, found: 409.2417 [M-H]⁻.

(*R*)-Methyl-2-[(3*S*,4*R*,5*R*)-3-(*tert*-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-4-methylheptanamido]-3-hydroxypropanoate (S4):

To a solution of TBTU (103 mg, 0.3 mmol, 1.0 eq) and HOBt (49 mg, 0.3 mmol, 1.0 eq) in CH₂Cl₂ (2 mL) were sequentially added acid **7** (132 mg, 0.3 mmol, 1.0 eq) in CH₂Cl₂ (2 mL) and DIPEA (0.2 mL, 1.0 mmol, 3.0 eq). After stirring for 2 h at room temperature *L*-serine methyl ester (**12**) (60 mg, 0.4 mmol, 1.2 eq) was added to the reaction mixture and stirring was continued for 3 d at room temperature. The reaction was terminated by addition of a sat. aq. NH₄Cl solution and the aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = $3:1 \rightarrow 1:1$) furnished amide **S4** as a colorless solid (136 mg, 0.3 mmol, 83%).

m.p. = 83-84 °C; $[a]^{20}_{D}$ = +7.0 (c 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.29 (d, *J* = 8.5 Hz, 2H, PMB), 7.11 (d, *J* = 7.3 Hz, 1H, N*H*), 6.86 (d, *J* = 8.5 Hz, 2H, PMB), 4.63 (ddd, *J* = 7.3, 3.9, 3.8 Hz, 1H, H-14), 4.43 (d, *J* = 10.9 Hz, 1H, PMB), 4.41 (d, *J* = 10.9 Hz, 1H, PMB), 4.20 (q, *J* = 5.9 Hz, 1H, H-18), 3.89 (dd, *J* = 11.0, 3.9 Hz, 1H, H-15), 3.81 (dd, *J* = 11.0, 3.8 Hz, 1H, H-15'), 3.79 (s, 3H, PMB), 3.74 (s, 3H, CH₃O), 3.42 (ddd, *J* = 6.9, 6.7, 3.6 Hz, 1H, H-20), 2.55 (dd, *J* = 14.3, 5.9 Hz, 1H, H-17), 2.47 (bs, 1H, OH), 2.34 (dd, *J* = 14.3, 5.9 Hz, 1H, H-17'), 2.13 (pdddd, *J* = 12.4, 6.7, 6.7, 5.9 Hz, 1H, H-19), 1.62 (ddddd, *J* = 14.4, 7.7, 7.3, 6.9, 3.6 Hz, 1H, H-21), 1.45 (dquin, *J* = 14.4, 6.8 Hz, 1H, H-21'), 0.92 (t, *J* = 7.7 Hz, 3H, H-22), 0.90 (s, 9H, TBS), 0.85 (d, *J* = 6.8 Hz, 3H, H-23), 0.08 (s, 3H, TBS), 0.07 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 172.0 (q, C-16), 170.8 (q, C-13), 159.1 (q, PMB), 130.9 (q, PMB), 129.6 (2x t, PMB), 113.7 (2x t, PMB), 80.0 (t, C-20), 71.2 (t, C-18), 70.7 (s, PMB), 63.5 (s, C-15), 55.2 (p, PMB), 54.6 (t, C-14), 52.5 (p, CH₃O), 41.4 (s, C-17), 39.9 (t, C-19), 25.8 (3x p, TBS), 22.4 (s, C-21), 18.0 (q, TBS), 11.7 (p, C-23), 8.7 (p, C-22), -4.5 (p, TBS), -4.8 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₆H₄₆NO₇Si: 512.3044 [M+H]⁺, found: 512.3034 [M+H]⁺.

(*R*)-Methyl-2-[(2*S*,3*R*,4*R*)-2-(*tert*-butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)-3-methylhexyl]-4,5-dihydrooxazol-4-carboxylate (S5):

To a solution of **S4** (1.7 g, 3.2 mmol, 1.0 eq) in CH₂Cl₂ (50 mL) was added DAST (0.5 mL, 3.9 mmol, 1.2 eq) at -78 °C. After stirring for 2 h at -78 °C K₂CO₃ (807 mg, 5.8 mmol, 1.8 eq) and a sat. aq. K₂CO₃ solution were added and the reaction mixture was allowed to warm up to room temperature. After extraction with CH₂Cl₂, the combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl amine = 4:1) furnished oxazolidine **S5** as a colorless oil (1.3 g, 2.7 mmol, 82%).

[α]²⁰_D = +32.1 (*c* 2.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.28 (d, *J* = 8.6 Hz, 2H, PMB), 6.85 (d, *J* = 8.6 Hz, 2H, PMB), 4.70 (dd, *J* = 11.0, 8.3 Hz, 1H, H-15), 4.49 (dd, *J* = 8.3, 6.0 Hz, 1H, H-15'), 4.44 (d, *J* = 10.7 Hz, 1H, PMB), 4.41 (ddd, *J* = 6.9, 4.4, 2.9 Hz, 1H, H-18), 4.36 (d, *J* = 10.7 Hz, 1H, PMB), 4.34 (dd, *J* = 11.0, 6.0 Hz, 1H, H-14), 3.79 (s, 3H, PMB), 3.75 (s, 3H, CH₃O), 3.23 (ddd, *J* = 7.1, 7.0, 4.9 Hz, 1H, H-20), 2.46 (dd, *J* = 14.5, 6.9 Hz, 1H, H-17), 2.44 (dd, *J* = 14.5, 2.9 Hz, 1H, H-17'), 1.99 (dddd, *J* = 14.3, 7.1, 7.0, 4.4 Hz, 1H, H-19), 1.67 (dddd, *J* = 14.6, 14.6, 7.1, 4.1 Hz, 1H, H-21), 1.51-1.41 (m, 1H, H-21'), 0.91 (t, *J* = 7.5 Hz, 3H, H-22), 0.87 (d, *J* = 7.2 Hz, 3H, H-23), 0.84 (s, 9H, TBS), 0.02 (s, 3H, TBS), -0.00 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 171.6 (q, C-16), 169.2 (q, C-2), 159.0 (q, PMB), 131.1 (q, PMB), 129.2 (2x t, PMB), 113.7 (2x t, PMB), 80.5 (t, C-20), 70.7 (s, PMB), 69.9 (t, C-18), 68.9 (t, C-14), 68.2 (s, C-15), 55.2 (p, PMB), 52.5 (p, CH₃O), 41.4 (t, C-19), 32.2 (s, C-17), 25.7 (3x p, TBS), 22.9 (s, C-21), 17.9 (q, TBS), 10.1 (p, C-22), 8.7 (p, C-22), -4.6 (p, TBS), -4.9 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₆H₄₄NO₆Si: 494.2938 [M+H]⁺, found: 494.2932 [M+H]⁺.

Methyl-2-[(2S,3R,4R)-2-(tert-butyldimethylsilyloxy)-4-(methoxybenzyloxy)-3-methylhexyl]oxazol-4-carboxylate (8):

To a suspension of anhydrous CuBr_2 (0.9 g, 4.1 mmol, 4.0 eq) in CH_2Cl_2 (15 mL) were added HMTA (0.6 g, 4.1 mmol, 4.0 eq) and DBU (0.6 mL, 4.1 mmol, 4.0 eq). A solution of **S5** (0.5 g, 1.0 mmol, 1.0 eq) in CH_2Cl_2 (15 mL) was added to the suspension and the reaction mixture was stirred for 2 h at room temperature. The organic solvent was removed under reduced pressure and ethyl acetate and a solution of sat. aq. $\text{NH}_4\text{Cl}/30\%$ - NH_3 (1:1, 100 mL) were sequentially added to the oily residue. The aqueous layer was extracted with ethyl acetate and the combined organic extracts were sequentially washed with a solution of sat. aq. $\text{NH}_4\text{Cl}/30\%$ - NH_3 (1:1, 3.1, 100 mL). The organic extract were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 5:1) furnished oxazole **8** as a colorless oil (0.5 g, 1.0 mmol, quant).

[α]²⁴_D = -18.1 (*c* 0.4, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 8.14 (s, 1H, H-15), 7.28 (d, *J* = 8.5 Hz, 2H, PMB), 6.85 (d, *J* = 8.5 Hz, 2H, PMB), 4.48 (d, *J* = 11.3 Hz, 1H, PMB), 4.47 (ddd, *J* = 8.4, 4.7, 3.8 Hz, 1H, H-18), 4.34 (d, *J* = 11.3 Hz, 1H, PMB), 3.90 (s, 3H, CH₃O), 3.79 (s, 3H, PMB), 3.27 (ddd, *J* = 7.3, 5.8, 4.2 Hz, 1H, H-20), 2.91 (dd, *J* = 14.7, 8.4 Hz, 1H, H-17), 2.87 (dd, *J* = 14.7, 4.7 Hz, 1H, H-17[']), 1.98 (pdddd, *J* = 14.3, 7.3, 7.0, 3.8 Hz, 1H, H-19), 1.71 (pdddd, *J* = 14.7, 14.7, 7.3, 4.2 Hz, 1H, H-21), 1.44-1.55 (m, 1H, H-21[']), 0.92 (t, *J* = 7.3 Hz, 3H, H-22), 0.91 (d, *J* = 7.0 Hz, 3H, H-23), 0.78 (s, 9H, TBS), -0.02 (s, 3H, TBS), -0.23 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 164.6 (q, C-13), 161.8 (q, PMB), 159.0 (q, C-16), 143.6 (t, C-15), 133.2 (q, C-14), 131.0 (q, PMB), 129.2 (2x t, PMB), 113.7 (2x t, PMB), 80.5 (t, C-20), 70.8 (s, PMB), 70.7 (t, C-18), 55.2 (p, CH₃O), 52.0 (p, PMB), 41.5 (t, C-19). 32.1 (s, C-17), 25.6 (3x p, TBS), 22.8 (s, C-21), 17.8 (q, TBS), 10.2 (p, C-23), 8.6 (p, C-22), -4.7 (p, TBS), -5.2 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₆H₄₂NO₆Si: 492.2781 [M+H]⁺, found: 492.2780 [M+H]⁺.

$2\-[(2S,3R,4R)-2\-(tert-butyldimethylsilyloxy)-4\-(methoxybenzyloxy)-3\-methylhexyl] oxazol-4\-carbaldehyde (S6):$

To a solution of **8** (250 mg, 1.0 mmol, 1.0 eq) in CH₂Cl₂ (15 mL) was added Dibal-H (1.2 mol/L in toluene, 3.0 mL, 3.6 mmol, 6.0 eq) at -78 °C within 45 min. After 30 min the reaction was terminated by addition of methanol. A saturated aqueous solution of Rochelle's salt was added and the mixture was stirred at room temperature over night. After extraction with CH₂Cl₂, the combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = $6:1 \rightarrow 1:1$) furnished aldehyde **S6** as a colorless oil (438 mg, 0.9 mmol, 94%).

[α]²⁰_D = -18.1 (*c* 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 9.91 (s, 1H, H-13) 8.15 (s, 1H, H-15), 7.29 (d, *J* = 8.9 Hz, 2H, PMB), 6.85 (d, *J* = 8.9 Hz, 2H, PMB), 4.54-4.48 (m, 1H, H-18), 4.51 (d, *J* = 11.1 Hz, 1H, PMB), 4.35 (d, *J* = 11.1 Hz, 1H, PMB), 3.79 (s, 3H, PMB), 3.26 (ddd, *J* = 7.2, 5.5, 4.7 Hz, 1H, H-20), 2.90-2.85 (m, 2H, H-17), 1.99 (pdddd, *J* = 14.3, 7.2, 7.2, 4.1 Hz, 1H, H-19), 1.78-1.66 (m, 1H, H-21), 1.57-1.48 (m, 1H, H-21[']), 0.94 (t, *J* = 7.3 Hz, 3H, H-22), 0.92 (d, *J* = 7.2 Hz, 3H, H-23), 0.78 (s, 9H, TBS), -0.01 (s, 3H, TBS), -0.23 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 184.2 (t, C-13), 165.3 (q, PMB), 159.0 (q, C-16), 143.8 (t, C-15), 140.9 (q, C-14), 130.9 (q, PMB), 129.2 (2x t, PMB), 113.7 (2x t, PMB), 80.4 (t, C-20), 70.8 (s, C-18), 70.7 (s, PMB), 55.2 (p, PMB), 41.4 (t, C-19), 31.9 (s, C-17), 25.6 (3x p, TBS), 22.8 (s, C-21), 17.8 (q, TBS), 10.2 (p, C-23), 8.5 (p, C-22), -4.7 (p, TBS), -5.2 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₂₅H₄₀NO₅Si: 462.2676 [M+H]⁺, found: 462.2676 [M+H]⁺.

2-[(2S,3R,4R)-2-(tert-butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)-3-methylhexyl]-4-ethynyloxazole (S7):

To a solution of **S6** (438 mg, 0.9 mmol, 1.0 eq) in MeOH (10 mL) were sequentially added K₂CO₃ (328 mg, 2.4 mmol, 2.5 eq) and the OHIRA-BESTMANN reagent **13**⁸ (456 mg, 2.4 mmol, 1.5 eq) at 0 °C. The reaction mixture was allowed to warm to room temperature over night and was terminated by addition of Et₂O and H₂O. After extraction with Et₂O, the combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 6:1) furnished alkine **S7** as a colorless oil (376 mg, 0.8 mmol, 84%).

[α]²³_D = -11.2 (*c* 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 7.71 (s, 1H, Ar-O*H*), 7.28 (d, *J* = 8.9 Hz, 2H, PMB), 6.86 (d, *J* = 8.9 Hz, 2H, PMB), 4.47 (d, *J* = 11.3 Hz, 1H, PMB), 4.44 (ddd, *J* = 5.9, 5.9, 4.5 Hz, 1H, H-18), 4.35 (d, *J* = 11.3 Hz, 1H, PMB), 3.79 (s, 3H, PMB), 3.26 (ddd, *J* = 7.3, 6.0, 4.3 Hz, 1H, H-20), 3.16 (s, 1H, H-12), 2.84-2.82 (m, 2H, H-17), 1.98 (ddd, *J* = 7.3, 7.1, 4.5 Hz, 1H, H-19), 1.76-1.66 (m, 1H, H-21), 1.54-1.46 (m, 1H, H-21'), 0.93 (t, *J* = 8.0 Hz, 3H, H-22), 0.91 (d, *J* = 7.1 Hz, 3H, H-23), 0.80 (s, 9H), -0.02 (s, 3H), -0.19 (s, 3H) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 163.7 (q, C-16), 159.0 (q, PMB), 141.6 (t, C-15), 131.0 (q, PMB), 129.3 (2x t, PMB), 122.8 (q, C-14), 113.7 (2x t, PMB), 80.5 (q, C-13), 80.4 (t, C-20), 74.0 (t, C-12), 70.9 (s, C-18), 70.8 (t, PMB), 55.2 (p, PMB), 41.4 (t, C-19), 32.1 (s, C-17), 25.7 (3x p, TBS), 22.8 (s, C-21), 17.8 (q, TBS), 10.2 (p, C-23), 8.7 (p, C-22), -4.8 (p, TBS), -5.2 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for: 458.2727 [M+H]⁺, found: 458.2724 [M+H]⁺.

$2-\{(2S, 3R, 4R)-2-(tert-butyldimethylsilyloxy)-4-[(4-methoxybenzyl)oxy]-3-methylhexyl\}-4-[(E)-2-iodovinyl]oxazole (9):$

To a suspension of SCHWARTZ reagent **14** (433 mg, 1.7 mmol, 2.5 eq) in THF (7 mL) was added **S7** (308 mg, 0.7 mmol, 1.0 eq) in THF (7 mL) at 0 °C. After 1 h NIS (378 mg, 1.7 mmol, 2.5 eq) in THF (8 mL) was added at -78 °C and the reaction mixture was stirred in the dark for 40 min. The reaction mixture was terminated by addition of a sat. aq. $Na_2S_2O_3$ solution and the aqueous layer was extracted with Et_2O . The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = 12:1) furnished vinyliodide **9** as a colorless oil (348 mg, 0.6 mmol, 88%).

[α]²³_D = -12.5 (*c* 1.0, CDCl₃); ¹**H-NMR** (400 MHz, C₆D₆, C₆H₆ = 7.16 ppm) δ 7.35 (d, *J* = 8.8 Hz, 2H, PMB), 7.27 (dd, *J* = 14.4, 0.6 Hz, 1H, H-13), 6.93 (dd, *J* = 14.4, 0.4 Hz, 1H, H-12), 6.87 (d, *J* = 8.8 Hz, 2H, PMB), 6.74 (s, 1H, H-15), 4.73 (ddd, *J* = 8.7, 3.8, 3.6 Hz, 1H, H-18), 4.41 (d, *J* = 11.1 Hz, 1H, PMB), 4.22 (d, *J* = 11.1 Hz, 1H, PMB), 3.34 (s, 3H, PMB), 3.04 (ddd, *J* = 7.9, 4.8, 4.3 Hz, 1H, H-20), 2.74 (dd, *J* = 14.6, 8.7 Hz, 1H, H-17), 2.68 (dd, *J* = 14.6, 3.6 Hz, 1H, H-17[']), 2.12-2.01 (m, 1H, H-19), 1.59 (pdddd, *J* = 21.9, 7.4, 7.4, 4.3 Hz, 1H, H-21), 1.36 (pdddd, *J* = 21.9, 7.4, 7.4, 4.8 Hz, 1H, H-21[']), 0.94 (t, *J* = 7.4 Hz, 3H, H-22), 0.93 (s, 9H, TBS), 0.84 (d, *J* = 7.0 Hz, 3H, H-23), 0.04 (s, 3H, TBS), -0.13 (s, 3H, TBS) ppm; ¹³C-**NMR** (100 MHz, C₆D₆, C₆H₆ = 128.0 ppm) δ 164.3 (q, PMB), 159.8 (q, C-16), 140.2 (t, C-13), 134.3 (q, C-14), 133.9 (t, C-15), 131.4 (q, PMB), 129.7 (2x t, PMB), 114.1 (2x t, PMB), 80.4 (t, C-20), 78.3 (t, C-18), 71.4 (t, C-12), 71.1 (s, PMB), 54.8 (p, PMB), 42.0 (t, C-19), 32.0 (s, C-17), 26.0 (3x p, TBS), 22.9 (s, C-21), 18.2 (q, TBS), 10.1 (p, C-23), 8.3 (p, C-22), -4.6 (p, TBS), -5.0 (q, TBS) ppm; **HRMS** (ESI): *m/z*: calculated for C₂₆H₄₀NO₄ISiNa: 608.1669 [M+Na]⁺, found: 608.1674 [M+Na]⁺.

18-TBS-20-PMB-protected noricumazole A 15a and 11-epi-18-TBS-20-PMB-protected noricumazole A 15b:

Method A: To a solution of *t*-BuLi (1.7 mol/L in pentane, 0.8 mL, 1.4 mmol, 4.1 eq) in degassed Et₂O (10 mL) was added vinyliodide **9** (388 mg, 0.7 mmol, 2.0 eq) in Et₂O (8 mL) at -78 °C under an argon atmosphere. After 1 h, dimethylzinc (1.2 mol/L in toluene, 0.6 mL, 0.7 mmol, 2.0 eq) was added at -78 °C and the reaction mixture was stirred for 15 min. Aldehyde **4** (92 mg, 0.3 mmol, 1.0 eq) in Et₂O (8 mL) was added and stirring was continued at -78 °C for 3 h. H₂O and Et₂O were added

and the aqueous layer was extracted with Et_2O . The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate= $15:1 \rightarrow 4:1$) furnished allylic alcohols **15a** (82 mg, 0.1 mmol, 34%) and 11-*epi*-**15b** (82 mg, 0.1 mmol, 34%) as light yellow oils.

Method B: To a solution of nitrobenzoate **S8** (2 mg, 2.3 μ mol, 1.0 eq) in THF/MeOH (2:1, 0.15 mL) were added NaOH (0.5 mg, 13.6 μ mol, 6.0 eq) and H₂O (0.1 mL) at 0 °C. The reaction mixture was stirred for 16 h. H₂O was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Purification by flash chromatography (PE:EA = 6:1) furnished allylic alcohol **15a** as a colorless oil (2 mg, 2.0 μ mol, 90%).

15a: $[\alpha]^{26}_{D} = -15.4 (c \ 1.0, \text{CDCl}_3);$ ¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 11.20 (s, 1H, Ar-OH), 7.45 (s, 1H, H-15), 7.30 (d, J = 8.9 Hz, 2H, PMB), 7.22 (d, J = 7.5 Hz, 1H, H-5), 6.85 (d, J = 8.9 Hz, 2H, PMB), 6.60 (d, J = 7.5 Hz, 2H, PMB), 6.85 (d, J = 8.9 Hz, 2H, PMB), 6.60 (d, J = 7.5 Hz, 2H, PMB), 6.85 (d, J = 8.9 Hz, 2H, PMB), 6.85 (d, J = 8.9 Hz, 2H, P 6), 6.48 (pd, *J* = 2.0 Hz, 2H, H-12, H-13), 4.92 (dddd, *J* = 11.1, 10.0, 3.4, 3.0 Hz, 1H, H-9), 4.70 (dq, *J* = 9.6, 2.8 Hz, 1H, H-11), 4.50 (ddd, *J* = 7.0, 4.6, 4.4 Hz, 1H, H-18), 4.48 (d, *J* = 11.0 Hz, 1H, PMB), 4.36 (d, *J* = 11.0 Hz, 1H, PMB), 3.79 (s, 3H, PMB), 3.25 (ddd, *J* = 7.4, 5.9, 4.0 Hz, 1H, H-20), 2.98 (dd, *J* = 16.4, 11.1 Hz, 1H, H-8), 2.88 (dd, *J* = 16.4, 3.4 Hz, 1H, H-8²), 2.85 (dd, *J* = 7.0, 2.4 Hz, 1H, H-17), 2.82 (dd, *J* = 7.0, 4.6 Hz, 1H, H-17[°]), 2.64 (dd, *J* = 13.3, 6.1 Hz, 1H, H-24), 2.39 (dd, *J* = 13.3, 8.2 Hz, 1H, H-24'), 2.11 (ddd, J = 14.7, 9.6, 3.0 Hz, 1H, H-10), 1.99 (dddd, J = 14.5, 7.4, 7.1, 4.4 Hz, 1H, H-19), 1.87 (ddd, J = 14.7, 10.9, 2.8 Hz, 1H, H-10'), 1.79-1.68 (m, 1H, H-21, H-25), 1.57-1.45 (m, 1H, H-21), 1.44-1.35 (m, 1H, H-26), 1.20-1.13 (m, 1H, H-26'), 0.94 (t, J = 7.5 Hz, 3H, H-22), 0.91 (s, 9H, TBS), 0.89 (t, J = 7.5 Hz, 3H, H-27), 0.85 (d, J = 7.1 Hz, 3H, H-23), 0.84 (d, J = 6.5 Hz, 3H, H-28), -0.03 (s, 3H, TBS), -0.23 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 170.2 (q, C-1), 164.0 (q, C-3), 160.5 (q, PMB), 159.0 (q, C-16), 137.8 (q, C-7), 137.2 (t, C-15), 136.7 (q, C-14), 134.9 (t, C-5), 133.4 (t, C-12), 131.0 (q, PMB), 129.3 (t, PMB), 128.8 (q, C-4), 118.4 (t, C-13), 117.0 (t, C-6), 113.6 (t, PMB), 107.7 (s, C-2), 80.5 (t, C-20), 76.5 (t, C-9), 70.8 (t, C-18), 70.79 (s, PMB), 69.9 (t, C-11), 55.2 (p, PMB), 42.0 (t, C-19), 41.6 (s, C-10), 36.8 (s, C-24), 34.7 (t, C-25), 33.3 (s, C-8), 32.0 (s, C-17), 29.4 (s, C-26), 25.7 (3x p, TBS), 22.9 (s, C-21), 19.0 (t, C-28), 17.9 (q, TBS), 11.5 (p, C-27), 10.1 (p, C-22), 8.6 (p, C-23), -4.8 (p, TBS), -5.3 (p, TBS) ppm; HRMS (ESI): *m/z*: calculated for C₄₂H₆₂NO₈Si: 736.4245 [M+H]⁺, found: 736.4271 [M+H]⁺.

11-epi-15b: $[a]^{26}_{D} = +6.2$ (c 1.0, CDCl₃); ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm) δ 11.17 (s, 1H, Ar-OH), 7.46 (s, 1H, H-15), 7.29 (d, J = 8.5 Hz, 2H, PMB), 7.21 (d, J = 7.5 Hz, 1H, H-5), 6.84 (d, J = 8.5 Hz, 2H, PMB), 6.59 (d, J = 7.5 Hz, 1H, PMB), 6.59 (d, J = 8.5 Hz, 2H, PMB), 6.59 (d, J = 7.5 Hz, 1H, PMB), 6.59 (d, J = 7.5 Hz, 2H, PMB), 6.59 (d, J = 7.5 Hz, 10.9 Hz, 1H, PMB), 3.78 (s, 3H, PMB), 3.25 (ddd, J = 7.9, 5.8, 4.1 Hz, 1H, H-20), 3.00 (dd, J = 16.3, 8.6 Hz, 1H, H-8), 2.91 (dd, J = 16.3, 3.6 Hz, 1H, H-8'), 2.88-2.82 (m, 2H, H-17), 2.64 (dd, J = 13.3, 6.5 Hz, 1H, H-24), 2.38 (dd, J = 13.3, 7.9 Hz, 1H, H-24'), 2.24 (ddd, J = 14.2, 7.5, 7.2 Hz, 1H, H-10), 1.97 (ddd, J = 14.2, 7.2, 4.5 Hz, 1H, H-10'), 2.04-1.93 (m, 1H, H 19), 1.79-1.66 (m, 1H, H-25), 1.58-1.45 (m, 1H, H-21), 1.44-1.34 (m, 1H, H-21[']), 1.24-1.14 (m, 2H, H-26), 0.93 (t, *J* = 7.5 28), -0.04 (s, 3H, TBS), -0.24 (s, 3H, TBS) ppm; 13 C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.0 ppm) δ 170.1 (q, C-1), 164.1 (q, C-3), 160.5 (q, PMB), 159.0 (q, C-16), 137.6 (q, C-7), 137.2 (t, C-15), 136.5 (q, C-14), 135.1 (t, C-5), 132.6 (t, C-12), 131.0 (q, PMB), 129.3 (2x t, PMB), 128.9 (q, C-4), 119.5 (t, C-13), 117.1 (t, C-6), 113.6 (3x t, PMB), 107.7 (s, C-2), 80.5 (t, C-20), 77.7 (t, C-9), 70.8 (t, C-18), 70.7 (s, PMB), 69.4 (t, C-11), 55.2 (p, PMB), 41.9 (t, C-19), 41.5 (s, C-10), 36.8 (s, C-24), 34.7 (t, C-25), 33.0 (s, C-8), 32.0 (s, C-17), 29.7 (s, C-26), 25.7 (3x p, TBS), 22.9 (s, C-21), 19.0 (t, C-28), 17.8 (q, TBS), 11.5 (p, C-27), 10.1 (p, C-22), 8.6 (p, C-23), -4.8 (p, TBS), -5.3 (p, TBS) ppm; HRMS (ESI): m/z: calculated for C₄₂H₆₂NO₈Si: 736.4245 [M+H]⁺, found: 736.4271 [M+H]⁺.

4-Nitrobenzoate S8:

To a solution of 11-*epi*-**15a** (5 mg, 6.8 µmol, 1.0 eq) in THF (2 mL) were sequentially added triphenylphosphine (18 mg, 0.1 mmol, 10.0 eq), 4-nitrobenzoic acid (11 mg, 0.1 mmol, 10.0 eq) and diethyl azodicarboxylate (40% in toluene, 32 µL, 0.1 mmol, 10.0 eq) at 0 °C. The reaction temperature was raised to room temperature and the reaction stirred for 30 min. H₂O was added and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = $6:1 \rightarrow 4:1$) furnished nitrobenzoate **S8** as a colorless oil (5 mg, 5.9 µmol, 86%).

 $[\alpha]^{21}_{D} = +12.7 (c \ 0.5, MeOH); ^{1}$ **H-NMR** (500 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 11.41 (s, 1H, Ar-O*H*), 8.39 (d, *J* = 8.9 Hz, 2H, CO₂CC*H*), 8.28 (d, *J* = 8.9 Hz, 2H, NO₂CC*H*), 7.34 (d, *J* = 7.6 Hz, 1H, H-5), 7.31 (d, *J* = 8.6 Hz, 2H, PMB), 7.24 (s, 1H, H-15), 6.96 (dd, *J* = 15.4, 10.8 Hz, 1H, H-12), 6.84 (d, *J* = 8.6 Hz, 2H, PMB), 6.75 (d, *J* = 7.6 Hz, 1H, H-6), 6.22 (d, *J* = 10.8 Hz, 1H, H-13), 5.97 (ddd, *J* = 15.4, 11.7, 7.4 Hz, 1H, H-11), 4.78 (dddd, *J* = 9.9, 5.7, 5.7, 5.6 Hz, 1H, H-9), 4.71 (ddd, *J* = 9.2, 6.1, 2.8 Hz, 1H, H-18), 4.47 (d, *J* = 11.2 Hz, 1H, PMB), 4.35 (d, *J* = 11.2, 1H, PMB), 3.72 (s, 3H, PMB), 3.33 (ddd, *J* = 11.8, 8.5, 4.5 Hz, 1H, H-20), 3.06-3.01 (m, 2H, H-8), 2.76-2.68 (m, 2H, H-10), 2.75 (dd, *J* = 14.6, 6.1 Hz, 1H, H-17), 2.64 (dd, *J* = 13.2, 6.2 Hz, 1H, H-24), 2.54 (dd, *J* = 14.6, 9.2 Hz, 1H, H-17), 2.39 (dd, *J* = 13.2, 8.1 Hz, 1H, H-24), 2.09-2.01 (m, 1H, H-19), 1.86-1.77 (m, 1H, H-21), 1.77-1.69 (m, 1H, H-25), 1.54-1.44 (m, 1H, H-21), 1.43-1.35 (m, 1H, H-26), 1.22-1.25 (m, 1H, H-26), 0.92 (s, 9H, TBS), 0.91 (d, *J* = 7.6 Hz, 3H, H-23), 0.89 (t, *J* = 7.1 Hz, 3H, H-27), 0.88 (t, *J* = 8.0 Hz, 3H, H-28), 0.85 (s, 3H, H-22), 0.07 (s, 3H, TBS), 0.05 (s, 3H, TBS) ppm; ¹³C-NMR (125 MHz, Me₂CO d₆, Me₂CO = 29.84 ppm) δ 171.3 (q, C-1), 164.4 (q, C-16), 161.1 (q, CO₂CCH), 160.0 (q, C-3), 152.0 (q, NO₂C), 147.5 (q, PMB), 138.4 (q, C-7), 138.1

(t, C-5), 135.3 (q, CO₂CCH), 132.0 (2x t, CO₂CCH), 130.4 (t, C-11), 130.2 (2x t, PMB), 130.2 (t, C-12), 130.0 (q, C-14), 128.8 (q, C-4), 124.7 (2x t, NO₂CCH), 119.3 (t, C-13), 118.3 (t, C-6), 114.3 (2x t, PMB), 108.8 (q, C-2), 96.2 (t, C-15), 80.6 (t, C-20), 80.0 (t, C-9), 71.3 (s, PMB), 70.6 (t, C-18), 55.4 (p, PMB), 42.3 (t, C-19), 38.8 (s, C-10), 37.2 (s, C-24), 35.6 (t, C-25), 32.9 (s, C-8), 32.7 (s, C-17), 29.2 (s, C-26), 26.2 (3x p, TBS), 23.1 (s, C-21), 19.2 (q, TBS), 18.6 (p, C-27), 11.7 (p, C-22), 10.1 (p, C-28), 8.3 (p, C-23), -4.37 (p, TBS), -4.4 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₄₉H₆₅N₂O₁₁Si: 885.4358 [M+H]⁺, found: 885.4360 [M+H]⁺.

3,11-Acetate-18-TBS-20-PMB protected 11-epi-noricumazole A S9a und 11-epi-S9b:

To a solution of alkohol **15a** (27 mg, 36.0 µmol, 1.0 eq) in CH₂Cl₂ (7 mL) was added DMAP (0.9 mg, 7.2 µmol, 0.2 eq), pyridine (13 µL, 158.4 µmol, 4.4 eq) and acidic anhydride (8 µL, 79.2 µmol, 2.2 eq) at room temperature. The reaction was terminated after 16 h by addition of H₂O and Et₂O. The aqueous layer was extracted with Et₂O. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether : ethyl acetate = $4:1 \rightarrow 2:1$) furnished **16a** (25 mg, 29.9 µmol, quant) as colorless oil.

S9a: $[\alpha]^{24}_{D} = -22.4$ (*c* 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = -2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, *J* = -2.4 (c 1.0, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO d₆ 7.8 Hz, 1H, H-5), 7.37 (d, J = 8.8 Hz, 2H, PMB), 7.19 (d, J = 7.8 Hz, 1H, H-6), 6.88 (d, J = 8.8 Hz, 2H, PMB), 6.59 (dd, J = 15.5, 0.8 Hz, 1H, H-13), 6.40 (ddd, J = 15.5, 7.2, 0.5 Hz, 1H, H-12), 5.67 (dq, J = 7.2, 0.8 Hz, 1H, H-11), 4.68 (ddd, J = 9.2, 4.5, 3.0 Hz, 1H, H-9), 4.57-4.53 (m, 1H, H-18), 4.51 (d, J = 11.0 Hz, 1H, PMB), 4.39 (d, J = 11.0 Hz, 1H, PMB), 3.78 (s, 3H, PMB), 3.34 (ddd, J = 8.2, 5.2, 4.0 Hz, 1H, H-20), 3.12 (dd, J = 16.1, 3.0 Hz, 1H, H-17), 3.04 (dd, J = 16.1, 10.1 Hz, 1H, H-17'), 2.87 (dd, J = 15.0, 3.0 Hz, 1H, H-8), 2.73 (dd, J = 15.0, 9.2 Hz, 1H, H-8'), 2.58 (dd, J = 13.3, 5.9 Hz, 1H, H-24), 2.33 (dd, J = 13.3, 8.7 Hz, 1H, H-24'), 2.32-2.27 (m, 1H, H-10), 2.29 (s, 3H, Ac), 2.10 (ddd, J = 13.9, 7.2, 4.5 Hz, 1H, H-10'), 2.06 (s, 3H, Ac), 1.98 (ddd, J = 6.6, 4.0, 1.9 Hz, 1H, H-19), 1.82 (pdddd, J = 14.6, 7.3, 7.3, 4.3 Hz, 1H, H-21), 1.69-1.59 (m, 1H, H-25), 1.50 (pdddd, J = 14.6, 7.3, 7.3, 5.2 Hz, 1H, H-21'), 1.41-1.32 (m, 1H, H-26), 1.26-1.14 (m, 1H, H-26'), 0.93 (d, J = 6.6 Hz, 3H, H-23), 0.91 (t, J = 7.3 Hz, 3H, H-22), 0.90 (t, J = 7.4 Hz, 3H, H-27), 0.83 (d, J = 6.7 Hz, 3H, H-28), 0.75 (s, 9H, TBS), -0.03 (s, 3H, TBS), -0.25 (s, 3H, TBS) ppm; ¹³C-NMR (100 MHz, Me₂CO d₆, Me₂CO = 29.84 ppm) δ 170.3 (2x q, Ac), 169.5 (q, C-1), 164.5 (q, C-16), 160.1 (q, PMB), 150.9 (q, C-3), 140.1 (q, C-7), 139.1 (q, C-14), 136.8 (t, C-15), 136.7 (t, C-5), 135.3 (q, C-4), 132.1 (q, PMB), 130.2 (2x t, PMB), 129.5 (t, C-12), 125.6 (t, C-6), 121.8 (t, C-13), 118.6 (q, C-2), 114.4 (2x t, PMB), 81.1 (t, C-20), 75.3 (t, C-18), 71.9 (t, C-9), 71.5 (s, PMB), 70.7 (t, C-11), 55.5 (p, PMB), 42.5 (t, C-19), 40.4 (s, C-10), 37.7 (s, C-24), 36.3 (t, C-25), 34.1 (s, C-17), 32.2 (s, C-8), unter Me₂CO-Signal (s, C-26), 26.2 (3x p, TBS), 23.4 (s, C-21), 21.1 (p, Ac), 21.07 (p, Ac), 19.3 (t, C-28), 18.5 (q, TBS), 11.8 (p, C-27), 10.2 (p, C-23), 8.5 (p, C-22), -4.5 (p, TBS), -4.9 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₄₆H₆₆NO₁₀Si: 820.4456 [M+H]⁺, found: 820.4437 [M+H]⁺.

11-epi-**S9b**: yield: quant., 0.1 mmol; $[\alpha]^{25}_{D} = -12.6$ (c 0.9, MeOH); ¹**H-NMR** (400 MHz, Me₂CO d₆, Me₂CO = 2.05 ppm) δ 7.80 (s, 1H, H-15), 7.49 (d, J = 7.8 Hz, 1H, H-5), 7.37 (d, J = 8.8 Hz, 2H, PMB), 7.19 (d, J = 7.8 Hz, 1H, H-6), 6.88 (d, J = 8.8 Hz, 2H, PMB), 6.59 (dd, J = 15.5, 0.8 Hz, 1H, H-13), 6.40 (ddd, J = 15.5, 7.2, 0.5 Hz, 1H, H-12), 5.67 (dq, J = 7.2, 0.8 Hz, 1H, H-11), 4.68 (ddd, J = 9.2, 4.5, 3.0 Hz, 1H, H-9), 4.57-4.53 (m, 1H, H-18), 4.51 (d, J = 11.0 Hz, 1H, PMB), 4.39 (d, J = 11.0 Hz, 1H, PMB), 3.78 (s, 3H, PMB), 3.34 (ddd, J = 8.2, 5.2, 4.0 Hz, 1H, H-20), 3.12 (dd, J = 16.1, 3.0 Hz, 1H, H-17), *J* = 13.3, 5.9 Hz, 1H, H-24), 2.33 (dd, *J* = 13.3, 8.7 Hz, 1H, H-24²), 2.32-2.27 (m, 1H, H-10), 2.29 (s, 3H, Ac), 2.10 (ddd, *J* = 13.9, 7.2, 4.5 Hz, 1H, H-10'), 2.06 (s, 3H, Ac), 1.98 (ddd, *J* = 6.6, 4.0, 1.9 Hz, 1H, H-19), 1.82 (pdddd, *J* = 14.6, 7.3, 7.3, 4.3 Hz, 1H, H-21), 1.69-1.59 (m, 1H, H-25), 1.50 (pdddd, *J* = 14.6, 7.3, 7.3, 5.2 Hz, 1H, H-21'), 1.41-1.32 (m, 1H, H-26), 1.26-1.14 (m, 1H, H-26'), 0.93 (d, J = 6.6 Hz, 3H, H-23), 0.91 (t, J = 7.3 Hz, 3H, H-22), 0.90 (t, J = 7.4 Hz, 3H, H-27), 0.83 (d, J = 6.7 Hz, 3H, H-28), 0.75 (s, 9H, TBS), -0.03 (s, 3H, TBS), -0.25 (s, 3H, TBS) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH $d_{3} = 49.0 \text{ ppm}) \ \delta \ 171.9 \ (2x \ q, \ Ac), \ 165.8 \ (2x \ q, \ C-1, \ C-3), \ 160.7 \ (2x \ q, \ C-16, \ PMB), \ 140.7 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ C-7), \ 137.73 \ (q, \ C-14), \ 139.0 \ (q, \ C-7), \ 137.73 \ (q, \ C-14), \ C-7), \ C-7)$ (t, C-12), 137.7 (2x t, C-5, C-15), 132.1 (2x t, PMB), 130.8 (1x q, 1x s, PMB, C-4), 129.1 (t, C-15), 126.1 (q, C-2), 123.0 (2x t, C-6, C-13), 114.7 (2x t, PMB), 81.6 (t, C-20), 77.1 (t, C-18), 72.6 (t, C-9), 72.1 (t, C-11), 71.9 (s, PMB), 55.7 (p, PMB), 42.8 (t, C-19), 40.2 (s, C-10), 38.1 (s, C-24), 36.8 (t, C-25), 34.3 (s, C-8), 32.2 (s, C-17), 30.5 (s, C-26), 26.2 (3x p, TBS), 23.6 (s, C-21), 21.14 (p, Ac), 21.1 (p, Ac), 19.4 (t, C-28), 18.7 (q, TBS), 11.9 (p, C-27), 10.1 (p, C-22), 8.4 (p, C-23), -4.4 (p, C-23), -4. TBS), -5.0 (p, TBS) ppm; **HRMS** (ESI): m/z: calculated for C₄₆H₆₆NO₁₀Si: 820.4456 [M+H]⁺, found: 820.4437 [M+H]⁺.

3,11-Acetate-PMB protected noricumazole A 16a and 11-epi-16b:

To a solution of protected noricumazole A **S9a** (14 mg, 17.3 μ mol, 1.0 eq) in THF (7 mL) was added hydrofluoric acid in pyridine (70%, as HF 30%, 0.7 mL) via a syringe pump over 14 h at room temperature. The reaction was terminated by addition of sat. aq. NaHCO₃ solution and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was taken up in MeOH and H₂O (1:1) and purified by RP-HPLC (MeOH:H₂O, gradient eluation). Compound **16a** (8 mg, 11.9 μ mol, 69%, 89% b.r.s.m.) was obtained as a colorless oil. As a side product acetate-protected **17a** was obtained.

 5.8, 4.2 Hz, 1H, H-9), 4.43 (d, J = 11.3 Hz, 1H, PMB), 4.40 (d, J = 11.3 Hz, 1H, PMB), 4.17 (ddd, J = 9.4, 6.6, 3.2 Hz, 1H, H-18), 3.77 (s, 3H, PMB), 3.49 (ddd, J = 7.2, 6.6, 3.6 Hz, 1H, H-20), 3.05 (dd, J = 14.6, 4.2 Hz, 1H, H-8), 3.01 (dd, J = 16.6, 10.4 Hz, 1H, H-8'), 2.94 (dd, J = 15.2, 3.2 Hz, 1H, H-17), 2.77 (dd, J = 15.2, 9.4 Hz, 1H, H-17'), 2.59 (dd, J = 13.3, 6.1 Hz, 1H, H-24), 2.38-2.31 (m, 1H, H-24'), 2.31 (s, 3H, Ac), 2.14 (dd, J = 6.7, 5.8 Hz, 2H, H-10), 2.06 (s, 3H, Ac), 2.02 (sext, J = 6.6 Hz, 1H, H-19), 1.70 (pdddd, J = 7.2, 7.2, 6.6, 3.6 Hz, 1H, H-21), 1.64-1.58 (m, 1H, H-25), 1.47 (sext, J = 7.2 Hz, 1H, H-21'), 1.41-1.30 (m, 1H, H-26), 1.30-1.17 (m, 1H, H-26'), 0.94 (t, J = 7.2 Hz, 3H, H-27), 0.91 (t, J = 8.7 Hz, 3H, H-22), 0.90 (d, J = 7.9 Hz, 3H, H-23), 0.85 (d, J = 6.6 Hz, 3H, H-28) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.1 (2x q, Ac), 171.2 (q, C-1), 165.7 (q, C-16), 160.8 (q, PMB), 149.7 (q, C-3), 140.6 (q, C-7), 139.0 (q, C-14), 137.8 (t, C-15), 137.7 (t, C-5), 135.5 (q, C-4), 132.1 (q, PMB), 130.8 (2x t, PMB), 129.8 (t, C-12), 126.1 (t, C-6), 122.0 (t, C-13), 118.6 (q, C-2), 114.7 (2x t, PMB), 82.1 (t, C-20), 76.3 (t, C-9), 72.0 (s, PMB), 71.7 (t, C-11), 71.6 (t, C-18), 55.7 (p, PMB), 42.1 (t, C-19), 40.5 (s, C-10), 38.1 (s, C-24), 36.9 (t, C-25), 34.3 (s, C-8), 33.8 (s, C-17), 30.5 (s, C-26), 23.1 (s, C-21), 21.1 (p, Ac), 21.0 (p, Ac), 19.4 (t, C-28), 11.9 (p, C-27), 10.8 (p, C-23), 9.6 (p, C-22) ppm; HRMS (ESI): m/z: calculated for C₄₀H₅₂NO₁₀: 706.3591 [M+H]⁺.

11-*epi*-16b: yield: 61%, 16.7 μ mol; $[\alpha]_{D}^{25}$ = -12.6 (*c* 0.9, MeOH); ¹H-NMR (500 MHz, MeOH d₄, MeOH d₃ = 3.31 ppm) δ 7.79 (s, 1H, H-15), 7.48 (d, J = 7.8 Hz, 1H, H-5), 7.27 (d, J = 8.7 Hz, 2H, PMB), 7.19 (d, J = 7.8 Hz, 1H, H-6), 6.85 (d, J = 8.7 Hz, 2H, PMB), 6.56 (d, *J* = 15.7 Hz, 1H, H-13), 6.32 (dd, *J* = 15.7, 7.2 Hz, 1H, H-12), 5.66 (ddd, *J* = 7.2, 7.0, 6.7 Hz, 1H, H-11), 4.57 (ddd, J = 14.9, 8.1, 3.9 Hz, 1H, H-9), 4.42 (d, J = 11.0 Hz, 1H, PMB), 4.39 (d, J = 11.0 Hz, 1H, PMB), 4.15 (ddd, *J* = 9.5, 6.6, 3.2 Hz, 1H, H-18), 3.76 (s, 3H, PMB), 3.48 (ddd, *J* = 6.6, 6.1, 3.4 Hz, 1H, H-20), 3.08 (dd, *J* = 16.1, 3.9 Hz, 1H, H-8), 3.00 (dd, J = 16.1, 8.1 Hz, 1H, H-8²), 2.92 (dd, J = 15.1, 3.2 Hz, 1H, H-17), 2.76 (dd, J = 15.1, 9.5 Hz, 1H, H-17²), 2.58 (dd, *J* = 13.4, 6.4 Hz, 1H, H-24), 2.37-2.30 (m, 1H, H-24²), 2.31 (s, 3H, Ac), 2.28 (ddd, *J* = 14.3, 8.1, 6.7 Hz, 1H, H-10), 2.07 (s, 3H, Ac), 2.02 (ddd, J = 14.3, 7.0, 3.9 Hz, 1H, H-10'), 2.01 (sext, J = 6.6 Hz, 1H, H-19), 1.68 (pdddd, J = 14.0, 7.5, 7.5, 3.4 Hz, 1H, H-21), 1.61 (oct, J = 6.4 Hz, 1H, H-25), 1.45 (sext, J = 7.3 Hz, 1H, H-26), 1.36 (pddd, J = 14.0, 7.5, 6.1 Hz, 1H, H-21[°]), 1.24-1.14 (m, 1H, H-26[°]), 0.93 (t, *J* = 7.3 Hz, 3H, H-27), 0.91 (t, *J* = 7.5 Hz, 3H, H-22), 0.90 (d, *J* = 6.6 Hz, 3H, H-23), 0.84 (d, J = 6.4 Hz, 3H, H-28) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.0 (2x q, Ac), 171.1 (q, C-1), 165.7 (q, C-16), 160.8 (q, PMB), 150.0 (q, C-3), 140.1 (q, C-14), 138.9 (t, C-15), 137.9 (t, C-15), 137.8 (q, C-7), 136.0 (q, C-4), 132.0 (q, PMB), 130.8 (2x t, PMB), 129.2 (t, C-12), 126.1 (t, C-6), 122.8 (t, C-13), 118.4 (q, C-2), 114.6 (2x t, PMB), 82.0 (t, C-20), 77.2 (t, C-9), 72.5 (t, C-11), 71.9 (s, PMB), 71.5 (t, C-18), 55.6 (p, PMB), 42.1 (t, C-19), 40.2 (s, C-10), 38.1 (s, C-24), 36.9 (t, C-25), 34.2 (s, C-8), 33.7 (s, C-17), 30.5 (s, C-26), 23.1 (s, C-21), 21.14 (p, Ac), 21.1 (p, Ac), 19.4 (t, C-28), 11.9 (p, C-27), 10.7 (p, C-22), 9.6 (p, C-23) ppm; HRMS (ESI): m/z: calculated for C₄₀H₅₂NO₁₀: 706.3591 [M+H]⁺, found: 706.3591 [M+H]⁺.

3,11-Diacetyl protected noricumazole A 17a and 11-epi-17b:

17a: yield: 6%, 1.0 µmol; $[\alpha]^{24}_{D} = -12.5$ (*c* 0.9, MeOH); ¹**H-NMR** (500 MHz, MeOH d₄, MeOH d₃ = 3.31 ppm) δ 7.79 (s, 1H, H-15), 7.49 (d, *J* = 7.8 Hz, 1H, H-5), 7.21 (d, *J* = 7.8 Hz, 1H, H-6), 6.54 (dd, *J* = 15.8, 0.6 Hz, 1H, H-13), 6.32 (dd, *J* = 15.8, 6.5 Hz, 1H, H-12), 5.65 (q, *J* = 6.5 Hz, 1H, H-11), 4.69-4.63 (m, 1H, H-9), 4.18 (ddd, *J* = 9.5, 6.7, 3.3 Hz, 1H, H-18), 3.54 (ddd, *J* = 9.0, 6.7, 2.6 Hz, 1H, H-20), 3.09-3.05 (m, 1H, H-8), 3.00 (dd, *J* = 16.4, 3.9 Hz, 1H, H-8^{*}), 3.00 (dd, *J* = 15.1, 3.3 Hz, 1H, H-17), 2.81 (dd, *J* = 15.1, 9.5 Hz, 1H, H-17^{*}), 2.59 (dd, *J* = 13.4, 6.1 Hz, 1H, H-24), 2.41-2.32 (m, 1H, H-24^{*}), 2.32 (s, 3H, Ac), 2.15 (pt, *J* = 6.5 Hz, 2H, H-10), 2.07 (s, 3H, Ac), 1.77 (sext, *J* = 6.7 Hz, 1H, H-19), 1.69-1.58 (m, 2H, H-21, H-25), 1.45-1.33 (m, 2H, H-21^{*}, H-26), 1.25-1.17 (sext, *J* = 7.2 Hz, 1H, H-26^{*}), 0.98 (t, *J* = 7.4 Hz, 3H, H-27), 0.92 (t, *J* = 7.5 Hz, 3H, H-22), 0.91 (d, *J* = 7.0 Hz, 3H, H-23), 0.85 (d, *J* = 6.6 Hz, 3H, H-28) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.1 (2x q, Ac), 171.2 (q, C-1), 165.9 (q, C-16), 149.6 (q, C-3), 140.7 (q, C-7), 138.9 (t, C-5), 137.8 (t, C-15), 130.7 (q, C-14), 129.8 (t, C-12), 126.1 (t, C-6), 122.0 (t, C-13), 118.5 (q, C-4), 114.8 (q, C-2), 76.3 (t, C-9), 75.4 (t, C-20), 72.3 (t, C-18), 71.6 (t, C-11), 45.6 (t, C-19), 40.5 (s, C-10), 38.1 (s, C-24), 36.9 (t, C-25), 34.3 (s, C-8), 33.7 (s, C-17), 30.5 (s, C-26), 27.2 (s, C-21), 21.1 (p, Ac), 21.0 (p, Ac), 19.4 (t, C-28), 11.9 (p, C-23), 11.3 (p, C-22), 10.4 (p, C-27) ppm; **HRMS** (ESI): *m/z*: calculated for C₃₂H₄₄NO₉: 586.3016 [M+H]⁺, found: 586.3002 [M+H]⁺.

11-*epi*-**17b**: yield: 13%, 3.6 µmol; $[a]^{25}_{D} = -12.6$ (*c* 0.9, MeOH); ¹**H-NMR** (500 MHz, MeOH d₄, MeOH d₃ = 3.31 ppm) δ 7.78 (s, 1H, H-15), 7.49 (d, *J* = 7.8 Hz, 1H, H-5), 7.19 (d, *J* = 7.8 Hz, 1H, H-6), 6.55 (dd, *J* = 15.6, 0.2 Hz, 1H, H-13), 6.31 (dd, *J* = 15.6, 7.1 Hz, 1H, H-12), 5.66 (ddd, *J* = 7.1, 6.9, 6.9 Hz, 1H, H-11), 4.58 (ddd, *J* = 7.1, 6.9, 6.9 Hz, 1H, H-9), 4.17 (dddd, *J* = 10.5, 8.1, 3.9, 3.6 Hz, 1H, H-18), 3.53 (ddd, *J* = 8.9, 6.6, 2.7 Hz, 1H, H-20), 3.06 (dd, *J* = 16.0, 3.6 Hz, 1H, H-8), 3.04 (dd, *J* = 16.0, 3.9 Hz, 1H, H-8), 3.00 (dd, *J* = 15.0, 3.2 Hz, 1H, H-17), 2.80 (dd, *J* = 15.0, 9.6 Hz, 1H, H-17), 2.58 (dd, *J* = 13.4, 6.1 Hz, 1H, H-24), 2.34-2.31 (m, 1H, H-24'), 2.31 (s, 3H, Ac), 2.28 (ddd, *J* = 14.4, 8.1, 6.9 Hz, 1H, H-10), 2.11-2.06 (m, 1H, H-10'), 2.08 (s, 3H, Ac), 1.76 (sext, *J* = 6.6 Hz, 1H, H-19), 1.67-1.57 (m, 2H, H-21, H-25), 1.43-1.33 (m, 2H, H-21', H-26), 1.27-1.15 (m, 1H, H-26'), 0.97 (t, *J* = 7.4 Hz, 3H, H-27), 0.91 (t, *J* = 7.5 Hz, 3H, H-22), 0.89 (d, *J* = 6.6 Hz, 3H, H-23), 0.84 (d, *J* = 6.6 Hz, 3H, H-28) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.0 (2x q, Ac), 171.1 (q, C-1), 165.9 (q, C-16), 151.9 (q, C-3), 138.8 (t, C-15), 137.9 (t, C-5), 137.8 (q, C-7), 130.7 (q, C-14), 129.2 (2x t, C-6, C-12), 126.1 (t, C-4), 122.7 (t, C-13), 114.8 (q, C-2), 77.2 (t, C-9), 75.4 (t, C-20), 72.5 (t, C-11), 72.3 (t, C-18), 45.6 (t, C-19), 40.2 (s, C-10), 38.1 (s, C-24), 36.9 (t, C-25), 34.7 (t, C-25), 34.2 (s, C-8), 33.7 (s, C-17), 30.5 (s, C-26), 27.2 (s, C-21), 21.1 (p, Ac), 21.08 (p, Ac), 19.4 (t, C-28), 11.9 (p, C-23), 11.3 (p, C-22), 10.4 (p, C-27) ppm; **HRMS** (ESI): *m/z*: calculated for $C_{32}H_{44}NO_9$; 586.3016 [M+H]⁺, found: 586.3002 [M+H]⁺.

Aglycon S10:

A solution of acceptor **16a** (8 mg, 11.9 μ mol, 1.0 eq) in CH₂Cl₂ (2.3 mL) was added to activated molecular sieves (powder, 4Å) under an atmosphere of argon. Hg(CN)₂ (7 mg, 26.1 μ mol, 2.2 eq) was added to the suspension at room temperature. After stirring for 45 min glycosyl donor **18** (45 mg, 85.6 μ mol, 7.2 eq) in CH₂Cl₂ (1.5 mL) which was codistilled before with benzene was added. After 2.25 h the reaction was quenched by addition of MeOH. The reaction mixture was filtered over Celite[®] and the organic layer washed with a sat. aq. KBr solution and water. The organic extract was dried over MgSO₄ and concentrated under reduced pressure. The residue was taken up in MeOH and H₂O (1:1) and purified by RP-HPLC (MeOH:H₂O, gradient eluation). Aglycon **S10** (6 mg, 5.2 μ mol, 47%) was obtained as a colorless oil.

 $[\alpha]^{22}_{D} = -10.3 (c \ 0.5, MeOH); ^{1}H-NMR (500 \text{ MHz}, MeOH d_4, MeOH d_3 = 3.31 \text{ ppm}) \delta 8.08-8.02 (m, 2 \text{ H}, \text{Bz}), 7.98-7.91 (m, 2 \text{ H},$ 4 H, Bz), 7.69 (s, 1H, H-15), 7.67-7.59 (m, 2H, Bz), 7.46-7.45 (m, 5H, Bz), 7.44 (d, J = 7.8 Hz, 1H, H-5), 7.28-7.20 (m, 2H, Bz), 7.19 (d, J = 8.7 Hz, 2H, PMB), 7.15 (d, J = 7.8 Hz, 1H, H-6), 6.78 (d, J = 8.7 Hz, 2H, PMB), 6.32 (d, J = 15.8 Hz, 1H, H-13), 6.26 (dd, J = 15.8, 6.4 Hz, 1H, H-12), 5.60-5.50 (m, 1H, H-11), 5.41 (pd, J = 4.7 Hz, 1H, H-4'), 5.39 (ps, 1H, H-2'), 5"), 4.58-4.56 (m, 1H, H-9), 4.47 (d, J = 11.1 Hz, 1H, PMB), 4.48 (dd, J = 8.3, 4.7 Hz, 1H, H-3°), 4.41-4.36 (m, 1H, H-18), 3.71 (s, 3H, PMB), 3.47-3.42 (m, 1H, H-20), 3.00 (dd, J = 15.8, 4.0 Hz, 1H, H-17), 2.98-2.93 (m, 2H, H-8), 2.89 (dd, J = 15.8, 10.8 Hz, 1H, H-17[°]), 2.56 (dd, J = 13.5, 6.1 Hz, 1H, H-24), 2.29 (dd, J = 13.5, 8.4 Hz, 1H, H-24[°]), 2.28-2.24 (m, 1H, H-19), 2.03 (ddd, J = 14.7, 9.0, 4.1 Hz, 1H, H-10), 1.91 (ddd, J = 14.7, 6.8, 3.5 Hz, 1H, H-10⁶), 1.73 (ddd, J = 14.5, 7.1, 3.7 Hz, 1H, H-21), 1.63-1.55 (m, 1H, H-25), 1.46-1.37 (m, 1H, H-21^o), 1.45 (sext, *J* = 7.0 Hz, 1H, H-26), 1.18 (sext, *J* = 7.0 Hz, 1H, H-26°), 0.98 (t, J = 7.0 Hz, 3H, H-22), 0.91 (t, J = 7.1 Hz, 3H, H-27), 0.90 (d, J = 7.0 Hz, 3H, H-23), 0.82 (d, J = 6.6 Hz, 3H, H-28) ppm; 13 C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.0 (2x q, Ac), 171.2 (q, C-1), 167.6 (q, Bz), 167.1 (q, Bz), 166.5 (q, Bz), 164.7 (q, C-16), 160.7 (q, PMB), 149.0 (q, C-3), 140.6 (t, C-7), 139.1 (t, C-15), 137.8 (q, C-5), 134.9 (q, C-14), 130.91 (q, PMB), 130.9 (3x t, Bz), 130.89 (2x t, PMB), 130.8 (2x t, Bz), 129.9 (2x t, Bz), 129.86 (t, C-12), 129.8 (q, C-4), 129.77 (3x t, Bz), 128.9 (t, C-5), 127.0 (t, C-6), 121.8 (t, C-13), 118.5 (q, C-2), 114.7 (2x t, PMB), 107.4 (t, C-1²), 83.3 (t, C-4⁴), 83.1 (t, C-2⁴), 81.2 (t, C-20), 79.2 (t, C-3⁶), 79.1 (t, C-18), 76.1 (t, C-9), 71.6 (s, PMB), 71.4 (t, C-11), 65.0 (s, C-5'), 55.6 (p, PMB), 40.5 (t, C-19), 40.2 (s, C-10), 38.1 (s, C-24), 36.8 (t, C-25), 34.3 (s, C-8), 31.1 (s, C-17), 30.5 (s, C-26), 23.2 (s, C-21), 21.1 (p, Ac), 21.0 (p, Ac), 19.4 (t, C-28), 11.9 (p, C-22), 10.9 (p, C-23), 19.7 (p, C-27) ppm; HRMS (ESI): m/z: calculated for C₆₆H₇₂NO₁₇: 1150.4800 [M+H]⁺, found: 1150.4789 [M+H]⁺.

Aglycon (-PMB) S11:

To a solution of aglycon **S10** (3 mg, 2.9 μ mol, 1.0 eq) in CH₂Cl₂ (1.5 mL) were added phosphate buffer (0.3 mL) and 2,3dichloro-5,6-dicyano-1,4-benzoquinone (1 mg, 5.7 μ mol, 2.0 eq) in CH₂Cl₂ (0.7 mL) at room temperature. After stirring for 1.5 h the reaction was quenched by addition of a sat. aq. NaHCO₃ solution and the aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated under reduced pressure. The residue was taken up in MeOH and H₂O (1:1) and purified by RP-HPLC (MeOH:H₂O, gradient eluation). Compound **S11** (3 mg, 2.8 μ mol, 98%) was obtained as a colorless oil.

 $[\alpha]^{22}_{D} = -21.8 (c \ 0.3, MeOH);$ ¹H-NMR (500 MHz, MeOH d₄, MeOH d₃ = 3.31 ppm) δ 8.08-8.03 (m, 2H, Bz), 7.98-7.92 (m, 2H, 4H, Bz), 7.70 (s, 1H, H-15), 7.68-7.63 (m, 2H, Bz), 7.54-7.49 (m, 2H, Bz), 7.98-7.95 (m, 1H, Bz), 7.44 (d, J = 7.9 Hz, 1H, H-5), 7.30-7.25 (m, 2H, Bz), 7.16 (d, *J* = 7.9 Hz, 1H, H-6), 6.33 (d, *J* = 15.6 Hz, 1H, H-13), 6.24 (dd, *J* = 15.6, 6.3 Hz, 1H, H-12), 5.55-5.48 (m, 1H, H-11), 5.45 (pdd, J = 4.6, 1.2 Hz, 1H, H-4'), 5.35 (ps, 1H, H-2'), 5.15 (ps, 1H, H-1'), 4.74 (dd, J = 11.7, 4.6 Hz, 1H, H-5'), 4.63 (dd, J = 11.7, 4.6 Hz, 1H, H-5''), 4.57 (dd, J = 9.2, 4.6 Hz, 1H, H-3'), 4.55-4.59 (m, 2H, H-9, H-18), 3.50-3.47 (m, 1H, H-20), 3.09-2.99 (m, 2H, H-8), 2.97 (dd, J = 16.6, 3.9 Hz, 1H, H-17), 2.92 (dd, J = 16.6, 10.6 Hz, 1H, H-17'), 2.57 (dd, J = 13.5, 6.3 Hz, 1H, H-24), 2.36-2.31 (m, 1H, H-24'), 2.31 (s, 3H, Ac), 2.14-2.09 (m 1H, H-19), 2.03-1.94 (m, 2H, H-10), 2.00 (s, 3H, Ac), 1.69-1.63 (m, 1H, H-21), 1.62-1.54 (m, 1H, H-25), 1.46-1.39 (m, 1H, H-21'), 1.31-1.25 (m, 1H, H-26), 1.19-1.13 (m, 1H, H-26²), 1.03 (d, J = 6.8 Hz, 3H, H-23), 1.00 (t, J = 7.3 Hz, 3H, H-22), 0.92 (t, J = 7.3 Hz, JH, H-26), 1.19-1.13 (m, 1H, H-26²), 1.03 (d, J = 6.8 Hz, 3H, H-23), 1.00 (t, J = 7.3 Hz, 3H, H-22), 0.92 (t, J = 7.3 Hz, JH, H-26), 1.19-1.13 (m, 1H, H-26²), 1.03 (d, J = 6.8 Hz, 3H, H-23), 1.00 (t, J = 7.3 Hz, 3H, H-22), 0.92 (t, J = 7.3 Hz, JH, H-26), 1.19-1.13 (m, 1H, H-26²), 1.03 (d, J = 6.8 Hz, 3H, H-23), 1.00 (t, J = 7.3 Hz, 3H, H-22), 0.92 (t, J = 7.3 Hz, JH, H-26), 1.19-1.13 (m, 1H, H-26²), 1.03 (d, J = 6.8 Hz, 3H, H-23), 1.00 (t, J = 7.3 Hz, 3H, H-22), 0.92 (t, J = 7.3 Hz, JH, H-26²), 1.03 (t, J = 6.8 Hz, 3H, H-26), 1.00 (t, J = 7.3 Hz, 3H, H-26), 1.00 (t, J = 7.3 Hz, JH, H-26), 3H, H-27), 0.83 (d, J = 6.5 Hz, 3H, H-28) ppm; ¹³C-NMR (125 MHz, MeOH d₄, MeOH d₃ = 49.0 ppm) δ 172.0 (2x q, Ac), 171.2 (q, C-1), 167.6 (q, Bz), 167.1 (q, Bz), 166.5 (q, Bz), 165.1 (q, C-16), 150.0 (q, C-3), 140.6 (q, C-14), 139.0 (q, C-7), 137.8 (t, C-5), 134.8 (t, C-12), 134.4 (t, C-15), 130.9 (6x t, Bz), 130.6 (4x t, Bz), 129.9 (2x t, Bz), 129.8 (2x t, Bz), 129.6 (4x t, Bz), 127.1 (q, C-2), 126.1 (t, C-6), 121.8 (t, C-13), 118.6 (q, C-4), 107.7 (t, C-1'), 83.4 (t, C-2'), 82.9 (t, C-3'), 79.2 (t, C-1'), 83.4 (t, C-2'), 82.9 (t, C-3'), 79.2 (t, C-1'), 83.4 (t, C-2'), 82.9 (t, C-3'), 79.2 (t, C-1'), 83.4 (t, C-2'), 82.9 (t, C-3'), 79.2 (t, C-1'), 83.4 (t, C-2'), 82.9 (t, C-3'), 79.2 4'), 79.1 (t, C-18), 76.2 (t, C-9), 74.9 (t, C-20), 71.4 (t, C-11), 64.9 (s, C-5'), 44.4 (t, C-19), 40.2 (s, C-10), 38.1 (s, C-24), 36.8 (t, C-25), 34.2 (s, C-17), 30.5 (s, C-26), 30.4 (s, C-8), 27.8 (s, C-21), 21.0 (2x p, Ac), 19.4 (t, C-28), 11.9 (p, C-23), 11.0 (p, C-22), 10.5 (p, C-27) ppm; HRMS (ESI): m/z: calculated for $C_{58}H_{64}NO_{16}$: 1030.4225 [M+H]⁺, found: 1030.4240 [M+H]⁺.

Noricumazole B (1b):

A solution of aglycon **S11** (2 mg, 1.5 μ mol, 1.0 eq) in MeOH/THF/H₂O/Et₃N (1.4 mL, 6:5:1:2) was stirred at 55 °C. After stirring for 2 d the solvent of the reaction mixture was removed and the residue directly taken up in MeOH and H₂O (1:1) and purified by RP-HPLC (MeOH:H₂O, gradient eluation). Noricumazole B (**1b**) (1 mg, 1.4 μ mol, 98%) was obtained as a colorless oil.

Synthetic noricumazole B: $[\alpha]^{22}_{D}$ = +14.8 (*c* 0.1, MeOH); authentic noricumazole B¹: $[\alpha]^{20}_{D}$ = + 13.3 (*c* 0.86 in MeOH); HRMS (ESI): *m/z*: calculated for C₃₃H₄₈NO₁₁: 634.3227 [M+H]⁺, found: 634.3228 [M+H]⁺. For NMR-spectra and data see figure 2 and refer to ref. 1.