Supplementary Information

Conformational control of TTFV π-framework through naphthyl substituents

Stephen Bouzan, Guang Chen, Karimulla Mulla, Louise N. Dawe, and Yuming Zhao*

Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada Corresponding author e-mail: yuming@mun.ca

Table of Contents

- 1. Experimental
- 2. NMR Spectra for New Compounds
- 3. X-ray Crystallographic Data
- 4. Theoretical Modeling Studies

1. Experimental

1.1 General

Chemicals and reagents were purchased from commercial suppliers and used without further purification. Compound 3 was prepared according to literature procedure.¹ All reactions were performed in standard, dry glassware under an inert atmosphere of N₂. Evaporation and concentration was done at H₂O-aspirator pressure. Flash column chromatography were carried out with silica gel 60 (230-400 mesh) from VWR International. Thin-layer chromatography (TLC) was carried out with silica gel 60 F254 covered on plastic sheets and visualized by UV light. ¹H and ¹³C NMR spectra were measured on a Bruker Avance 500 MHz spectrometer or a Tecmag APOLLO 300 MHz spectrometer. Chemical shifts are reported in ppm downfield from the signal of the internal reference SiMe₄. Coupling constants (J) are given in Hz. Infrared spectra (IR) were recorded on a Bruker Tensor 27 spectrometer equipped with a ZnSe ATR module. High-resolution mass spectrometric (HRMS) analyses were performed on a GTC Premier Micromass instrument (MS Technology) using atmospheric pressure chemical ionization (APCI). UV-Vis spectra were measured on a Cary 6000i UV-Vis-NIR spectrophotometer. Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) experiments were carried out in a standard three-electrode setup controlled by a BASi epsilon workstation.

1.2 Synthesis

1-Napthyl DTF 5a.

A mixture of 1-napthaldehyde **2** (0.17 mL, 0.19 g, 1.2 mmol) and thione **3** (287 mg, 1.27 mmol) in P(OMe)₃ (10 mL) was stirred at 108 °C for 3 h. The unreacted P(OMe)₃ was removed by vacuum distillation, and the residue was subjected to column chromatography (CH₂Cl₂/hexanes 1:1) to afford DTF **5a** (303 mg, 0.907 mmol, 72%) as a yellow crystalline solid. m.p.: 91–92 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 7.0

Hz, 1H), 7.74 (m, 1H), 7.54-7.46 (m, 4H), 7.07 (s, 1H), 2.46 (s, 3H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 134.5, 133.70, 133.66, 130.7, 128.6, 127.4, 126.2, 126.1, 126.0, 125.4, 124.5, 124.2, 123.8, 112.4, 19.0, 18.9; FTIR (neat): 3041, 2992, 2914, 1941, 1559, 1494, 1422, 1310, 1253, 1076, 1012, 965, 878, 826 cm⁻¹; HRMS (APCI, +eV) *m*/*z* calcd for C₁₆H₁₄S₄ 333.9973, found 333.9977 [M]⁺. X-ray.

2-Napthyl DTF 5b.

A mixture of 2-napthaldehyde **4** (0.706 g, 4.52 mmol) and thione **3** (1.007 g, 6.448 mmol) in P(OMe)₃ (20 mL) was stirred at 108 °C for 3 h. The unreacted P(OMe)₃ was removed by vacuum distillation. The residue was subjected to column chromatography (CH₂Cl₂/hexanes 1:1) to afford DTF **5b** (0.739 g, 2.21 mmol, 49%) as a yellow crystalline solid. m.p.: 58–59 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 1H), 7.62 (s, 1H), 7.49-7.40 (m, 2H), 7.35 (d, *J* = 8.6 Hz, 1H), 6.62 (s, 1H), 2.45 (s, 3H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 133.9, 133.6, 132.6, 131.7, 128.1, 127.93, 127.91, 127.6, 126.4, 125.9, 125.7, 124.9, 124.2, 114.9, 19.1, 19.0; FTIR (neat): 3053, 2990, 2914, 1941, 1554, 1495, 1421, 1357, 1304, 1013, 959, 894, 857 cm⁻¹; HRMS (APCI, +eV) *m/z* calcd for C₁₆H₁₄S₄ 333.9973, found 333.9979 [M]⁺.

1-Napthyl TTFV 6a.

To a solution of 1-napthyl DTF **5a** (0.502 g, 1.50 mmol) in CH_2Cl_2 (20 mL) was added I_2 (1.011 g, 3.98 mmol). The mixture was stirred for 3 h at rt. Then aq. $Na_2S_2O_3$ (20 mL, satd.) was

added and the mixture was stirred at rt for another 2 h. The organic layer was separated and dried over MgSO₄. Diethyl ether (30 mL) was then added, resulting in the precipitation of 1-napthyl TTFV **6a** which was collected by filtration as a bright orange powder (0.223 g, 0.335 mmol, 45%). m.p.: 251–252 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.77-7.67 (m, 4H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.41-7.33 (m, 4H), 7.12 (broad s, 2H), 2.46 (broad s, 3H), 2.47 (s, 6H), 2.18 (s, 6H); ¹³C NMR was not obtained due to poor solubility; FTIR (neat): 3045, 2914, 1584, 1506, 1465, 1421, 1309, 1163, 1013, 960, 859 cm⁻¹; HRMS (APCI, +eV) *m/z* calcd for C₃₂H₂₆S₈ 665.9795, found 665.9800 [M]⁺. X-ray.

2-Napthyl TTFV 6b.

To a solution of 2-napthyl DTF **5b** (0.508 g, 1.59 mmol) in CH₂Cl₂ (20 mL) was added I₂ (1.037 g, 4.09 mmol). The mixture was stirred for 3 h. Then aq. Na₂S₂O₃ (20 mL, satd.) was added and the mixture was stirred for 2 h. The organic layer was separated, dried over MgSO₄, and purified by column chromatography (CH₂Cl₂/hexanes 1:1) to afford 2-napthyl TTFV **6b** as a yellow crystalline solid (279 mg, 0.419 mmol, 53%). m.p.: 189–190 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.91 (s, 2H), 7.79 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.6 Hz, 4H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.45-7.38 (m, 4H), 2.43 (s, 6H), 2.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 136.8, 135.0, 133.5, 132.3, 128.33, 128.32, 128.1, 128.0, 127.5, 126.2, 126.0, 125.7, 124.9, 124.8, 19.0, 18.9; FTIR (neat): 2913, 1591, 1532, 1491, 1421, 1308, 1133, 961, 892, 852, 811 cm⁻¹; HRMS (APCI, +eV) *m/z* calcd for C₃₂H₂₆S₈ 665.9795, found 665.9785 [M]⁺. X-ray.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

2. NMR Spectra for New Compounds

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5a.

Figure S2. ¹³C NMR (75 MHz, CDCl₃) spectrum for compound 5a.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S3. ¹H NMR (500 MHz, CDCl₃) spectrum for compound 5b.

Figure S4. ¹³C NMR (75 MHz, CDCl₃) spectrum for compound 5b.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S5. ¹H NMR (300 MHz, CDCl₃) spectrum for compound 6a.

Figure S6. ¹H NMR (300 MHz, CDCl₃) spectrum for compound 6b.

Figure S7. ¹³C NMR (75 MHz, CDCl₃) spectrum for compound 6b.

3. X-ray Crystallographic Data

Figure S8. ORTEP plots of **5a** at 50% ellipsoid probability. (A) Front view; (B) side view, and (C) crystal packing diagram. Selected bond distances (Å): C(1)-C(4) 1.348(3), C(4)-C(5) 1.466(3), C(5)-C(6) 1.434(2), C(1)-S(1) 1.760(2), C(1)-S(2) 1.764(2), S(1)-C(2) 1.766(2), S(2)-C(3) 1.761(2), C(2)-C(3) 1.347(3). Selected bond angles (°): S(1)-C(1)-S(2) 112.2(1), S(1)-C(1)-C(4) 126,1(2), C(1)-C(4)-C(5) 125.4(2), C(1)-S(1)-C(2) 95.1(1). Selected torsion angles (°):C(1)-S(1)-C(2)-C(3) -12.2(1), S(1)-C(1)-C(4)-C(5) -4.9(3), C(3)-S(2)-C(1)-S(1) -19.1(1), C(1)-C(4)-C(5)-C(6) 140.0(2).

Figure S9. ORTEP plots of diphenyl-substituted TTFV **7** at 50% ellipsoid probability. (A) Front view; (B) side view. Selected bond distances (Å): S(1)-C(1)1.754(5),S(1)-C(3) 1.762(6), S(2)-C(2) 1.764(7), S(2)-C(3) 1.754(4), C(1)-C(2) 1.329(9), C(3)-C(4) 1.341(7), C(4)-C(5) 1.495(8), C(4)-C(9) 1.484(6). Selected bond angles (°):S(1)-C(1)-S(5) 117.2(3), C(3)-C(4)-C(5) 117.2(4), C(3)-C(4)-C(9) 125.6(5). Selected torsion angles (°):S(1)-C(3)-C(4)-C(9) 9.5(6), C(3)-C(4)-C(9) (-C(5) -C(6) 75.3(5), C(3)-C(4)-C(9)-C(10) 36.2(6).

DTF 5a: C₁₆H₁₄S₄, M = 334.53, monoclinic, a = 13.299(6) Å, b = 7.856(3) Å, c = 15.682(7) Å, $\beta = 106.279(6)^{\circ}$, V = 1572.7(12) Å³, T = 163(2) K, space group $P2_1/c$, Z = 4, μ (MoK α) = 0.590 mm⁻¹, 19238 reflections measured, 3574 independent reflections ($R_{int} = 0.0357$). $R_I = 0.0411$ ($I > 2\sigma(I)$), $wR(F^2) = 0.1092$ (all data). GoF on $F^2 = 1.099$. CCDC XXXXX. Single crystals were obtained by slow evaporation of a solution of **DTF 5a** in CDCl₃ at 4 °C.

TTFV 6a: $C_{32}H_{26}S_8$, M = 667.04, triclinic, a = 10.433(8) Å, b = 12.641(8) Å, c = 12.954(8) Å, $a = 66.52(3)^\circ$, $\beta = 73.94(2)^\circ$, $\gamma = 83.87(3)^\circ$, V = 1505.8(18) Å³, T = 163(2) K, space group $P\overline{1}$, Z = 2, μ (MoK α) = 0.616 mm⁻¹, 11348 reflections measured, 5514 independent reflections ($R_{int} = 0.0460$). $R_I = 0.0987$ ($I > 2\sigma(I)$), $wR(F^2) = 0.3004$ (all data). GoF on $F^2 = 1.089$. CCDC 88258. Single crystals were obtained by slow crystallization from a CS₂ solution of **TTFV 6a** at 4 °C.

TTFV 6b: $C_{32}H_{26}S_8$, M = 667.04, monoclinic, a = 20.472(8) Å, b = 9.432(3) Å, c = 15.900(6) Å, $\beta = 93.519(5)^\circ$, V = 3064.4(19) Å³, T = 163(2) K, space group C2/c, Z = 4, μ (MoK α) = 0.606 mm⁻¹, 20685 reflections measured, 3517 independent reflections ($R_{int} = 0.0361$). $R_I = 0.0568$ ($I > 2\sigma(I)$), $wR(F^2) = 0.1647$ (all data). GoF on $F^2 = 1.182$. CCDC 88259. Single crystals were obtained by slow diffusion of MeOH into a CH₂Cl₂ solution of **TTFV 6b** at 4 °C.

Crystal data for diphenyl TTFV 7: C₃₄H₃₈S₈Si₂•CH₂Cl₂, M = 844.26, triclinic, a = 8.853(7) Å, b = 15.935(13) Å, c = 17.189(14) Å, $a = 113.950(4)^{\circ}$, $\beta = 100.455(8)^{\circ}$, $\gamma = 100.051(9)^{\circ}$, V = 2095(3) Å³, T = 193(2) K, space group $P\overline{1}$, Z = 2, μ (MoK α) = 0.635 mm⁻¹, 17256 reflections measured, 8552 independent reflections ($R_{int} = 0.0446$). The final R_I and $wR(F^2)$ values were 0.0834 ($I > 2\sigma(I)$) and 0.2453 (all data), respectively. The goodness of fit on F^2 was 1.075. CCDC 845793. Compound 7 was prepared according to the method we previously reported,² and its single crystals were obtained by slow diffusion of MeOH into a CH₂Cl₂ solution of 7 at 4 °C.

4. Theoretical Modeling Studies

The molecular structures and frontier molecular orbital properties of naphthyl-TTFV derivatives **6a** and **6b** were investigated by density functional theory (DFT) calculations. To reduce computational cost, the SMe groups of **6a** and **6b** were replaced with H atoms. Structure optimization and MO calculations were done at the B3LYP/6-31G* level using Spartan'10 (Wavefunction, Inc.).

Figure S10. (A) Plot of HOMO (E = -4.17 eV) of **6a**. (B) Plot of LUMO (E = -1.17 eV) of **6a**.

Figure S11. (A) Plot of HOMO (*E* = -4.68 eV) of **6b**. (B) Plot of LUMO (*E* = -1.15 eV) of **6b**.

References:

(a) G. Steimecke, H. J. Sieler, R. Kirmse and E. Hoyer, *Phosphor. Sulf.* 1979, 7, 49; (b)
M. R. Bryce and A. J. Moore, *Synthesis* 1991, 26.

(a) G. Chen, I. Mahmud, L. Dawe and Y. Zhao, *Org. Lett.* 2010, **12**, 704. (b) G. Chen, I. Mahmud, L. N. Dawe, D. Lee, Y. Zhao, *J. Org. Chem.* 2011, **76**, 2701.