DABCO and Tributyl Phosphine Catalyzed [4+2] and [3+2] Cycloadditions of 3-Acyl-2H-chromen-ones and Ethyl 2,3-Butadienoate

Ying Wang, Zhi-Hua Yu, Hu-Fei Zheng, and De-Qing Shi*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Fax: (+86) 27-67862041; Tel: (+86) 27-67867958; E-mail: chshidq@mail.ccnu.edu.cn

Contents

¹H, ¹³C NMR-spectra of **1**, **2** and **3** X-ray diffraction data for **2b** and **3j**

Figure S2. ¹³C NMR spectrum (150 MHz, CDCl₃) of 3-benzoyl-chromen-2-one (1a)

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-6-bromo-chromen-2-one (**1b**)

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-benzoyl-6-chloro-chromen-2-one (1c)

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-6-chloro-chromen-2-one (1c)

Figure S8. ¹³C NMR spectrum (150 MHz, CDCl₃) of 3-benzoyl-6-fluoro-chromen-2-one (1d)

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-6,8-dichloro-chromen-2-one (1e)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-7-(trifluoromethyl)-chromen-2-one (1f)

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃) of 3-benzoyl-6-methyl-chromen-2-one (**1g**)

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-6-methyl-chromen-2-one (**1g**)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S15. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-benzoyl-7-methyl-chromen-2-one (1h)

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-7-methyl-chromen-2-one (1h)

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-benzoyl-6-methoxy-chromen-2-one (1i)

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-benzoyl-6-methoxy-chromen-2-one (1i)

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-(4-methylbenzoyl)-chromen-2-one (1k)

¹H, ¹³C NMR-spectra of 2

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃) of 2a

-0.00

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2b**

Figure S5. ¹H NMR spectrum (600 MHz, CDCl₃) of **2c**

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2c**

$\begin{array}{c} & -0.01 \\ \hline 0.01 \\ \hline 0.$

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of 2d

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2e**

$-0.00 \qquad \qquad -0.00 \qquad \qquad -00 \qquad \qquad -00$

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2f**

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃) of **2g**

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2g**

$\begin{array}{c} & -0.00 \\ \hline & -0.00 \\ \hline$

Figure S17. ¹H NMR spectrum (600 MHz, CDCl₃) of **2i**

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2i**

Figure S20. ^{13}C NMR spectrum (100 MHz, CDCl_3) of 2j

-0.00

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of **2k**

Figure S24. ^{13}C NMR spectrum (100 MHz, CDCl_3) of 2l

¹H, ¹³C NMR-spectra of **3**

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3a**

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3b**

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3c**

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3d

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3e**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Figure S15. ¹H NMR spectrum (400 MHz, CDCl₃) of **3g**

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3g**

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3h**

Supporting Information -0.00 $\begin{array}{c} 7.75\\ 7.75\\ 7.64\\ 7.64\\ 7.62\\ 7.33\\ 7.33\\ 7.33\\ 7.23\\ 7.23\\ 7.13\\$ -2.37 $\begin{pmatrix} 1.30 \\ 1.28 \\ 1.27 \end{pmatrix}$ -4.90 7.73 7.73 7.64 7.64 7.64 735 731 731 731 731 731 731 718 716 716 716 -6.94 $C_2H_5O_2C$ 0 \cap 7.9 7.8 7.6 7.5 7.4 7.7 7.3 7.2 7.0 7.1 6.9 3.21--66.(-66.0 -96ş .0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 6.0 5.0 4.0 3.5 2.5 2.0 1.5 0.5 0.0 -0.5 -1. 7.0 6.5 5.5 4.5 3.0 1.0 Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of **3i** -191.62-167.23-164.14149.26 144.57 142.81 136.80 130.14 129.56 129.56 129.13 129.13 129.13 129.13 -119.28 60.99 60.84 -48.66 -41.02 -21.58 -76.99 -76.69 -14.11 130.14 129.56 129.31 129.13 -125.47-136.80 $C_2H_5O_2C$

Figure S22. ^{13}C NMR spectrum (100 MHz, CDCl₃) of 3i

Figure S24. ¹³C NMR spectrum (100 MHz, CDCl₃) of **3**j

X-ray diffraction data for $\mathbf{2b}$

The crystal data of 2b have been deposited in CCDC with number 889494.

Table 1. Crystal data and structure refinement for	mo_120507e.	
Identification code	e:20507e	
Empirical formula	C22 H17 Br O5	
Formula weight	441.27	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pna2(1)	
Unit cell dimensions	a = 11.756 Å	α= 90°.
	b = 14.575 Å	β= 90°.
	c = 11.520 Å	$\gamma = 90^{\circ}.$
Volume	1973.9 Å ³	
Z	4	
Density (calculated)	1.485 Mg/m ³	
Absorption coefficient	2.113 mm ⁻¹	
F(000)	896	
Crystal size	0.20 x 0.10 x 0.10 mm ³	

Theta range for data collection	2.23 to 26.48°.
Index ranges	-14<=h<=14, -17<=k<=18, -14<=l<=14
Reflections collected	14075
Independent reflections	3918 [R(int) = 0.0520]
Completeness to theta = 26.48°	99.6 %
Absorption correction	None
Max. and min. transmission	0.8165 and 0.6773
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3918 / 9 / 271
Goodness-of-fit on F ²	0.986
Final R indices [I>2sigma(I)]	R1 = 0.0394, wR2 = 0.0809
R indices (all data)	R1 = 0.0920, $wR2 = 0.0971$
Absolute structure parameter	0.009(11)
Largest diff neak and hole	0.220 and $0.211 \text{ e} ^{3}$

X-ray diffraction data for 3j

The crystal data of **3j** have been deposited in CCDC with number 889495.

Table 1. Crystal data and structure refinement for mo_120509_0m

Identification code	120509b_0m	
Empirical formula	C22 H17 Cl O5	
Formula weight	396.81	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions $a = 9.7129(16) \text{ Å} \square = 107.550(2)^{\circ}$		
$b = 10.5113(17) \text{ Å} \square = 105.744(2)^{\circ}$		
$c = 10.7041(17) \text{ Å} = 98.461(2)^{\circ}$		
Volume	971.2(3) Å ³	
Z	2	
Density (calculated)	1.357 Mg/m ³	
Absorption coefficient	0.227 mm ⁻¹	
F(000)	412	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.10 to 25.50°.	
Index ranges	-11<=h<=11, -11<=k<=12, -12<=l<=12	

Reflections collected	7083
Independent reflections	3559 [R(int) = 0.0246]
Completeness to theta $= 25.50$	98.5 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3559 / 6 / 275
Goodness-of-fit on F ²	1.086
Final R indices [I>2sigma(I)]	R1 = 0.0499, wR2 = 0.1514
R indices (all data)	R1 = 0.0618, wR2 = 0.1632
Extinction coefficient	0.000(4)
Largest diff. peak and hole 0.295 and -0.413 e.	-3