Synthesis and optical properties of macrocyclic lanthanide (III) chelates as new reagents for luminescent biolabeling

Sébastien Deslandes,^{a,b,c} Chantal Galaup,^{b,c} Robert Poole,^a Béatrice Mestre-Voegtlé,^{b,c} Stéphanie Soldevila,^a Nadine Leygue,^{b,c} Hervé Bazin,^a Laurent Lamarque^{*a} and Claude Picard^{*b,c}

^a Cisbio Bioassays, Parc Marcel Boiteux, BP 84175, 30204 Bagnols-sur-Cèze Cedex, France. *E-mail*: llamarque@cisbio.com; Fax: +33 4-66-79-19-47; Tel: +33 4-66-79-67-79.
^b CNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique,
SPCMIB, UMR-5068; 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. E-mail: picard@chimie.ups-tlse.fr; Fax: +33 5-61-55-60-11; Tel: +33 5-61-55-62-96.
^c Université de Toulouse; UPS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB; 118 route de Narbonne, F-31062 Toulouse cedex 9, France.

Supporting Information

¹³ C NMR spectrum of 6,6"-Bis(bromomethyl)-2,2':6',2"-terpyridine (12) recorded in CDCl ₃
(50MHz)
¹³ C NMR spectrum of 3,6-Bis(chloromethyl)-10,11,12,13-tetrahydrodipyrido-[3,2-a:2',3'-c]-
phenazine (13) recorded in CDCl ₃ (100 MHz)4
¹³ C NMR spectrum of N,N "-Dibenzyl protected triamine (20) recorded in CDCl ₃ (75 MHz)5
¹³ C NMR spectrum of fully-protected terpyridine (tpy) ligand (14) recorded in CDCl ₃ (75
MHz)6
¹³ C NMR spectrum of fully-protected dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) ligand (16)
recorded in CDCl ₃ (75 MHz)7
RP-HPLC elution profile (system A) of Terpyridine ligand 15 8
RP-HPLC elution profile (system B) of dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) ligand
179
RP-HPLC elution profile (System A) and ESI-MS spectrum of europium complex 510
RP-HPLC elution profile (System A) and ESI-MS spectrum of terbium complex 611
RP-HPLC elution profile (System C) and ESI-MS spectrum of europium complex 712
RP-HPLC elution profile (System C) ESI-MS spectrum of terbium complex 813
RP-HPLC elution profile (System D) of Eu(III) chelate 914
High-resolution mass spectrum of Eu(III) chelate 915
RP-HPLC elution profile (System E) of Eu(III) chelate 10 16
High-resolution mass spectrum of Eu(III) chelate 1017
Corrected emission spectrum of terbium complexes 6 and 818
Quantum yields and lifetimes of Eu(III) complexes 5 and 7 in various media at 298K19
Calculated values of η_{sens} for Eu(III) complexes
Excitation and corrected emission spectra of 9 -GSS11 conjugate in phosphate buffer21
Excitation and corrected emission spectra of 10 -GSS11 conjugate in phosphate buffer22

¹³C NMR spectrum of 6,6"-Bis(bromomethyl)-2,2':6',2"-terpyridine (**12**) recorded in CDCl₃ (50 MHz).

¹³C NMR spectrum of 3,6-Bis(chloromethyl)-10,11,12,13-tetrahydrodipyrido-[3,2-a:2',3'-c]-phenazine (**13**) recorded in CDCl₃ (100 MHz).

 13 C NMR spectrum of *N*,*N*"-Dibenzyl protected triamine (**20**) recorded in CDCl₃ (75 MHz).

¹³C NMR spectrum of fully-protected terpyridine (tpy) ligand (**14**) recorded in CDCl₃ (75 MHz).

¹³C NMR spectrum of fully-protected dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) ligand (**16**) recorded in CDCl₃ (75 MHz).

RP-HPLC elution profile (system A) of Terpyridine ligand 15

RP-HPLC elution profile (system B) of dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) ligand **17**

RP-HPLC elution profile (System A) and ESI-MS spectrum of europium complex 5

RP-HPLC elution profile (System A) and ESI-MS spectrum of terbium complex 6

RP-HPLC elution profile (System C) and ESI-MS spectrum of europium complex 7

RP-HPLC elution profile (System C) ESI-MS spectrum of terbium complex 8

RP-HPLC elution profile (System D) of Eu(III) chelate 9

High-resolution mass spectrum of Eu(III) chelate 9

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 631 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-10 O: 0-10 151Eu: 0-1

Coll Energy = 6 Cone Voltage = 50 XEVO-G2QTOF#YCA210 TPYMAIEu 33 (0.522) AM2 (Ar,14000.0,0.00,0.00); Cm (31:35) 3: TOF MS ES+

100-				907.	2290 927.2	929.210 089	8		0.040	
%	849.2183 863.23	36	889.2125	903.2206	908.2318 909.2336	93	0.2137 945.19	⁴³ _949.1932967.23	08 987.22	13 m/z
840	850 860	870	880 89	0 900	910 920	930	940	950 960 9	70 980	102
Minimum: Maximum:		3.0	3.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT)	Norm	Conf(%)	Formula		
905.2270	905.2273 905.2255 905.2287	-0.3 1.5 -1.7	-0.3 1.7 -1.9	22.5 35.5 22.0	182.9 183.0 183.6	0.888 0.944 1.614	41.17 38.92 19.91	C38 H42 N8 C50 H38 N6 C40 H44 N5	09 151Eu 02 151Eu 010 151Eu	мн ۲

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions

633 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-10 O: 0-10 151Eu: 0-1 Na: 1-1

Coll Energy = 6 Cone Voltage = 50 XEVO-G2QTOF#YCA210 TPYMAIEu 33 (0.522) AM2 (Ar,14000.0,0.00,0.00); Cm (31:35) 3: TOF MS ES+

100				90	92	929.210 7.2089	38			9.048+005
%	849.2183 863.23	336	889.2125	903.2206	908.231	3 16	945.19	43 _949.1932§	967.2308	987.2213
840	850 860	870	880 89	0 900	910	920 930	940	950 960	970	m/z 980
Minimum: Maximum:		3.0	3.0	$-1.5 \\ 50.0$						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
927.2089	927.2093 927.2074	-0.4 1.5	-0.4 1.6	22.5 35.5	161.3 161.3	0.688 0.698	50.24 49.76	C38 H41 C50 H37	N8 09 N6 02	151Eu Na 151Eu Na

Page 1

0.640+005

Page 1

RP-HPLC elution profile (System E) of Eu(III) chelate 10

High-resolution mass spectrum of Eu(III) chelate 10

Corrected emission spectrum of terbium complex **6** (1×10^{-6} M in Tris buffer 50 mM, pH 7.4) at 298 K.

Corrected emission spectrum of terbium complex 8 (1×10^{-6} M in Tris buffer 50 mM, pH 7.4) at 298K.

Quantum yields and lifetimes of Eu(III) complexes 5 and 7 in various media at 298K

Eu(III) complex 5

	Tris buffer	Tris buffer	HEPES buffer	Phosphate	Borate buffer
	(0.05 M,	+ KF (0.4 M)	(0.05M,	buffer (0.05 M,	(0.05M,
	pH 7.3)		pH 7.3)	pH 7.3)	pH 8.6)
$\varPhi(\%)$	13	14	13	14	13
$ au(\mathrm{ms})$	1.10	1.10	1.08	1.11	1.10

Eu(III) complex 7

	Tris buffer Tris buffer		ris buffer HEPES buffer		Borate buffer
	(0.05 M,	+ KF (0.4 M)	(0.05M,	buffer (0.05 M,	(0.05M,
	pH 7.3)		pH 7.3)	pH 7.3)	pH 8.6)
$\Phi(\%)$	3	4	2.5	3	3
au(ms)	0.46	0.82	0.45	0.58	0.51

Calculated values of η_{sens} for Eu(III) complexes

The overall luminescence quantum yield of the complex (Φ_{obs}) can be broken into two contributions: $\Phi_{obs} = \eta_{sens} \times \Phi_{Eu}$, where η_{sens} is the efficiency of the sensitization of the Eu³⁺ ion through the ligand and Φ_{Eu} is the intrinsic quantum yield of the Eu³⁺ ion when it is excited in its own levels. The latter can be calculated from the observed luminescence lifetime which is influenced by non-radiative processes ($\tau_{obs} = (k_r + \Sigma k_{nr})^{-1}$) and the radiative lifetime τ_R which is not affected by these processes ($\tau_R = k_r^{-1}$). In the particular case of Eu(III), τ_R can be evaluated from the spectral intensity and by using eq (2)

$$\Phi_{\rm Eu} = \tau_{\rm obs} / \tau_{\rm R} \tag{1}$$

$$1 / \tau_{\rm R} = k_{\rm r} = 14.65 \times n^3 \times (I_{\Sigma Fj} / I_{\rm F1})$$
⁽²⁾

n is the refractive index of the solution, $I_{\Sigma Fj}$ is the total area of the corrected Eu(III) emission spectrum from the ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (J = 0.4) and I_{F1} the area of the magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$.

Chelate	$[I_{F1}/I_{\Sigma F0-4}]$	τ _R [ms]	k _r [s ⁻¹]	$\sum k_{nr}$ [s ⁻¹]	$\Phi_{\rm Eu}$ [×10 ²)]	η_{sens} [×10 ²]
[4 -3H].Eu	0.15	4.35	230	679	25	68
5	0.14	4.07	246	663	27	48
7	0.13	3.77	265	1909	12	25
9	0.14	4.07	246	587	29	52
10	0.13	3.77	265	1553	15	40

Calculated values of $\tau_{\rm R}$, $k_{\rm r}$, $\Sigma k_{\rm nr}$, $\Phi_{\rm Eu}$ and $\eta_{\rm sens}$ for Eu(III) complexes complexes using experimentally determined quantities $\tau_{\rm obs}$, Φ and $[I_{\rm F1}/I_{\Sigma F0.4}]$ in Tris-buffer (pH 7.4) at 298K.

(a) Excitation (Iem = 617 nm) and (b) corrected emission (lexc = 334 nm) spectra of **9**-GSS11 conjugate in phosphate buffered saline (100 mM with 0.1% BSA; pH 7) at 298 K. Excitation and emission band passes 20-2.5 nm respectively; delay time 0.1 ms, gate time 0.4 ms.

(a) excitation (lem = 617 nm) and (b) corrected emission (lexc = 350 nm) spectra of **10**-GSS11 conjugate in phosphate buffered saline (100 mM with 0.1% BSA; pH 7) at 298 K. Excitation and emission band passes 20-2.5 nm respectively; delay time 0.1 ms, gate time 0.4 ms.

