Electronic Supplementary Information

A highly sensitive fluorescent probe based on simple pyrazoline for Zn²⁺ in living neuron cells

Zhe Zhang ^a, Fang-Wu Wang ^b, Sheng-Qing Wang ^a, Fei Ge ^a, Bao-Xiang Zhao ^{a,*}, Jun-Ying Miao ^{b,*}

 ^a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
^b Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China

Corresponding author: Bao-Xiang Zhao, Jun-Ying Miao Tel.: +86 531 88366425; fax: +86 531 88564464; E-mail addresses: bxzhao@sdu.edu.cn (B.X. Zhao); miaojy@sdu.edu.cn (J.Y. Miao)

Fig. S1 Structure of compound 3

Fig. S2 Structure of compound 4 (L)

Fig. S3 UV-vis spectrum of **L** in HEPES buffer solution (20 mM HEPES, pH 7.2, EtOH : $H_2O = 1 : 1$) with different concentration.

Fig. S4 Linear relation of the absorbance and L concentration at 341 nm.

Fig. S5 UV-vis spectral changes of compound **L** (5×10^{-5} M) in the HEPES buffer solution (pH = 7.2, 50% CH₃CH₂OH, v/v) upon additions of various metal ions (5×10^{-5} M).

Fig. S6 The fluorescence emission spectra of **L** $(1.0 \times 10^{-5} \text{ M})$ and **L** upon addition of 1.0 equiv of Zn^{2+} in HEPES buffer solution (20 mM HEPES, pH 7.2, EtOH : $H_2O = 1 : 1$). Inset: Job's plots according to the method for continuous variations, indicating the 1:1 stoichiometry for **L**-Zn²⁺ (the total concentration of **L** and Zn²⁺ is $1.0 \times 10^{-5} \text{ M}$).

Fig. S7 Fluorescence emission spectra of L-Zn(II) $(1.0 \times 10^{-5} \text{ M})$ in the presence of Al³⁺, Cr³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Ag⁺, Cd²⁺, Ba²⁺ and Pb²⁺ (10×10⁻⁵ M) and Na⁺, Mg²⁺, K⁺ and Ca²⁺ (40×10⁻⁵ M) in the HEPES buffer solution (20 mM HEPES, pH = 7.2, EtOH : H₂O = 1 : 1).

Fig. S8 Fluorescent changes of **L** (10 μ M) upon addition of 1 equiv. of Zn²⁺ in buffered solution (20 mM HEPES, pH 7.2, EtOH : H₂O = 1 : 1). Left: only **L**; right: **L**+ Zn²⁺.

Fig. S9 ¹H NMR spectra of **L** with 0, 0.2 equiv. Zn^{2+} in d-DMSO. (a) Free sensor **L**. (b) $[Zn^{2+}]/[L]$ equals 0.2:1. The red line and blue line are shifts for the protons of free sensor and zinc-bound sensor, respectively.

Fig. S10 Fluorescence intensity of L (1.0×10^{-5} M) with 0-1 equiv. of Zn²⁺ at 476 nm.

Fig. S11. Effect of the pH on the fluorescence intensity of L-Zn(II) (10 μ M) at 476 nm. (Excitation wavelength: 395 nm).