Concise and Efficient Syntheses of preQ₁ base, Q base, and (ent)-Q Base

Supporting Information

Hans-Dieter Gerber and Gerhard Klebe*

Institut für Pharmazeutische Chemie, Fachbereich Pharmazie der Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany

Concise schematic overview (Schemes S1 and S2) and brief discussion S1 of previously reported procedures for the synthesis of $preQ_1$ and Q base

NMR-Spectra

¹ H-NMR (DMSO-d ₆) 1	S 6
¹ H-NMR (CD ₃ OD) 1	S 7
¹³ C-NMR (DMSO-d ₆) 1	S 8
¹³ C-NMR (D ₂ O/CD ₃ OD) 1	S9
¹ H-NMR (CD ₃ OD) 2	S 10
¹ H-NMR (D ₂ O) 2	S 11
¹³ C-NMR (CD ₃ OD) 2	S12
¹ H-NMR (CD ₃ OD) 3	S13
¹ H-NMR (D ₂ O) 3	S14
¹³ C-NMR (CD ₃ OD) 3	S15
¹³ C-NMR (D ₂ O/CD ₃ OD) 3	S 16
¹ H-NMR (DMSO-d ₆) 6	S17
¹³ C-NMR (DMSO-d ₆) 6	S18
¹ H-NMR (DMSO-d ₆) 7	S19
¹³ C-NMR (DMSO-d ₆) 7	S20
¹ H-NMR (DMSO-d ₆) 8	S21
¹³ C-NMR (DMSO-d ₆) 8	S22
¹ H-NMR (DMSO-d ₆) 9	S23
¹³ C-NMR (DMSO- d_6) 9	S24
¹ H-NMR (CDCl ₃) 10b	S25

¹ H-NMR (CDCl ₃) 11a	S26
¹³ C-NMR (CDCl ₃) 11a	S27
¹ H-NMR (CDCl ₃) 11b	S28
¹³ C-NMR (CDCl ₃) 11b	S29
¹ H-NMR (CDCl ₃) 12a	S 30
¹³ C-NMR (CDCl ₃) 12a	S 31
¹ H-NMR (CDCl ₃) 12b	S32
¹³ C-NMR (CDCl ₃) 12b	S 33
¹ H-NMR (CDCl ₃) 13a	S34
¹³ C-NMR (CDCl ₃) 13a	S35
¹ H-NMR (CDCl ₃) 13b	S36
¹³ C-NMR (CDCl ₃) 13b	S37
¹ H-NMR (CD ₃ OD) 14a (HCl)	S38
¹³ C-NMR (CD ₃ OD) 14a (HCl)	S39
¹ H-NMR (CD ₃ OD) 14a (base)	S40
¹ H-NMR (DMSO- d_6) 14b (HCl)	S41
¹ H-NMR (CD ₃ OD) 14b (HCl)	S42
¹³ C-NMR (CD ₃ OD) 14b (HCl)	S43
¹ H-NMR (CD ₃ OD) 14b (base)	S44
¹ H-NMR (CDCl ₃) 15	S45
¹ H-NMR (CDCl ₃) 16	S46
¹ H-NMR (CD ₃ OD) 17	S47
¹ H-NMR (CD ₃ OD) 17	S48

Overview and brief discussion of the most recently published procedures for preQ₁ by Carell et al.:¹

The two most recent procedures suggested to access the modified guanine analogue $preQ_1$ base were reported by *Carell et al.* in 2005, both starting from pyrimidine **4** (Scheme S1).¹ The first one (Route A), being a short and seemingly straightforward five-step synthesis, involves intermediate formation of $preQ_0$ base from pyrimidine **4** and 2-chloro-3-oxopropanenitrile, followed by a subsequent hydrogenation step to yield $preQ_1$ base. However, this approach only yields 6.6 % of the desired nucleobase. The second route represents a higher-yielding, yet synthetically slightly more elaborate six-step sequence rendering $preQ_1$ base in 25 % overall yield. After an intermediate phthalimide deprotection step with hydrazine, the resulting product mixture is reprotected by treatment with $(Boc)_2O$ in DMF to enable separation of the product from the simultaneously formed side-products (mainly Phthalhydrazide) by flash chromatography yielding 31 % of Boc-protected $preQ_1$ base. Final deprotection gives rise to the desired nucleobase **1**.

Scheme S1: Retrosynthetic approaches of most recent preQ₁ syntheses by *Carell et al.*¹

Overview and brief discussion of all hitherto published synthetic approaches for Q base:

The first synthesis was reported by *Goto et al.*² in 1983. This rather lengthy and time-consuming route finally rendered Q base in 19 steps applying a reductive amination with cyclopentenylamin **19** as key step. In 1988, *Akimoto et al.*³ published a shorter, apparently more straightforward synthetic approach. The crucial step of their strategy is based on a regioselective *Mannich reaction* at the pyrrolo moiety of the previously prepared octanoyl-protected heterocyclic core **20** to introduce a dibenzylated aminomethyl side chain at position 5 of the heterocycle. The resulting intermediate **21** finally allows implementation of the required side chain moiety of queuine by an amine exchange reaction utilizing excessive amounts of the above-mentioned amine **19**. Although the regioselectivity of the *Mannich reaction* (ratio of 5- versus 6-position substituted isomer. In addition, the synthesis of the required substrate **19** for the following amine exchange is rather challenging and, moreover, has to be applied in large excess (five-fold) in order to achieve a reasonable yield. In 2000, *Grubb et al.*⁴ described an alternative route utilizing a different disconnection approach. Herein, the key reaction is the ring closure via a cyclic condensation to install the pyrrolopyrimidine core of the nucleobase

employing 2,6-diaminopyrimidine-4-one (4) and α -bromoaldehyde intermediate 22, prior to this derived via cyclopentenol 10 starting from D-(-)-ribose, and the fully protected 3-aminopropanol precursor 23.

Scheme S2: Retrosynthetic approach and key steps of previously reported syntheses of Q base

In total, this sequence requires 14 steps in a convergent approach applying several protection strategies to finally yield Q base (2) in an overall yield of 1.6 % from D-(-)-ribose. In 2010, *Showalter et al.*⁵ reported a significantly shorter strategy using the biochemical preQ₁ precursor preQ₀ base (24), available in two preceding steps from heterocycle 4,⁶ as starting material. Reductive amination of the trityl-protected formyl deazaguanine derivative 25, obtained from preQ₀ base 24, with cyclopentenylamine 19, furnishes, after a

final deprotection step, queuine (2) as monohydrochloride in 36 % over four steps from 24. Cyclopentenylamine 19 is accessible via the corresponding cyclopentenylazide 26 by a modified four-step protocol of *Carell et al.*⁷ in 14.5 % overall yield. However, a necessary requirement of this synthesis is the implementation of an intermediate silylation step with 24 thus gaining sufficient solubility of the heterocyclic intermediate for the successive nitrile reduction with DIBAL-H to form the trityl-protected derivative 25 at lower temperatures.

- 1. F. Klepper, K. Polborn and T. Carell, Helv. Chim. Acta, 2005, 88, 2610-2616.
- 2. T. Kondo, T. Ohgi and T. Goto, Chem. Lett., 1983, 12, 419-422.
- 3. H. Akimoto, E. Imamiya, T. Hitaka, H. Nomura and S. Nishimura, J. Chem. Soc., Perkin Trans. 1, 1988, 1637-1644.
- 4. C. J. Barnett and L. M. Grubb, Tetrahedron, 2000, 56, 9221-9225.
- 5. A. F. Brooks, G. A. Garcia and H. D. H. Showalter, *Tetrahedron Lett.*, 2010, **51**, 4163-4165.
- 6. M. T. Migawa, J. M. Hinkley, G. C. Hoops and L. B. Townsend, Synth. Commun., 1996, 26, 3317-3322.
- 7. F. Klepper, E.-M. Jahn, V. Hickmann and T. Carell, Angew. Chem. Int. Ed., 2007, 46, 2325-2327.

2-Amino-5-(aminomethyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (1, CD₃OD)

2-Amino-5-(aminomethyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (1, DMSO-d₆)

2-Amino-5-(aminomethyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (1, D₂O/CD₃OD)

2-Amino-5({[(1*S*,4*S*,5*R*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (2, CD₃OD)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-Amino-5({[(1*S*,4*S*,5*R*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (2, D₂O)

2-Amino-5({[(1*S*,4*S*,5*R*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (2, CD₃OD)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-Amino-5({[(1*R*,4*R*,5*S*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (3, CD₃OD)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

2-Amino-5({[(1*R*,4*R*,5*S*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (3, D₂O)

2-Amino-5({[(1*R*,4*R*,5*S*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (3, CD₃OD)

2-Amino-5({[(1*R*,4*R*,5*S*)-4,5-dihydroxycyclopent-2-en-1-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one dihydrochloride hydrate (3, D₂O/CD₃OD)

(*R*,*S*)-2-(2-Hydroxy-3-nitropropyl)-1*H*-isoindole-1,3(2*H*)-dione (6, DMSO-d₆)

2-[(2*E*)-3-nitroprop-2-en-1-yl]-1*H*-isoindole-1,3(2*H*)-dione (7, DMSO-d₆)

(*R*,*S*)-2-[2-(2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-3-nitropropyl]-1*H*-isoindole-1,3(2*H*)-dione hydrate (8, DMSO-d₆)

(R,S)-2-[2-(2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-3-nitropropyl]-1H-isoindole-1,3(2H)-dione hydrate (8, DMSO-d₆)

(3aS,4S,6aS)-2,2-dimethyl-2H,3aH,4H,6aH-cyclopenta[d][1,3]dioxol-4-yl 4-nitrobenzoate (11a, CDCl₃)

(3aS,4S,6aS)-2,2-dimethyl-2H,3aH,4H,6aH-cyclopenta[d][1,3]dioxol-4-yl 4-nitrobenzoate (11a, CDCl₃)

(3a'S,4'S,6a'S)-4',6a'-dihydro-3a'H-spiro[cyclohexane-1,2'-cyclopenta[d][1,3]dioxol]-4'-yl 4-nitro-benzoate (11b, CDCl₃)

(3a*R*,4*S*,6a*S*)-2,2-dimethyl-2*H*,3a*H*,4*H*,6a*H*-cyclopenta[*d*][1,3]dioxol-4-ol (12a, CDCl₃)

(3'a*R*,4'*S*,6'a*S*)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-ol (12b, CDCl₃)

(3'a*R*,4'*S*,6'a*S*)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-ol (12b, CDCl₃)

(3aS,4R,6aS)-4-bromo-2,2-dimethyl-2H,3aH,4H,6aH-cyclopenta[d][1,3]dioxole (13a, CDCl₃)

(3aS,4R,6aS)-4-bromo-2,2-dimethyl-2H,3aH,4H,6aH-cyclopenta[d][1,3]dioxole (13a, CDCl₃)

(3aS,4R,6aS)-4-bromo-4,6a-dihydro-3aH-spiro[cyclohexane-1,2-cyclopenta[d][1,3]dioxole (13b, CDCl₃)

2-Amino-5({[(3a'*R*,4'*S*,6a'*S*)-2,2-dimethyl-4,6a'-dihydro-3a'*H*-cyclopenta[*d*][1,3]dioxol-4-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3*d*]pyrimidin-4-one hydrochloride (14a, CD₃OD)

2-Amino-5({[(3a'*R*,4'*S*,6a'*S*)-2,2-dimethyl-4,6a'-dihydro-3a'*H*-cyclopenta[*d*][1,3]dioxol-4-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one hydrochloride (14a, CD₃OD)

2-Amino-5({[(3a'*R*,4'S,6a'S)-2,2-dimethyl-4,6a'-dihydro-3a'*H*-cyclopenta[*d*][1,3]dioxol-4-yl]amino}methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one (14a, CD₃OD)

5-({[(3'a*R*, 4'*S*,6'a*S*)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-yl]amino}methyl)-2-amino-3*H*,4*H*,7*H*-pyrrolo[2,3-*d*]pyrimidin-4-one hydrochloride (14b, CD₃OD)

5-({[(3'a*R*, 4'*S*,6'a*S*)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-yl]amino}methyl)-2-amino-3*H*,4*H*,7*H*-pyrrolo[2,3-*d*]pyrimidin-4-one hydrochloride (14b, DMSO-d₆)

5-({[(3'a*R*, 4'*S*,6'a*S*)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-yl]amino}methyl)-2-amino-3*H*,4*H*,7*H*-pyrrolo[2,3-*d*]pyrimidin-4-one hydrochloride (14b, CD₃OD)

5-({[(3'a*R*, 4'S,6'aS)-4',6'a-dihydro-3'a*H*-spiro[cyclohexane-1,2'-cyclopenta[*d*][1,3]dioxole]-4'-yl]amino}methyl)-2-amino-3*H*,4*H*,7*H*-pyrrolo[2,3-*d*]pyrimidin-4-one (14b, CD₃OD)

(3aR,4S,6aR)-4-bromo-2,2-dimethyl-2H,3aH,4H,6aH-cyclopenta[d][1,3]dioxole (16, CDCl₃)

2-Amino-5({[(3a'S,4'R,6a'R)-2,2-dimethyl-4,6a'-dihydro-3a'H-cyclopenta[d][1,3]dioxol-4-yl]amino}methyl)-3,7-dihydro-4H-pyrrolo[2,3d]pyrimidin-4-one hydrochloride (17, CD₃OD)

2-Amino-5({[(3a'S,4'R,6a'R)-2,2-dimethyl-4,6a'-dihydro-3a'H-cyclopenta[d][1,3]dioxol-4-yl]amino}methyl)-3,7-dihydro-4H-pyrrolo[2,3d]pyrimidin-4-one hydrochloride (17, CD₃OD)

