5

10

Supplementary Information

Allosteric agonists of the calcium receptor (CaR): Fluorine and SF₅ analogues of cinacalcet

Poh Wai Chia^a, Sarah C. Brennan^b, Alexandra M. S. Slawin^a, Daniela Riccardi^b and David O'Hagan*^a

GC-MS analysis for determination of enantiopurity of intermediate aldehydes (R)-7 and (S)-7.

Chiral phase GC-MS analysis used a BetadexTM 120 fused silica capillary column (30 m × 0.25 mm i.d., 0.25 μ m film thickness). Monitoring of the α -fluoroaldehyde 7 was carried out by extracting an aliquot (0.5 ml) from the reaction at hourly intervals. This aliquot was passed through a 25 mm Whatmann syringe filter. The filtrates were transfered into a GC vial and then make up to 1 ml with DCM. This solution 15 was injected directly onto GCMS with DCM solvent as a control. The oven was held at 80 °C for 20 min, then heated at a gradient of 20 °C/min to 150 °C, 250 °C injector temperature; 100:1 split ratio, 1.0 mL/min flow. The GC-MS chromatogram shown in Figure 1.0 shows a major peak at the retention time of 36.24 min, which corresponds to (*R*)-7 ([M]⁺, *m*/*z* = 220, while the minor peak shown at the retention time of 33.16 min was assigned to be the difluorinated compound **8** ([M]⁺, m/*z* = 238). The enantiomeric ratio of (*R*)-7 determined 20 from the chiral phase GC-MS ~ 97%ee. The MS (EI) spectra of the peak at 33.16 (**Figure S1.1**) and 36.2 min (**Figure S1.2**) showed an identical fragment pattern of *m*/*z* = 159, which corresponds to [M-CHFCHO]⁺.

5 Figure S1.1 Mass spectrum of the GC peak at 36.2 min showing the presence of (*R*)-7.

Figure S1.2. Mass spectrum of the GC peak at 33.1 min showing the presence of difluoroaldehyde **8**. 10

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S1.3 Chiral phase GC chromatogram of a mixture of (*R*)- and (*S*)-7.

5

¹⁰ Figure S1.4 Overlay of the ¹⁹F-NMR spectra of $(2R, 1^2R)$ -2 and $(2S, 1^2R)$ -3 and an add mixture of both diastereoisomers, indicating a high diastereomeric ratio.

10 Figure S1.5 (a) The simulated (red) and experimental (blue), ¹H NMR and ¹⁹F-NMR spectra for $(2R, 1^2R)$ -2 and $(2S, 1^2R)$ -3. Spectra were recorded on a 500MHz Bruker instrument in CD₃OH.

Identification code	2	
Empirical formula	C22 H22 Cl F4 N	
Formula weight	411.86	
5 Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	$a = 7.2710(4) \text{ Å}$ $\alpha = 90^{\circ}.$	
10	$b = 13.0197(6) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 22.3322(11) \text{ Å}$ $\gamma = 90^{\circ}.$	
Volume	2114.11(18) Å ³	
Z	4	
Density (calculated)	1.294 Mg/m ³	
15 Absorption coefficient	1.967 mm ⁻¹	
F(000)	856	
Crystal size	0.12 x 0.05 x 0.05 mm ³	
Theta range for data collection	3.93 to 68.06°.	
Index ranges	-8<=h<=8, -15<=k<=15, -26<=l<=26	
20 Reflections collected	26693	
Independent reflections	3740 [R(int) = 0.0433]	
Completeness to theta = 67.00°	98.3 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.000 and 0.723	
25 Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3740 / 2 / 250	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0704, $wR2 = 0.1892$	
R indices (all data)	R1 = 0.0726, $wR2 = 0.1918$	
30 Absolute structure parameter	0.05(3)	
Largest diff. peak and hole 0.972 and -0.609 e.Å ⁻³		

Table 1. Crystal data and structure refinement for (2R,1'R)-2.

	X	y	Z	U(eq)
5		2		
$\overline{\mathrm{Cl}(1)}$	3252(1)	6821(1)	641(1)	36(1)
C(1)	8058(6)	4789(3)	541(2)	31(1)
C(2)	6539(6)	4609(3)	881(2)	37(1)
C(3)	6405(6)	3732(4)	1250(2)	43(1)
10 C(4)	7793(6)	3046(3)	1265(2)	41(1)
C(5)	9384(6)	3178(3)	920(2)	35(1)
C(6)	10852(8)	2458(4)	931(2)	50(1)
C(7)	12362(7)	2586(4)	600(3)	55(1)
C(8)	12549(8)	3466(4)	225(2)	50(1)
15 C(9)	11196(6)	4183(4)	205(2)	39(1)
C(10)	9561(6)	4076(3)	549(2)	33(1)
C(11)	8147(7)	5712(3)	119(2)	33(1)
N(12)	7429(5)	6666(2)	409(1)	28(1)
C(13)	8432(6)	6969(3)	969(2)	31(1)
20 F(14)	7435(4)	8677(2)	825(1)	45(1)
C(14)	7562(6)	7892(3)	1259(2)	31(1)
C(15)	8755(6)	8276(4)	1770(2)	39(1)
C(16)	7929(6)	9105(3)	2159(2)	33(1)
C(17)	6370(7)	9647(3)	2008(2)	39(1)
25 C(18)	5668(7)	10411(4)	2386(2)	43(1)
C(19)	6536(8)	10626(4)	2923(2)	47(1)
C(20)	8092(8)	10080(4)	3077(2)	53(1)
C(21)	8772(8)	9324(4)	2709(2)	49(1)
C(22)	7079(8)	5515(3)	-449(2)	49(1)
30 C(23)	3917(12)	10935(5)	2233(2)	84(3)
F(1)	2720(8)	10941(4)	2647(3)	89(2)
F(2)	4237(10)	12002(6)	2245(3)	108(2)
F(3)	2838(12)	10446(6)	1841(4)	125(2)
F(4)	3989(15)	11210(8)	1654(4)	155(3)
35				

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles $[\circ]$ for (2R, 1'R)- **2**.

C(1)-C(2)	1.361(6)
C(1) - C(10)	1.434(6)
5 C(1)-C(11)	1 528(5)
C(2)-C(3)	1 412(6)
C(2) - H(2A)	0.9500
C(3)-C(4)	1 349(6)
C(3) - H(3A)	0.9500
10 C(4) - C(5)	1 401(6)
C(4)-H(4A)	0.9500
C(5) - C(6)	1 420(6)
C(5)-C(10)	1 439(6)
C(5)-C(10)	1.33/(8)
15 C(6) H(6A)	0.9500
C(7) - C(8)	1 426(8)
C(7) = C(8) C(7) = U(7A)	0.0500
$C(7) - \Pi(7A)$	0.9500
C(8) - C(9)	1.357(7)
C(8)-H(8A)	0.9500
20 C(9) - C(10)	1.422(6)
C(9)-H(9A)	0.9500
C(11)-N(12)	1.495(5)
C(11)-C(22)	1.509(6)
C(11)-H(11A)	1.0000
25 N(12)-C(13)	1.500(5)
N(12)-H(12A)	0.962(19)
N(12)-H(12B)	0.97(2)
C(13)-C(14)	1.505(5)
C(13)-H(13A)	0.9900
30 C(13)-H(13B)	0.9900
F(14)-C(14)	1.411(4)
C(14)-C(15)	1.519(6)
C(14)-H(14A)	1.0000
C(15)-C(16)	1.509(6)
35 C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-C(17)	1.377(6)
C(16)-C(21)	1.402(6)
C(17)-C(18)	1.401(6)
40 C(17)-H(17A)	0.9500
C(18)-C(19)	1.385(7)
C(18)-C(23)	1.484(9)
C(19)-C(20)	1.379(8)
C(19)-H(19A)	0.9500
45 C(20)-C(21)	1.375(7)
C(20)-H(20A)	0.9500
C(21)-H(21A)	0.9500
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
50 C(22)-H(22C)	0.9800
C(23)-F(1)	1.270(9)
C(23)-F(3)	1 336(10)
C(23)-F(4)	1 342(11)
C(23)-F(2)	1 409(10)
55 F(2)-F(4)	1 684(12)
F(3)-F(4)	1 365(11)
- (-) - (-)	1.505(11)

C(2) C(1) C(10)	120.0(4)
C(2) - C(1) - C(10)	120.0(4)
C(2)-C(1)-C(11)	120.9(4)
C(10)-C(1)-C(11)	119.0(4)
C(1)-C(2)-C(3)	121.4(4)
5 C(1)-C(2)-H(2A)	119.3
C(3)- $C(2)$ - $H(2A)$	1193
C(4) C(2) C(2)	119.9 110.0(4)
C(4) - C(2) - C(2)	119.9(4)
C(4)-C(3)-H(3A)	120.0
C(2)-C(3)-H(3A)	120.0
10 C(3)-C(4)-C(5)	121.5(4)
C(3)-C(4)-H(4A)	119.2
C(5)-C(4)-H(4A)	119.2
C(4)- $C(5)$ - $C(6)$	122.0(4)
C(4)- $C(5)$ - $C(10)$	1194(4)
15 C(6) C(5) C(10)	119.4(4) 118.6(4)
15 C(0)-C(3)-C(10)	110.0(4)
C(7) - C(6) - C(5)	121.8(5)
C(7)-C(6)-H(6A)	119.1
C(5)-C(6)-H(6A)	119.1
C(6)-C(7)-C(8)	120.3(4)
20 C(6)-C(7)-H(7A)	119.9
C(8)-C(7)-H(7A)	119.9
C(9)-C(8)-C(7)	120.1(5)
C(0) C(0) U(0A)	120.1(3)
C(9)-C(8)-H(8A)	119.9
C(7)-C(8)-H(8A)	119.9
25 C(8)-C(9)-C(10)	121.5(5)
C(8)-C(9)-H(9A)	119.3
C(10)-C(9)-H(9A)	119.3
C(9)-C(10)-C(1)	124.5(4)
C(9)-C(10)-C(5)	117.7(4)
30 C(1)-C(10)-C(5)	117.8(4)
N(12) C(11) C(22)	100.0(4)
N(12) - C(11) - C(22) N(12) - C(11) - C(1)	109.0(4)
N(12)-C(11)-C(1)	111.8(3)
C(22)-C(11)-C(1)	111.2(3)
N(12)-C(11)-H(11A)	108.2
35 C(22)-C(11)-H(11A)	108.2
C(1)-C(11)-H(11A)	108.2
C(11)-N(12)-C(13)	114 2(3)
C(11) - N(12) - H(12A)	111(2)
C(12) N(12) H(12A)	111(2) 114(2)
C(13)-N(12)-n(12A)	114(2) 105(4)
40 C(11)-N(12)-H(12B)	105(4)
C(13)-N(12)-H(12B)	112(4)
H(12A)-N(12)-H(12B)	98(4)
C(14)-C(13)-N(12)	111.4(3)
C(14)-C(13)-H(13A)	109.4
45 N(12)-C(13)-H(13A)	109.4
C(14)-C(13)-H(13B)	109.4
N(12)-C(13)-H(13B)	109.1
H(12) - C(13) - H(13D)	109.4
H(13A)-C(13)-H(13B)	108.0
F(14)-C(14)-C(13)	108.1(3)
50 F(14)-C(14)-C(15)	108.3(3)
C(13)-C(14)-C(15)	110.3(3)
F(14)-C(14)-H(14A)	110.0
C(13)-C(14)-H(14A)	110.0
C(15)-C(14)-H(14A)	110.0
55 C(16) - C(15) - C(14)	116.0
C(16) C(15) U(15A)	100.1(4)
$C(10) - C(15) - \Pi(15A)$	100.3
C(14)-C(15)-H(15A)	108.3
C(16)-C(15)-H(15B)	108.2

C(14)-C(15)-H(15B)	108.2
H(15A)-C(15)-H(15B)	107.4
C(17)-C(16)-C(21)	118.0(4)
C(17)-C(16)-C(15)	123.6(4)
5 C(21)-C(16)-C(15)	118.4(4)
C(16)-C(17)-C(18)	121.1(4)
C(16)-C(17)-H(17A)	119.4
C(18)-C(17)-H(17A)	119.4
C(19)-C(18)-C(17)	119.9(5)
10 C(19)-C(18)-C(23)	119.9(4)
C(17)-C(18)-C(23)	120.0(4)
C(20)-C(19)-C(18)	119.1(4)
C(20)-C(19)-H(19A)	120.4
C(18)-C(19)-H(19A)	120.4
15 C(21)-C(20)-C(19)	120.9(4)
C(21)-C(20)-H(20A)	119.5
C(19)-C(20)-H(20A)	119.5
C(20)-C(21)-C(16)	120.9(5)
C(20)-C(21)-H(21A)	119.6
20 C(16)-C(21)-H(21A)	119.6
C(11)-C(22)-H(22A)	109.5
C(11)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(11)-C(22)-H(22C)	109.5
25 H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
F(1)-C(23)-F(3)	94.5(8)
F(1)-C(23)-F(4)	136.6(8)
F(3)-C(23)-F(4)	61.3(5)
30 F(1)-C(23)-F(2)	95.3(5)
F(3)-C(23)-F(2)	125.4(6)
F(4)-C(23)-F(2)	75.4(7)
F(1)-C(23)-C(18)	115.0(5)
F(3)-C(23)-C(18)	115.8(5)
35 F(4)-C(23)-C(18)	108.1(7)
F(2)-C(23)-C(18)	107.9(7)
C(23)-F(2)-F(4)	50.5(5)
F(4)-F(3)-C(23)	59.6(6)
F(3)-F(4)-C(23)	59.1(6)
40 F(3)-F(4)-F(2)	105.8(7)
C(23)-F(4)-F(2)	54.1(5)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
5						
$\overline{\mathrm{Cl}(1)}$	26(1)	44(1)	36(1)	13(1)	2(1)	5(1)
C(1)	34(2)	25(2)	34(2)	-3(2)	-3(2)	2(2)
C(2)	32(2)	32(2)	46(2)	5(2)	0(2)	1(2)
C(3)	38(3)	41(2)	50(2)	12(2)	3(2)	-3(2)
10 C(4)	42(3)	31(2)	50(2)	6(2)	-7(2)	-1(2)
C(5)	35(2)	27(2)	43(2)	-6(2)	-11(2)	3(2)
C(6)	58(3)	32(2)	60(3)	-2(2)	-16(3)	9(2)
C(7)	45(3)	44(2)	78(4)	-14(3)	-9(3)	20(2)
C(8)	39(2)	48(3)	64(3)	-15(2)	-1(2)	11(2)
15 C(9)	37(2)	38(2)	42(2)	-11(2)	1(2)	4(2)
C(10)	35(2)	29(2)	34(2)	-9(2)	-5(2)	3(2)
C(11)	38(2)	30(2)	32(2)	-1(2)	12(2)	6(2)
N(12)	27(2)	26(2)	31(2)	5(1)	2(1)	2(1)
C(13)	29(2)	33(2)	33(2)	-1(2)	2(2)	2(2)
20 F(14)	68(2)	32(1)	35(1)	2(1)	1(1)	10(1)
C(14)	32(2)	30(2)	31(2)	2(2)	-1(2)	0(2)
C(15)	36(2)	41(2)	38(2)	-4(2)	-4(2)	-2(2)
C(16)	37(2)	31(2)	29(2)	1(2)	-3(2)	-5(2)
C(17)	49(3)	41(2)	27(2)	-3(2)	-4(2)	4(2)
25 C(18)	56(3)	43(2)	30(2)	-3(2)	3(2)	8(2)
C(19)	67(3)	41(2)	33(2)	-8(2)	1(2)	2(2)
C(20)	62(3)	59(3)	38(2)	-13(2)	-11(2)	-10(3)
C(21)	53(3)	57(3)	37(2)	0(2)	-11(2)	-1(2)
C(22)	75(4)	36(2)	36(2)	-1(2)	-1(2)	1(2)
30 C(23)	153(7)	72(4)	26(2)	-24(2)	-22(3)	61(5)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for (2R, 1'R)- **2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

Table 5.	Hydrogen	coordinates ((x 10 ⁴) an	d isotropic	displacemen	nt parameters	$(Å^2 x \ 10^{-3})$
for (2 <i>R</i> , 1'	<i>R</i>)- 2.						

	Х	у	Z	U(eq)
5				
H(2A)	5548	5084	869	44
H(3A)	5337	3626	1487	51
H(4A)	7690	2459	1516	49
0 H(6A)	10755	1870	1180	60
H(7A)	13317	2089	615	67
H(8A)	13624	3550	-12	60
H(9A)	11345	4769	-43	47
H(11A)	9463	5830	9	40
5 H(12A)	6110(30)	6640(30)	452(18)	21(10)
H(12B)	7490(90)	7190(30)	100(20)	67(18)
H(13A)	8424	6387	1254	38
H(13B)	9729	7127	869	38
H(14A)	6309	7712	1411	37
0 H(15A)	9068	7684	2029	46
H(15B)	9919	8540	1600	46
H(17A)	5760	9500	1642	47
H(19A)	6068	11142	3182	57
H(20A)	8702	10228	3444	64
5 H(21A)	9827	8946	2828	59
H(22A)	7159	6118	-710	74
H(22B)	5788	5381	-350	74
H(22C)	7596	4916	-655	74

Table 6. Torsion angles $[^{\circ}]$ for $(2R, 1^{\circ}R)$ - 2.

C(10)-C(1)-C(2)-C(3)	0.5(6)
C(11)-C(1)-C(2)-C(3)	176.9(4)
5 C(1)-C(2)-C(3)-C(4)	-0.7(7)
C(2)-C(3)-C(4)-C(5)	-0.2(7)
C(3)-C(4)-C(5)-C(6)	-179.7(5)
C(3)-C(4)-C(5)-C(10)	1.2(6)
C(4)-C(5)-C(6)-C(7)	179.8(5)
10 C(10)-C(5)-C(6)-C(7)	-1.1(7)
C(5)-C(6)-C(7)-C(8)	0.4(8)
C(6)-C(7)-C(8)-C(9)	0.5(8)
C(7)-C(8)-C(9)-C(10)	-0.7(7)
C(8)-C(9)-C(10)-C(1)	-178.5(4)
15 C(8)-C(9)-C(10)-C(5)	0.0(6)
C(2)-C(1)-C(10)-C(9)	179 1(4)
C(11)-C(1)-C(10)-C(9)	2 7(6)
C(2)-C(1)-C(10)-C(5)	0.6(6)
C(11)-C(1)-C(10)-C(5)	-175 9(3)
20 C(4) - C(5) - C(10) - C(9)	175.9(5) 180 0(4)
C(6) C(5) - C(10) - C(9)	0.9(6)
C(4)-C(5)-C(10)-C(1)	-1 4(6)
C(6) C(5) - C(10) - C(1)	179 5(4)
C(0) - C(1) - C(1) C(2) - C(1) - C(11) - N(12)	179.3(4)
C(2)-C(1)-C(11)-N(12)	44.0(3)
C(2) C(1) C(11) C(22)	-139.0(4)
C(2)- $C(1)$ - $C(11)$ - $C(22)$	-78.1(3)
C(10)-C(11)-C(11)-C(22) C(22)-C(11)-N(12)-C(12)	96.5(3) 177.7(4)
C(22)- $C(11)$ - $N(12)$ - $C(13)$	-1//./(4)
C(1)-C(11)-IN(12)-C(13)	38.9(3) 176 2(2)
SUC(11)-N(12)-C(13)-C(14) N(12) C(12) C(14) E(14)	-1/0.2(3)
N(12) - C(13) - C(14) - F(14) N(12) - C(12) - C(14) - C(15)	-55.0(4)
N(12)-C(13)-C(14)-C(15)	-1/1.8(3)
F(14)-C(14)-C(15)-C(16)	/0.2(5)
C(13)-C(14)-C(15)-C(16)	-1/1./(3)
55 C(14)-C(15)-C(16)-C(17)	-12.9(6)
C(14)-C(15)-C(16)-C(21)	165.9(4)
C(21)-C(16)-C(17)-C(18)	1.4(/)
C(15)-C(16)-C(17)-C(18)	-1/9.8(4)
C(16)-C(17)-C(18)-C(19)	-0.5(7)
40 C(16)-C(17)-C(18)-C(23)	-1/5.9(5)
C(17)-C(18)-C(19)-C(20)	0.1(8)
C(23)-C(18)-C(19)-C(20)	175.5(6)
C(18)-C(19)-C(20)-C(21)	-0.6(8)
C(19)-C(20)-C(21)-C(16)	1.6(8)
45 C(17)-C(16)-C(21)-C(20)	-2.0(7)
C(15)-C(16)-C(21)-C(20)	179.2(5)
C(19)-C(18)-C(23)-F(1)	-47.5(9)
C(17)-C(18)-C(23)-F(1)	127.8(6)
C(19)-C(18)-C(23)-F(3)	-156.3(6)
50 C(17)-C(18)-C(23)-F(3)	19.1(10)
C(19)-C(18)-C(23)-F(4)	137.5(7)
C(17)-C(18)-C(23)-F(4)	-47.1(9)
C(19)-C(18)-C(23)-F(2)	57.4(7)
C(17)-C(18)-C(23)-F(2)	-127.2(5)
55 F(1)-C(23)-F(2)-F(4)	-136.8(8)
F(3)-C(23)-F(2)-F(4)	-37.5(8)
C(18)-C(23)-F(2)-F(4)	104.7(7)
F(1)-C(23)-F(3)-F(4)	142.0(7)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

F(2)-C(23)-F(3)-F(4)	42.2(9)
C(18)-C(23)-F(3)-F(4)	-97.4(8)
C(23)-F(3)-F(4)-F(2)	-28.5(6)
F(1)-C(23)-F(4)-F(3)	-63.3(12)
5 F(2)-C(23)-F(4)-F(3)	-145.5(7)
C(18)-C(23)-F(4)-F(3)	110.1(7)
F(1)-C(23)-F(4)-F(2)	82.2(10)
F(3)-C(23)-F(4)-F(2)	145.5(7)
C(18)-C(23)-F(4)-F(2)	-104.4(8)
10 C(23)-F(2)-F(4)-F(3)	30.4(7)

Symmetry transformations used to generate equivalent atoms:

15

20		, - -		
D-HA	d(D-	H) d(H	A) d(DA)	<(DHA)
	×	· · · · · · · · · · · · · · · · · · ·	· · · · ·	
N(12)-H(12A)	Cl(1) 0.962	(19) 2.14(2	2) 3.088(4)	170(3)
N(12)-H(12B)	.F(14) 0.97	(2) 2.52(0	5) 2.778(4)	95(4)
25				

Table 7. Hydrogen bonds for (2R, 1'R)- 2 [Å and °].

Symmetry transformations used to generate equivalent atoms: