Supporting Materials for:

A Novel Copper-Catalyzed Reductive Coupling of *N*-tosylhydrazones with *H*-phosphorus oxides

Lei Wu, *^{a, b} Xiǎo Zhang ^{b§}, Qing-Qing Chen ^{b§} AND An-Kun Zhou ^b

^a Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples' Republic of China; Email: <u>rickywu@iccas.ac.cn</u>

^b The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, Peoples' Republic of China. <u>rickywu@hit.edu.cn</u>

List of Contents:

1.	General Infomations	S2
2.	General Procedures for Copper-Catalyzed reductive coupling	S2
3.	Characterizations of Coupling Products (¹ HNMR, ¹³ CNMR, ³¹ PNMR, HRMS)	\$3-\$8
4.	Selected Spectra of Organophosphorus Products	.S8-S34

1. General Infomations

Solvents and reagents were reagent grade and used without purification unless otherwise noted. Anhydrous solvents were obtained as follow: THF and dioxane by distillation from sodium and benzophenone; All reactions were carried out in oven dried glassware under nitrogen or argon unless otherwise specified. All ¹H-NMR (400 MHz) spectra were recorded on a Bruker-DMX 400 using CDCl₃ solution in the presence of tetramethylsilane (TMS) as an internal standard and are reported in ppm (δ). Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet; and br, broad. High and Low resolution fast atom bombardment (FAB) measurements were made with a JEOL JMS-AX505HA mass spectrometer.

2. General Procedures for Copper-Catalyzed Reductive Coupling

2 mmol diaryl phosphine oxide or *H*-phosphonate, 1 mmol *N*-Tosylhydrazone and 3 mmol K_2CO_3 were charged into 25 mL oven-dried flask, and backfilled with nitrogen three times. 5 mL fresh-distilled 1,4-dioxane or DMF was then injected into the flask, following by heating up to 110 °C for 2 hrs. The reaction was monitored by TLC until starting materials consumed, then removed all of the volatiles for further purification on silica chromatography. (Generally, 100% Ethyl Acetate was selected as eluent.)

3. Characterizations of Coupling Products (¹HNMR, ¹³CNMR, ³¹PNMR, HR-MS)

3a White solids.

[Ref. P. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am. Chem. Soc. 2009, 131, 8285-8289.]

¹³**CNMR** (100 MHz, CDCl₃) δ : 15.60 (d, $J_{C,P} = 2.0$ Hz), 39.97 (d, $J_{C,P} = 67.4$ Hz), 55.20, 113.70 (d, $J_{C,P} = 1.20$ Hz), 127.99, 128.11, 128.58, 128.69, 129.77 (d, $J_{C,P} = 5.60$ Hz), 130.14, 130.20, 131.13, 131.22, 131.24, 131.27, 131.35, 131.43, 131.63, 131.66, 131.69, 132.60 (d, $J_{C,P} = 13.5$ Hz), 158.51 (d, $J_{C,P} = 2.2$ Hz).

³¹**PNMR** δ: 33.48.

HR-MS: calcd for $C_{21}H_{22}O_2P$ 337.1357 ([M + H⁺]), found 337.1355.

3b White solids.

[Ref. (a) P. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am. Chem. Soc. 2009, 131, 23, 8285-8289; (b) D. A. Jaeger, D. Bolikal, J. Org. Chem. 1986, 51, 1350-1352.]

¹**HNMR** (400 MHz, CDCl₃) δ : 1.579 (dd, J = 16.0, 7.6 Hz, 3H), 2.293 (s, 3H), 3.606 (qu, J = 15.20, 7.6 Hz, 1H), 7.022 (d, J = 8 Hz, 2H), 7.131 (dd, J = 7.6, 1.6 Hz, 2H), 7.302-7.321 (m, 2H), 7.376-7.413 (m, 1H), 7.485-7.596 (m, 5H), 7.893-7.939 (m, 2H).

¹³**CNMR** (100 MHz, CDCl₃) δ: 15.60 (d, $J_{C,P}$ = 2.60 Hz), 21.05, 40.40 (d, $J_{C,P}$ = 67.1 Hz), 127.98, 128.10, 128.58, 128.69, 128.97, 128.99, 129.02, 129.07, 131.13, 131.22, 131.25 (d, $J_{C,P}$ = 2.60 Hz), 131.31, 131.40, 131.63, 131.67 (d, $J_{C,P}$ = 3.0 Hz), 132.64 (d, $J_{C,P}$ = 3.30 Hz), 134.80 (d, $J_{C,P}$ = 5.70 Hz), 136.43 (d, $J_{C,P}$ = 2.40 Hz).

³¹**PNMR** δ: 33.34.

HR-MS: calcd for $C_{21}H_{22}OP$ 321.1408 ([M + H⁺]), found 321.1403.

3c White solids.

[Ref. (a) P.-Y. Renard, P. Vayron, E. Leclerc, A. Valleix, C. Mioskowski, *Angew. Chem. Int. Ed.* **2003**, 42, 2389-2392; (b) U. Berens, *Eur. Pat. Appl.* **2005**, 17pp. coden: EPXXDW EP 1582527 A1 20051005.]

¹**HNMR** (400 MHz, CDCl₃) δ : 1.61 (dd, J = 16.0, 7.2 Hz, 3H), 3.63 (qu, J = 14.80, 7.2 Hz, 1H), 7.20-7.25 (m, 5H), 7.30-7.39 (m, 3H), 7.45-7.50 (m, 2H), 7.55-7.58 (m, 3H), 7.91-7.95 (m, 2H).

¹³**CNMR** (100 MHz, CDCl₃) δ: 15.46 (d, $J_{C,P}$ = 2.80 Hz), 40.98 (d, $J_{C,P}$ = 66.7 Hz), 126.89 (d, $J_{C,P}$ = 2.30 Hz), 127.96, 128.07, 128.24, 128.26, 128.60, 128.71, 129.18, 129.23, 131.10, 131.19, 131.27 (d, $J_{C,P}$ = 2.70 Hz), 131.36, 131.44, 131.51, 131.60, 131.69 (d, $J_{C,P}$ = 2.50 Hz), 132.51 (d, $J_{C,P}$ = 13.4 Hz), 137.95 (d, $J_{C,P}$ = 5.40 Hz).

³¹**PNMR** δ: 33.37.

HR-MS: calcd for $C_{20}H_{20}OP$ 307.1252 ([M + H⁺]), found 307.1252.

3d White solids.

[Ref. J. Mazuela, A. Paptchihine, O. Pàmies, P. G. Andersson, M. Diéguez, *Chem. Eur. J.* **2010**, 16, 4567-4576.]

 $\begin{array}{c} & & \\$

¹³**CNMR** (100 MHz, CDCl₃) δ: 12.75 (d, $J_{C,P} = 13.90$ Hz), 22.64, 48.89 (d, $J_{C,P} = 67.2$ Hz), 126.90 (d, $J_{C,P} = 2.60$ Hz), 127.91, 128.03, 128.25 (d, $J_{C,P} = 1.90$ Hz), 128.62, 128.73, 129.86, 129.92, 130.96, 131.05, 131.14 (d, $J_{C,P} = 2.70$ Hz), 131.28, 131.37, 131.65 (d, $J_{C,P} = 2.40$ Hz), 131.83 (d, $J_{C,P} = 14.10$ Hz), 132.78 (d, $J_{C,P} = 18.60$ Hz), 135.75 (d, $J_{C,P} = 5.50$ Hz). ³¹**PNMR** δ: 32.54.

HR-MS: calcd for $C_{21}H_{22}OP$ 321.1408 ([M + H⁺]), found 321.1413.

3e White solids.

¹**HNMR** (400 MHz, CDCl₃) δ: 1.57 (dd, *J* = 15.6, 7.2 Hz, 3H), 3.61 (qu, *J* = 14.8, 7.2 Hz, 1H), 7.19 (s, 4H), 7.30-7.34 (m, 2H), 7.39-7.43 (m, 1H), 7.48-7.58 (m, 5H), 7.90-7.94 (m, 2H).

¹³CNMR (100 MHz, CDCl₃) δ : 15.47 (d, $J_{C,P} = 2.50$ Hz), 40.25 (d, $J_{C,P} = 66.50$ Hz), 128.15, 128.26, 128.39 (d, $J_{C,P} = 1.8$ Hz), 128.69, 128.80, 130.44, 130.49, 130.96, 131.04, 131.12, 131.25, 131.34, 131.49 (d, $J_{C,P} = 2.60$ Hz), 131.85 (d, $J_{C,P} = 2.50$ Hz), 132.06, 132.29, 132.74 (d, $J_{C,P} = 3.0$ Hz), 136.56 (d, $J_{C,P} = 5.5$ Hz).

³¹PNMR δ: 32.95.

HR-MS: calcd for $C_{20}H_{19}ClOP 341.0862 ([M + H^+])$, found 341.0854.

3f White solids.

[Ref. (a) P. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am. Chem. Soc. 2009, 131, 23, 8285-8289; (b) D. A. Jaeger, D. Bolikal, J. Org. Chem. 1986, 51, 1350-1352.]

¹**HNMR** (400 MHz, CDCl₃) δ: 1.58 (dd, *J* = 16.0, 8.8 Hz, 3H), 3.68 (qu, *J* = 14.8, 7.6 Hz, 1H), 7.26-7.60 (m, 12H), 7.90-7.94 (m, 2H).

¹³**CNMR** (100 MHz, CDCl₃) δ: 15.40 (d, $J_{C,P}$ = 2.90 Hz), 40.89 (d, d, $J_{C,P}$ = 65.80 Hz), 124.14 (q, $J_{C,F}$ = 270.0 Hz), 125.10-125.16 (m), 128.20, 128.31, 128.75, 128.87, 129.46, 129.51, 130.90, 130.99, 131.19, 131.28, 131.37, 131.61 (d, $J_{C,P}$ = 2.70 Hz), 131.86, 131.96 (d, $J_{C,P}$ = 2.70 Hz), 132.17, 142.32 (d, $J_{C,P}$ = 5.30 Hz).

³¹**PNMR** δ: 32.83.

HR-MS: calcd for $C_{21}H_{19}F_3OP$ 375.1126 ([M + H⁺]), found 375.1115.

3g White solids.

¹**HNMR** (400 MHz, CDCl₃) δ: 1.43 (dd, *J* = 16.40, 9.2 Hz, 3H), 1.85 (s, 3H), 2.17 (s, 3H), 3.70 (qu, *J* = 15.2, 7.6 Hz, 1H), 6.72 (s, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 7.10-7.14 (m, 2H), 7.23-7.28 (m, 3H), 7.44-7.52 (m, 4H), 7.80-7.84 (m,

2H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 15.82 (d, $J_{C,P} = 2.70$ Hz), 19.56, 21.01, 35.39 (d, $J_{C,P} = 68.0$ Hz), 127.18 (d, $J_{C,P} = 2.10$ Hz), 127.89, 128.00, 128.61, 128.72, 128.85, 128.89, 130.83 (d, $J_{C,P} = 1.30$ Hz), 130.99, 131.08, 131.21, 131.31 (d, $J_{C,P} = 2.60$ Hz), 131.58, 131.66, 131.76 (d, $J_{C,P} = 2.60$ Hz), 132.15 (d, $J_{C,P} = 4.0$ Hz), 133.14, 133.48 (d, $J_{C,P} = 5.0$ Hz), 135.45, 135.52, 136.35 (d, $J_{C,P} = 2.40$ Hz).

³¹**PNMR** δ: 33.74.

HR-MS: calcd for $C_{22}H_{24}OP$ 335.1565 ([M + H⁺]), found 335.1562.

3h White solids.

¹**HNMR** (400 MHz, CDCl₃) δ : 1.72 (dd, J = 15.6, 7.2 Hz, 3H), 4.51 (qu, J = 14.4, 6.8 Hz, 1H), 7.04-7.09 (m, 2H), 7.17-7.20 (m, 1H), 7.37-7.49 (m, 5H), 7.56-7.63 (m, 3H), 7.72 (d, J = 8.0 Hz, 1H), 7.8 (t, J = 5.20 Hz, 1H), 7.97-8.05 (m, 3H).

¹³**CNMR** (100 MHz, CDCl₃) δ: 16.31 (d, $J_{C,P}$ = 2.80 Hz), 34.16 (d, $J_{C,P}$ = 74.6 Hz), 122.12-122.30 (m), 125.25, 125.70 (d, $J_{C,P}$ = 2.10 Hz), 126.00, 127.19 (d, $J_{C,P}$ = 5.20 Hz), 127.46 (d, $J_{C,P}$ = 1.90 Hz), 127.83, 127.94, 128.69, 128.80, 129.06, 130.75, 130.84, 131.16 (d, $J_{C,P}$ = 2.70 Hz), 131.40, 131.48, 131.74 (d, $J_{C,P}$ = 2.70 Hz), 131.99, 132.75, 132.93, 133.74, 134.83 (d, $J_{C,P}$ = 4.30 Hz). ³¹**PNMR** δ: 33.87.

HR-MS: calcd for $C_{24}H_{22}OP$ 357.1408 ([M + H⁺]), found 357.1405.

3i White solids.

¹**HNMR** (400 MHz, CDCl₃) δ: 1.21-1.32 (m, 3H), 1.50-1.58 (m, 2H), 1.71-1.81 (m, 5H), 2.19-2.28 (m, 1H), 7.44-7.52 (m, 6H), 7.76-7.81 (m, 4H).

¹³CNMR (100 MHz, CDCl₃) δ : 24.76 (d, $J_{C,P} = 2.40$ Hz), 25.75, 26.33 (d, $J_{C,P} = 13.2$ Hz), 37.13 (d, $J_{C,P} = 72.6$ Hz), 128.47, 128.58, 128.89 (d, $J_{C,P} = 12.7$ Hz), 130.67 (d, $J_{C,P} = 11.3$ Hz), 131.00, 131.08, 131.42 (d, $J_{C,P} = 2.40$ Hz), 131.58, 132.52. ³¹DNMD S: 24.27

³¹**PNMR** δ: 34.37.

HR-MS: calcd for $C_{18}H_{22}OP 285.1408 ([M + H^+])$, found 285.1401.

3j White solids.

[Ref. K. Goda, R. Okazaki, K.-Y. Akiba, N. Inamoto, *Bull. Chem. Soc. Jpn.* 1978, 51, 260-264.]

¹**HNMR** (400 MHz, CDCl₃) δ: 0.84 (t, *J* = 7.2 Hz, 3H), 1.16 (dd, *J* = 16.8, 9.6 Hz, 3H), 1.13-1.30 (m, 1H), 1.41-1.66 (m, 3H), 2.34-2.44 (m, 1H), 7.45-7.47 (m, 6H),

7.77-7.83 (m, 4H).

¹³**CNMR** (100 MHz, CDCl₃) δ: 12.03 (d, $J_{C,P}$ = 2.40 Hz), 13.81, 20.58 (d, $J_{C,P}$ = 12.70 Hz), 30.89, 31.75 (d, $J_{C,P}$ = 70.90 Hz), 128.59 (dd, $J_{C,P}$ = 11.10, 3.70 Hz), 131.04, 131.12, 131.48 (dd, $J_{C,P}$ = 4.70, 2.40 Hz).

³¹**PNMR** δ: 37.29.

HR-MS: calcd for $C_{17}H_{22}OP 273.1408 ([M + H^+])$, found 273.1405.

3k White solids.

[Ref. C. Zhong, J. Zhu, J. Chang, X. Sun, *Tetrahedron Lett.* 2011, 52, 2815-2817.]

¹**HNMR** (400 MHz, CDCl₃) δ: 3.59 (d, *J* = 13.6 Hz, 2H), 3.75 (s, 3H), 6.73 (d, *J* = 8.4 Hz, 2H), 7.02 (dd, J = 8.8, 6.8 Hz, 2H), 7.42-7.53 (m, 6H), 7.67-7.71

(m, 4H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 37.12 (d, $J_{C,P} = 67.0$ Hz), 55.20, 113.91 (d, $J_{C,P} = 2.50$ Hz), 122.92 (d, $J_{C,P} = 8.1$ Hz), 128.43, 128.55, 131.12, 131.16, 131.25, 131.76 (d, $J_{C,P} = 2.70$ Hz), 131.93, 132.91, 158.54 (d, $J_{C,P} = 2.80$ Hz).

³¹**PNMR** δ: 29.42.

HR-MS: calcd for $C_{20}H_{20}O_2P$ 323.1201 ([M + H⁺]), found 323.1195.

31 White solids.

[Ref. E. N. Tsvetkov, N. A. Bondarenko, I. G. Malakhova, M. I. Kabachnik, *Synthesis* **1986**, 3, 198-208.]

¹**HNMR** (400 MHz, CDCl₃) δ : 3.65 (d, J = 14.0 Hz, 2H), 7.10-7.19 (m, 5H), 7.42-7.53 (m, 6H), 7.67-7.72 (m, 4H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 38.16 (d, $J_{C,P} = 66.0$ Hz), 126.79 (d, $J_{C,P} = 2.90$ Hz), 128.38 (d, $J_{C,P} = 2.60$ Hz), 128.44, 128.56, 130.17 (d, $J_{C,P} = 5.30$ Hz), 131.15, 131.24, 131.80 (d, $J_{C,P} = 2.60$ Hz), 131.88, 132.86.

³¹PNMR δ: 27.93.

HR-MS: calcd for $C_{19}H_{18}OP$ 293.1095 ([M + H⁺]), found 293.1086.

3m White solids.

¹**HNMR** (400 MHz, CDCl₃) δ : 3.64 (d, J = 13.2 Hz, 2H), 6.88-6.92 (m, 2H), 7.07-7.11 (m, 2H), 7.45-7.56 (m, 6H), 7.68-7.73 (m, 4H).

¹³CNMR (100 MHz, CDCl₃) δ : 37.23 (d, $J_{C,P} = 66.50$ Hz), 115.31 (dd, $J_{C-F} = 21.30, 2.40$ Hz), 126.90 (dd, $J_{C-F} = 7.80, 3.10$ Hz), 128.52, 128.63, 131.09, 131.18, 131.52-131.68 (m), 131.90 (d, $J_{C,P} = 2.70$ Hz), 132.67, 161.93 (dd, $J_{C-F} = 243.90, 3.20$ Hz).

³¹PNMR δ: 29.23.

HR-MS: calcd for $C_{19}H_{17}FOP 311.1001 ([M + H^+])$, found 311.0996.

3n White solids.

[Ref. D. C. Morrison, J. Am. Chem. Soc. 1950, 72, 4820-4821.]

¹**HNMR** (400 MHz, CDCl₃) δ : 1.04 (d, J = 6.4 Hz, 6H), 2.138-2.27 (m, 3H), 7.46-7.54 (m, 6H), 7.76-7.80 (m, 4H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 23.62 (d, $J_{C,P}$ = 3.80 Hz), 24.67 (d, $J_{C,P}$ = 8.90 Hz), 38.38 (d, $J_{C,P}$ = 70.70 Hz), 128.50, 128.61, 130.61, 130.70, 131.46 (d, $J_{C,P}$ = 2.50 Hz), 133.55, 134.51.

³¹PNMR δ: 29.21.

HR-MS: calcd for $C_{16}H_{20}OP 259.1252 ([M + H^+])$, found 259.1245.

30 White solids.

¹**HNMR** (400 MHz, CDCl₃) δ : 1.55 (dd, J = 16.4, 9.2 Hz, 3H), 3.53 (qu, J = 14.8, 7.2 Hz, 1H), 3.76 (s, 3H), 6.76 (d, J = 8.4 Hz, 2H), 6.96-7.01 (m, 2H), 7.10-7.13 (m, 2H), 7.21-7.29 (m, 2H), 7.41-7.47 (m, 2H), 7.85-7.91 (m, 2H).

¹³CNMR (100 MHz, CDCl₃) δ : 15.45 (d, $J_{C,P} = 2.40$ Hz), 40.30 (d, $J_{C,P} = 68.50$ Hz), 55.21, 113.85 (d, $J_{C,P} = 1.90$ Hz), 115.50 (dd, $J_{C-F} = 21.2$, 8.7 Hz), 116.13 (dd, $J_{C-F} = 21.1$, 9.0 Hz), 127.34 (dd, $J_{C-F} = 16.0$, 3.4 Hz), 128.31 (dd, $J_{C-F} = 21.0$, 3.6 Hz), 129.28 (d, $J_{C,P} = 5.70$ Hz), 130.11 (d, $J_{C,P} = 5.50$ Hz), 133.48-133.87 (m), 158.71 (d, $J_{C,P} = 2.50$ Hz), 163.58 (dd, $J_{C-F} = 35.5$, 3.2 Hz), 166.10 (dd, $J_{C-F} = 36.0$, 3.3 Hz).

³¹PNMR δ: 32.57.

HR-MS: calcd for $C_{21}H_{20}F_2O_2P$ 373.1169 ([M + H⁺]), found 373.1144.

3p White solids.

¹**HNMR** (400 MHz, CDCl₃) δ : 1.69 (dd, J = 15.2, 8.0 Hz), 2.10 (s, 3H), 2.24 (s, 3H), 2.35 (s, 3H), 2.36 (s, 3H), 2.37 (s, 3H), 3.69-3.74 (m, 1H), 3.76 (s, 3H), 6.74 (d, J = 8.4 Hz, 2H), 7.03-7.14 (m, 4H), 7.22-7.24 (m, 2H), 7.65-7.81 (m, 2H).

¹³CNMR (100 MHz, CDCl₃) δ : 14.22, 16.60 (d), 20.88-21.41 (m), 38.62 (d, $J_{C,P} = 67.70$ Hz), 55.23, 113.65 (d), 125.62-126.41 (m), 128.48, 128.83, 130.20 (d), 131.00 (d), 131.77, 131.87, 132.10-132.26 (m), 133.00 (d), 133.65 (d), 141.12-142.88 (m), 158.39 (d). **HR-MS:** calcd for C₂₅H₃₀O₂P 393.1983, found 393.1980.

3q Colorless oil.

[Ref. D.-Y. Wang, X.-P. Hu, J. Deng, S.-B. Yu, Z.-C. Duan, Z. Zheng, *J. Org. Chem.* **2009**, 74, 4408-4410; N. S. Goulioukina, T. M. Dolgina, I. P. Beletskaya, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genet, *Tetrahedron: Asymmetry*, **2001**, 12, 319-328.]

¹**HNMR** (400 MHz, CDCl₃) δ : 1.16 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.56 (dd, J = 18.4, 7.8 Hz, 3H), 3.12 (dq, J = 22.4, 7.2 Hz, 1H), 3.80 (s, 3H), 3.82 (m, 1H), 3.93 (m, 1H), 4.01 (m, 2H), 6.87 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 15.8, 16.4 (d, *J* = 5.0 Hz), 16.5 (d, *J* = 5.0 Hz), 37.5 (d, *J* = 138.0 Hz), 55.3, 61.9 (d, *J* = 6.0 Hz), 62.2 (d, *J* = 6.0 Hz), 113.9, 129.7 (d, *J* = 5.0 Hz), 130.0 (d, *J* = 6.0 Hz), 158.7.

3s White solids.

¹**HNMR** (400 MHz, CDCl₃) δ: 0.89 (s, 3H), 0.91 (s, 3H), 1.62 (dd, J = 18.8, 11.2 Hz, 3H), 3.21-3.32 (m, 1H), 3.59-3.70 (m, 2H), 3.79 (s, 3H), 4.14-4.20 (m, 2H), 6.87 (d, J = 8.4 Hz, 2H), 7.26-7.29 (m, 2H).

¹³**CNMR** (100 MHz, CDCl₃) δ : 15.21 (d, $J_{C,P} = 4.60$ Hz), 21.48 (d, $J_{C,P} = 14.70$ Hz), 32.63 (d, $J_{C,P} = 5.80$ Hz), 36.58 (d, $J_{C,P} = 134.50$ Hz), 55.29, 74.82

(dd, $J_{C,P} = 6.5, 2.9$ Hz), 113.96 (d, $J_{C,P} = 2.50$ Hz), 129.14 (d, $J_{C,P} = 7.60$ Hz), 129.66 (d, $J_{C,P} = 6.40$ Hz), 158.81 (d, $J_{C,P} = 3.10$ Hz).

HR-MS: calcd for C₁₄H₂₂O₄P 285.1256, found 285.1258.

3t White solids.

¹**HNMR** (400 MHz, CDCl₃) δ: 1.81 (dd, J = 18.8, 12.4 Hz, 3H), 3.24-3.35 (m, 1H), 3.75 (s, 3H), 6.74 (d, J = 8.8 Hz, 2H), 7.22-7.27 (m, 4H), 7.31-7.37 (m, 3H), 7.42-7.51 (m, 3H), 7.94 (dd, J = 16.8, 9.6 Hz, 4H). ¹³**CNMR** (100 MHz, CDCl₃) δ: 16.55 (d, $J_{C,P} = 3.90$ Hz), 35.88 (d, $J_{C,P} = 129.0$ Hz), 55.27, 114.12(d), 119.88 (d), 121.36, 121.88 (d), 125.66 (d),

126.61, 126.74, 126.90, 127.35, 128.24, 128.31, 128.51, 129.78, 129.85, 130.91, 131.13, 131.37, 131.84, 132.43 (d), 132.55, 145.90 (d), 148.12 (d), 158.99 (d).

HR-MS: calcd for $C_{29}H_{23}NaO_4P$ 489.1232, found 489.1202.

4. Selected Spectra of Organophosphorus Products

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

3b

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

ppm (f1)

3h

ppm (t1)