Supporting Information for:

Synthesis and photophysical properties of phosphorus (V)

porphyrins functionalized with axial carbazolylvinylnaphthalimides

Yong Zhan,^a Kaiyu Cao,^a Chenguang Wang,^a Junhui Jia,^a Pengchong Xue,^a Xingliang Liu,^a Xuemei Duan,^b Ran Lu^{a,*}

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

^b State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China.

Fax: +86-431-88923907; Tel: +86-431-88499179

E-Mail: luran@mail.jlu.edu.cn

	Absorption (λ_{max}/nm) ($\epsilon \times 10^{-4}/M^{-1} \text{ cm}^{-1}$) ^a					Emission(nm) ^b
Compound			Soret	Q1	Q2	-
1	300 (7.51)	350 (5.05)	440 (26.25)	564 (1.94)	611(1.00)	620, 672
2	300 (7.69)	350 (8.20)	440 (16.60)	564 (1.40)	610 (0.64)	620, 672
12	300 (0.44)	350 (0.35)	437 (5.71)	563 (0.45)	606 (0.34)	618, 669

Table S1. Photophysical data of phosphorus (V) porphyrins 1, 2 and 12.

^a measured in CHCl₃ $(1.0 \times 10^{-6} \text{ M})$ at room temperature.

^b measured in CHCl₃ (1.0×10^{-6} M) at room temperature, excited at 570 nm.

Fig. S1 Normalized (a) UV-vis absorption and (b) Fluorescence emission spectra of compound **8** in different solvents (1.0×10^{-6} M, $\lambda_{ex} = 440$ nm).

Fig. S2 Normalized UV-vis absorption of (a) phosphorus (V) porphyrins **1** and **12** (5.0 \times 10⁻⁶ M), and compound **8** (1.0 \times 10⁻⁵ M) in chloroform; (b) phosphorus (V) porphyrins **2** and **12** (5.0 \times 10⁻⁶ M), and compound **9** (1.0 \times 10⁻⁵ M) in chloroform.

Fig. S3 Normalized UV-vis absorption spectra of phosphorus (V) porphyrins 1 and 2 in the film.

Fig. S4 Cyclic voltammogram diagrams of phosphorus (V) porphyrins 1 and 2 in anhydrous CH_2Cl_2 with 0.1 M Bu₄NBF₄ as electrolyte at a scan rate of 100 mV s⁻¹.

Fig. S5 ¹H-NMR (300 MHz, $CDCl_3$) spectrum of compound **3**.

Fig. S6 MALDI/TOF MS spectrum of compound 3.

Fig. S8 MALDI/TOF MS spectrum of compound 4.

Fig. S9 ¹H-NMR (500 MHz, CDCl₃) spectrum of compound **6**.

Fig. S10 MALDI/TOF MS spectrum of compound 6.

Fig. S11 ¹H-NMR (500 MHz, CDCl₃) spectrum of compound 7.

Fig. S12 MALDI/TOF MS spectrum of compound 7.

Fig. S13 ¹H-NMR (300 MHz, CDCl₃) spectrum of compound **8**.

Fig. S14 MALDI/TOF MS spectrum of compound 8.

Fig. S15 ¹H-NMR (300 MHz, CDCl₃) spectrum of compound 9.

Fig. S16 MALDI/TOF MS spectrum of compound 9.

Fig. S17 ¹H-NMR (300 MHz, CDCl₃) spectrum of compound **10**.

Fig. S18 MALDI/TOF MS spectrum of compound 10.

Fig. S19 ¹H-NMR (300 MHz, DMSO- d_6) spectrum of compound **11**.

Fig. S20 MALDI/TOF MS spectrum of compound 11.

Fig. S21 1 H-NMR (600 MHz, CDCl₃) spectrum of compound 1.

Fig. S23 MALDI/TOF MS spectrum of compound 1.

Fig. S24 High resolution mass spectrum of compound 1.

Fig. S25 ¹H-NMR (600 MHz, CDCl₃) spectrum of compound **2**.

Fig. S27 MALDI/TOF MS spectrum of compound 2.

Fig. S28 High resolution mass spectrum of compound 2.