Supporting Information

for

Diastereoselective Ruthenium Porphyrin-Catalyzed Tandem Nitrone Formation/1,3-Dipolar Cycloaddition for Isoxazolidines. Synthesis, *in Silico* Docking Study and *in Vitro* Biological Activities

Annapureddy Rajasekar Reddy, Zhen Guo, Fung-Ming Siu, Chun-Nam Lok, Fuli Liu,

Kai-Chung Yeung, Cong-Ying Zhou* and Chi-Ming Che*

Department of Chemistry, State Key Laboratory of Synthetic Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong,

China

1. Experimental Section	S2
2. Screening of catalyst and reaction condition in Table S1	S2
3. Procedure for scale-up reaction of 1a , 2a and 3a	S 3
4. X-ray crystal structure of 5a in Figure S1	S 3
5. The calculated cartesian coordinates	S 4
6. <i>In silico</i> analysis	S12
7. Characterization data of compounds 4b-4g, 4i, 4l-4n, 5a-5f, 5i-5n	S14
8. NMR spectra of compounds 4a-4n, 5a-5o, 7a, 9a, 9b, 10, 11	S23
9. [Ru(TTP)(CO)(MeOH)]-catalyzed reaction of EDA with nitrosobenzene	S62

General Experimental Section: Reagents were obtained commercially and used without further purification unless indicated otherwise. All solvents used in the reaction were dried and freshly distilled. Flash chromatography was performed using Merck silica gel 60 and a gradient solvent system (EtOAc/*n*-hexane as eluant). ¹H and ¹³C NMR spectra were measured on either a Bruker DPX-500, DPX-400 or DPX-300 spectrometer. Chemical shifts (δ ppm) were determined with tetramethylsilane (TMS) as internal reference. Mass spectra were determined on a Finnigan MAT 95 mass spectrometer.

General procedure for tandem nitrone formation/1,3-dipolar cycloaddition of EDA, nitrosobenzene and N-phenylmaleimide catalyzed by transition metal complexes

To nitrosobenzene (1.0 mmol), N-phenylmaleimide (1.0 mmol) and catalyst (0.01 mmol) in CH_2Cl_2 (5 mL) was added EDA (0.5 mmol) in CH_2Cl_2 (5 mL) over 4 h via a syringe pump at room temperature. After addition, the resultant solution was stirred for an additional 0.5h. The solvent was removed and the crude residue was purified by silica gel column chromatography to give the corresponding cycloadduct **4a**.

Table S1. Screening of catalyst and reaction condition for the cycloaddition of EDA,

 nitrosobenzene and N-phenylmaleimide

4	[Ru(<i>p</i> -cymene)Cl ₂] ₂	CH_2Cl_2	100	9
5	Rh ₂ (OAc) ₄	CH_2Cl_2	100	60
6	Cu(OTf) ₂	CH_2Cl_2	100	56
7	[Cu(CH ₃ CN) ₄]PF ₆	CH_2Cl_2	100	53
8	[Ru(TTP)(CO)(MeOH)]	THF	100	65
9	[Ru(TTP)(CO)(MeOH)]	Toluene	100	78
10	[Ru(TTP)(CO)(MeOH)]	CH_2Cl_2	100	90 ^b

^a yield are determined by ¹H NMR using 4-iodoanisole as the internal standard; ^b 1 mol% catalyst. **Procedure for scale-up reaction of EDA, nitrosobenzene and N-phenylmaleimide**

catalyzed by [Ru(TTP)(CO)(MeOH)]

To nitrosobenzene (21.0 mmol), N-phenylmaleimide (21.0 mmol) and [Ru(TTP)(CO)(MeOH)] (0.0175 mmol) in CH₂Cl₂ (40 mL) was added ethyl diazo acetate (17.5 mmol) in CH₂Cl₂ (40 mL) over 20 h via a syringe pump at room temperature. After addition, the resultant solution was stirred for an additional 1 h. The solvent was removed and the crude residue was purified by silica gel column chromatography to give the cycloadduct **4a** in 75% yield (4.8 g, 13.1 mmol).

Fig. S1 X-ray crystal structure of 5a (CCDC 824752 for 5a contain the supplementarycrystallographic data for this paper. These data can be obtained free of charge fromTheCambridgeCrystallographicDataCentreviawww.ccdc.cam.ac.uk/data request/cif)

Fig. S2 Potential energy surface of relaxed scan calculation on the C1-C2-N-C3 dihedral angle of Z-nitrone for Z/E isomerisation

The Cartesian coordinates, total free energies (Hartree/Particle) of the stationary points found for the cycloaddition of N-phenyl nitrones with ethyl maleate/styrene at the B3LYP/6-31G(d) level.

Z-nitrone

		Standard of	rientation:		
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	0	-4.994238	-1.451167	0.381852
2	1	0	-4.763148	-1.805515	1.391639
3	1	0	-6.068578	-1.244258	0.326626
4	1	0	-4.761243	-2.252972	-0.326374
5	6	0	-4.209880	-0.193663	0.055954
6	1	0	-4.426090	0.175646	-0.952281
7	1	0	-4.428258	0.619824	0.755798
8	8	0	-2.807762	-0.522000	0.143075
9	6	0	-1.950306	0.511248	-0.102078
10	8	0	-2.310029	1.635824	-0.377666
11	6	0	-0.582915	0.001084	0.021775
12	1	0	-0.426262	-1.036858	0.268931
13	7	0	0.495589	0.760483	-0.129989
14	8	0	0.499720	2.003577	-0.322088
15	6	0	1.816708	0.125779	-0.043746
16	6	0	2.847691	0.888588	0.502938
17	6	0	4.120893	0.332569	0.602383
18	6	0	4.362120	-0.963687	0.139602
19	6	0	3.325402	-1.705373	-0.429178
20	6	0	2.042990	-1.163836	-0.525189
21	1	0	2.634077	1.898123	0.833203
22	1	0	4.927097	0.915303	1.038301
23	1	0	5.358351	-1.390565	0.212035
24	1	0	3.513397	-2.704183	-0.812074
25	1	0	1.245309	-1.726381	-0.998325

Sum of electronic and thermal Free Energies= -667.884505

E-nitrone

	Standard orientation:					
Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)	
Number	Number	Type	Х	Y	Z	
1	7	0	0.559761	1.461005	-0.238915	
2	8	0	1.039532	2.627919	-0.346730	
3	6	0	-0.749906	1.249825	-0.265791	
4	6	0	1.563117	0.406073	-0.106663	
5	6	0	2.601988	0.635292	0.794069	
6	6	0	3.619922	-0.309109	0.902854	
7	6	0	3.608681	-1.447845	0.093481	
8	6	0	2.575145	-1.645322	-0.824188	
9	6	0	1.538980	-0.718463	-0.926976	
10	1	0	2.602097	1.543188	1.386198	
11	1	0	4.426972	-0.149743	1.611892	
12	1	0	4.409514	-2.177689	0.172636	
13	1	0	2.572000	-2.522961	-1.463746	
14	1	0	0.733055	-0.863368	-1.636131	
15	1	0	-1.332093	2.141904	-0.451718	
16	6	0	-1.448316	0.007263	0.071594	
17	8	0	-0.980337	-1.060592	0.422315	
18	8	0	-2.782559	0.235736	-0.044039	
19	6	0	-3.638187	-0.879323	0.287999	
20	6	0	-5.072635	-0.426118	0.091387	
21	1	0	-3.381716	-1.726498	-0.356800	
22	1	0	-3.439976	-1.181576	1.321622	
23	1	0	-5.757081	-1.246407	0.333511	
24	1	0	-5.307581	0.422331	0.741937	
25	1	0	-5.249332	-0.124363	-0.945953	

Sum of electronic and thermal Free Energies= -667.884373

Z_{exo}-TS(ethyl maleate)

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z
1	 6	0	-3.556085	0.975639	0.147473
2	6	0	-2.813645	-0.063884	-0.420285
3	6	0	-3.399457	-1.313238	-0.655519
4	6	0	-4.724306	-1.528562	-0.280991
5	6	0	-5.467530	-0.503786	0.308953
6	6	0	-4.880364	0.746587	0.514794
7	7	0	-1.451072	0.188274	-0.801533
8	6	0	-0.482203	-0.746236	-0.647766
9	6	0	0.714326	-0.652722	-1.560298
10	8	0	0.742050	-0.016426	-2.586630
11	8	0	-1.045386	1.411962	-0.829588
12	8	0	1.702508	-1.449336	-1.119393
13	6	0	2.952177	-1.337149	-1.851926
14	6	0	3.998690	-2.135953	-1.100542
15	1	0	-2.840047	-2.099937	-1.151142
16	1	0	-5.179476	-2.497342	-0.465675
17	1	0	-6.501601	-0.675217	0.593497
18	1	0	-5.456180	1.551905	0.962031
19	1	0	-3.087709	1.942902	0.280061
20	1	0	-0.806327	-1.748441	-0.390389
21	1	0	2.792495	-1.710919	-2.868569
22	1	0	3.208642	-0.277048	-1.907909

23	1	0	4.958063	-2.068511	-1.625643
24	1	0	4.125384	-1.737761	-0.089803
25	1	0	3.720365	-3.193935	-1.035971
26	6	0	0.146206	1.423041	0.993618
27	6	0	0.134309	0.049869	1.254815
28	1	0	-0.624849	2.050950	1.420841
29	6	0	1.304929	2.136106	0.408503
30	6	0	1.325030	-0.786761	1.602674
31	1	0	-0.750529	-0.307929	1.777218
32	8	0	0.899994	-2.055813	1.852128
33	8	0	2.472965	-0.430968	1.741353
34	6	0	1.918060	-2.973624	2.270978
35	1	0	1.393111	-3.891328	2.540421
36	1	0	2.619908	-3.163343	1.454785
37	1	0	2.466688	-2.578185	3.129815
38	8	0	1.259699	3.450106	0.734230
39	8	0	2.164816	1.649369	-0.296163
40	6	0	2.307299	4.250841	0.168325
41	1	0	2.115149	5.268743	0.509508
42	1	0	3.285110	3.906794	0.516841
43	1	0	2.281521	4.198525	-0.923506

Sum of electronic and thermal Free Energies=-1202.073485

Z_{endo}-TS(ethyl maleate)

		Standard	orientation:		
Center Number	Atomic Number	Atomic	Coord	dinates (Ang	stroms)
1	6	0	0.976670	-2.251444	3.491103
2	1	0	1.965891	-1.810485	3.345285
3	1	0	0.427066	-1.671488	4.237069
4	1	0	1.061547	-3.294113	3.798844
5	8	0	0.266074	-2.277351	2.241330
6	6	0	0.028120	-1.069981	1.694598
7	8	0	0.265299	-0.019580	2.250560
8	6	0	-0.664397	-1.241610	0.355046
9	1	0	-1.696507	-1.568525	0.466854
10	6	0	0.019356	-1.731022	-0.760635
11	1	0	-0.538404	-2.135466	-1.595138
12	6	0	1.468463	-1.965481	-0.759701
13	8	0	2.256227	-1.583373	0.092403
14	8	0	1.839881	-2.698183	-1.836659
15	6	0	3.241122	-2.979601	-1.933418
16	1	0	3.595777	-3.499188	-1.038937
17	1	0	3.814340	-2.055562	-2.055043
18	1	0	3.352646	-3.612246	-2.814789
19	7	0	-0.035730	1.003248	-0.876598
20	8	0	0.269289	0.224806	-1.843278
21	6	0	0.958643	1.909992	-0.361574
22	6	0	2.310008	1.649061	-0.596734
23	6	0	3.264065	2.552294	-0.137591
24	6	0	2.878193	3.713250	0.537887
25	6	0	1.523753	3.972251	0.751163
26	6	0	0.557515	3.077118	0.295412
27	1	0	2.595103	0.737599	-1.103924
28	1	0	4.317081	2.343222	-0.303035
29	1	0	3.629213	4.413856	0.891654
30	1	0	1.212781	4.879354	1.261323
31	1	0	-0.496327	3.299127	0.427840
32	6	0	-1.159233	0.694714	-0.171794
33	6	0	-2.429733	0.418605	-0.911473
34	1	0	-1.270563	1.214120	0.771186
35	8	0	-3.444167	0.375471	-0.011067
36	8	0	-2.572135	0.255215	-2.100822
37	6	0	-4.757981	0.113274	-0.559529
38	6	0	-5.729291	0.035140	0.602839

39	1	0	-5.013160	0.918237	-1.256257
40	1	0	-4.721656	-0.819022	-1.132079
41	1	0	-6.739934	-0.160206	0.228277
42	1	0	-5.454592	-0.772052	1.289441
43	1	0	-5.745588	0.974708	1.164284

Sum of electronic and thermal Free Energies=-1202.080805

E_{exo}-TS(ethyl maleate)

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coorc X	linates (Angs Y	stroms) Z
1 2 3 4 5 6	6 6 6 6 6	0 0 0 0 0	2.718479 2.431751 3.446312 4.750289 5.044399 4.026696	-1.944371 -0.912724 -0.084172 -0.266002 -1.275898 -2.114509	0.659977 -0.236538 -0.720419 -0.266992 0.652005 1.109679
7 8 9 10 11 12	7 6 8 6 6	0 0 0 0 0	1.090196 0.310260 0.762688 -0.063957 0.165590 -0.817829	-0.782677 0.316571 1.676246 2.584216 3.960911 4.818991	-0.743172 -0.733049 -0.329659 -0.888333 -0.504868 -1.277365
13 14 15 16 17	8 8 1 1 1	0 0 0 0	0.406200 1.677660 3.219204 5.539954 6.064097	-1.891120 1.953620 0.687925 0.378841 -1.416119	-0.866692 0.417062 -1.446386 -0.641539 0.999201
19 20 21 22 23	1 1 1 1 1	0 0 0 0 0	4.249962 1.926392 -0.547185 0.030727 1.204685 -0.675857	-2.910618 -2.609864 0.249317 4.043681 4.219446 5.872667	0.981195 -1.390670 0.578191 -0.731311 -1.013590
24 25 26 27 28 29	1 1 6 1	0 0 0 0 0	-0.668431 -1.850661 -1.011676 -0.913039 -0.579850 -2.131687	4.710377 4.540849 -1.756323 -0.439355 -2.555422 -2.176312	-2.356204 -1.044760 0.476846 0.961385 1.068837 -0.431264
30 31 32 33 34	1 6 8 8 6	0 0 0 0 0	-0.194068 -2.042699 -1.717300 -3.124111 -2.758153	-0.257968 0.516783 1.617478 0.384965 2.597386	1.755327 0.955947 1.691949 0.419532 1.799603
35 36 37 38 39 40	8 8 1 1 1	0 0 0 0 0	-2.815042 -2.369965 -3.926228 -2.349493 -3.029209 -3.649426	-3.205638 -1.700891 -3.676798 3.391586 2.984151 2.165698	0.115300 -1.517144 -0.665693 2.426004 0.813173 2.263447
41 42 43	1 1 1	0 0 0	-4.374648 -4.644202 -3.582146	-4.480602 -2.869048 -4.049748	-0.081004 -0.828820 -1.634152

Sum of electronic and thermal Free Energies=-1202.075815

E_{endo}-TS(ethyl maleate)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	1	0	-6.203463	-1.680420	-0.605858

2	6	0	-5.231169	-1.625095	-1.107242
3	1	0	-4.808311	-2.633690	-1.151684
4	1	0	-5.391530	-1.271370	-2.130707
5	6	0	-4.315065	-0.687323	-0.344972
6	1	0	-4.134585	-1.027539	0.679379
7	1	0	-4.713629	0.330744	-0.293972
8	8	0	-3.047544	-0.654810	-1.044005
9	8	0	-2.252422	0.810277	0.494245
10	6	0	-2.091672	0.121263	-0.489447
11	6	0	-0.821636	-0.096293	-1.240937
12	1	0	-0.912207	-0.681263	-2.146860
13	7	0	0.217672	0.768189	-1.252337
14	8	0	1.293759	0.237568	-1.780788
15	6	0	0.359221	1.972105	-0.469245
16	6	0	1.391955	2.099621	0.460167
17	6	0	1.531907	3.310282	1.137851
18	6	0	0.663152	4.374742	0.888143
19	6	0	-0.358613	4.232836	-0.052651
20	6	0	-0.508908	3.031518	-0.741619
21	1	0	-1.285402	2.916564	-1.491470
22	1	0	-1.032897	5.058882	-0.260326
23	1	0	0.783074	5.313047	1.422916
24	1	0	2.324628	3.415181	1.873224
25	1	0	2.047322	1.260964	0.663657
26	6	0	1.467210	-1.496620	-0.934639
27	6	0	0.224267	-1.697312	-0.280168
28	1	0	1.558517	-2.026020	-1.876471
29	6	0	2.810674	-1.304465	-0.304421
30	6	0	-0.034036	-1.471503	1.162944
31	1	0	-0.415731	-2.459532	-0.713137
32	8	0	3.706545	-2.061500	-0.992469
33	8	0	3.127644	-0.610673	0.636396
34	6	0	5.062071	-1.966545	-0.530800
35	8	0	-1.158775	-2.153084	1.530422
36	8	0	0.588583	-0.770257	1.929477
37	6	0	-1.573424	-1.927379	2.886577
38	1	0	-2.461079	-2.546009	3.027880
39	1	0	-0.786745	-2.222759	3.585817
40	1	0	-1.809043	-0.870850	3.038875
41	1	0	5.640082	-2.618972	-1.186187
42	1	0	5.419519	-0.935549	-0.600516
43	1	0	5.139852	-2.297895	0.508327

Sum of electronic and thermal Free Energies=-1202.073763

$Z_{exo}\text{-}TS(styrene)$

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	5.175917	-1.426901	0.104189
2	6	0	4.113239	-2.317293	-0.066577
3	6	0	2.818209	-1.844493	-0.265380
4	6	0	2.584311	-0.465650	-0.281846
5	6	0	3.646906	0.435516	-0.139810
6	6	0	4.937228	-0.051656	0.061493
7	1	0	5.760267	0.649237	0.169338
8	1	0	3.477855	1.504689	-0.215760
9	1	0	6.184480	-1.801004	0.254826
10	1	0	4.292284	-3.388783	-0.047304
11	7	0	1.238596	-0.004697	-0.492944
12	8	0	0.366000	-0.859524	-0.890729
13	6	0	0.779088	1.111402	0.128354
14	6	0	-0.293318	1.938222	-0.481842
15	8	0	-0.988935	1.672572	-1.436463
16	8	0	-0.379396	3.103589	0.215645
17	6	0	-1.380566	4.036774	-0.247316

18	1	0	-2.363213	3.555314	-0.200948
19	1	0	-1.182127	4.276784	-1.296819
20	6	0	-1.306585	5.263402	0.642562
21	1	0	-0.318214	5.730567	0.583966
22	1	0	-2.054259	5.998219	0.324818
23	1	0	-1.502839	5.002014	1.687413
24	6	0	-0.712034	-1.148223	1.075967
25	6	0	-0.424993	0.101900	1.619605
26	1	0	0.360443	0.173802	2.366064
27	1	0	-0.027663	-1.959084	1.312297
28	6	0	-2.001373	-1.579366	0.527256
29	1	0	-1.215365	0.839279	1.724755
30	1	0	1.520085	1.677261	0.679805
31	1	0	1.981786	-2.514714	-0.418980
32	6	0	-2.318187	-2.949896	0.543628
33	6	0	-3.543838	-3.413184	0.070466
34	6	0	-4.479918	-2.513580	-0.442100
35	6	0	-4.172570	-1.150627	-0.481498
36	6	0	-2.949912	-0.686934	-0.004517
37	1	0	-1.592399	-3.656370	0.940643
38	1	0	-3.766509	-4.476760	0.099398
39	1	0	-5.435770	-2.870559	-0.816239
40	1	0	-4.886871	-0.444857	-0.897703
41	1	0	-2.713127	0.368265	-0.082382

Sum of electronic and thermal Free Energies=-977.388179

$Z_{endo}\text{-}TS(styrene)$

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.144783	3.943011	0.221970
2	6	0	2.638732	2.782040	-0.379655
3	6	0	1.791679	1.715176	-0.665770
4	6	0	0.435584	1.808222	-0.335583
5	6	0	-0.075707	2.978055	0.240088
6	6	0	0.785917	4.036466	0.526141
7	1	0	0.386092	4.942696	0.972550
8	1	0	-1.138341	3.079642	0.435012
9	1	0	2.811390	4.772361	0.440614
10	1	0	3.693797	2.703412	-0.626594
11	7	0	-0.430256	0.708663	-0.665133
12	8	0	0.007277	-0.201240	-1.458173
13	6	0	-1.497553	0.380661	0.109089
14	6	0	-2.704632	-0.225240	-0.523529
15	8	0	-2.812222	-0.675282	-1.640539
16	8	0	-3.719222	-0.197087	0.382358
17	6	0	-4.971061	-0.762965	-0.067523
18	1	0	-4.797273	-1.793962	-0.392405
19	1	0	-5.320124	-0.198756	-0.938527
20	6	0	-5.948707	-0.685454	1.090023
21	1	0	-6.105795	0.352245	1.401587
22	1	0	-6.914929	-1.104548	0.788745
23	1	0	-5.581344	-1.252081	1.951772
24	6	0	0.178318	-1.890691	0.063036
25	6	0	-0.732512	-1.384099	0.991217
26	1	0	-0.374062	-0.956010	1.923818
27	6	0	1.638157	-1.901651	0.205190
28	1	0	-0.213072	-2.524067	-0.726141
29	1	0	-1.703384	-1.861558	1.074466
30	1	0	-1.712596	1.061626	0.924118
31	1	0	2.154910	0.808402	-1.132441
32	6	0	2.417647	-2.491143	-0.810398
33	6	0	3.805136	-2.546643	-0.717042
34	6	0	4.456611	-2.015551	0.399411
35	6	0	3.699926	-1.435482	1.420603

36 37	6	0	2.311255	-1.383772	-1.687054
38	1	0	4.380517	-3.004898	-1.517380
39	1	0	5.539634	-2.059638	0.476178
40	1	0	4.193998	-1.027042	2.298604
41	1	0	1.746643	-0.939812	2.143338

Sum of electronic and thermal Free Energies= -977.387465

E_{exo}-TS(styrene)

Standard orientation:

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	4.033103	-3.073829	0.036968	
2	6	0	2.771113	-3.483315	0.472031	
3	6	0	1.656446	-2.675337	0.257818	
4	6	0	1.813733	-1.439206	-0.375895	
5	6	0	3.068144	-1.032387	-0.837712	
6	6	0	4.174418	-1.850860	-0.622747	
7	1	0	5.149279	-1.533832	-0.982193	
8	1	0	3.178073	-0.092610	-1.364862	
9	1	0	4.899399	-3.709217	0.198527	
10	1	0	2.649879	-4.439398	0.973842	
11	7	0	0.636111	-0.654773	-0.639532	
12	8	0	-0.470640	-1.302664	-0.810586	
13	6	0	0.434940	0.657312	-0.331650	
14	1	0	-0.377865	1.087071	-0.903526	
15	6	0	-1.552914	-0.645607	1.076661	
16	6	0	-0.701849	0.418378	1.383563	
17	1	0	0.110960	0.240633	2.082576	
18	1	0	-1.307941	-1.627034	1.469748	
19	6	0	-2.886643	-0.517966	0.492538	
20	1	0	-1.092481	1.432355	1.404919	
21	6	0	1.489774	1.617688	0.090613	
22	1	0	0.664039	-2.991856	0.554367	
23	6	0	-3.716956	-1.652433	0.418223	
24	6	0	-4.993067	-1.578628	-0.132542	
25	6	0	-5.472727	-0.365220	-0.631387	
26	6	0	-4.660908	0.770223	-0.571817	
27	6	0	-3.386129	0.696503	-0.016507	
28	1	0	-3.345356	-2.602201	0.795566	
29	1	0	-5.614195	-2.469542	-0.175769	
30	1	0	-6.468118	-0.304746	-1.062987	
31	1	0	-5.023742	1.718839	-0.959309	
32	1	0	-2.774636	1.593627	0.022225	
33	8	0	1.069895	2.871119	-0.207416	
34	8	0	2.519284	1.379723	0.688257	
35	6	0	1.926476	3.945003	0.246966	
36	6	0	1.276638	5.251906	-0.165838	
37	1	0	2.044535	3.865948	1.332561	
38	1	0	2.916691	3.817578	-0.202159	
39	1	0	1.898583	6.093274	0.158418	
40	1	0	1.163011	5.306360	-1.253209	
41	1	0	0.287267	5.359381	0.290229	

Sum of electronic and thermal Free Energies= -977.387314

E_{endo} -TS(styrene)

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.599967	4.117320	0.364869	
2	6	0	1.592718	3.159479	0.144900	

3	6	0	1.263549	1.901170	-0.352852
4	6	0	-0.075537	1.595572	-0.613994
5	6	0	-1.072505	2.557583	-0.427023
6	6	0	-0.730676	3.812278	0.072626
7	1	0	-1.507751	4.557088	0.219663
8	1	0	-2.101973	2.335154	-0.682219
9	1	0	0.862670	5.098629	0.750105
10	1	0	2.632288	3.391192	0.359526
11	7	0	-0.391442	0.327939	-1.213897
12	8	0	0.510118	-0.220131	-1.962297
13	6	0	-1.394078	-0.533144	-0.878327
14	1	0	-1.731348	-1.122850	-1.720452
15	6	0	0.939912	-2.048174	-0.713814
16	6	0	-0.308079	-2.102155	-0.081205
17	1	0	-0.378071	-1.872114	0.978702
18	6	0	2.200611	-1.653665	-0.080809
19	1	0	1.046068	-2.565430	-1.661875
20	1	0	-1.013134	-2.858657	-0.413569
21	6	0	-2.420518	-0.266314	0.166427
22	1	0	2.022744	1.153690	-0.543613
23	8	0	-3.531164	-0.985058	-0.123582
24	8	0	-2.289706	0.392782	1.177262
25	6	0	-4.581846	-0.946230	0.870586
26	6	0	-5.705765	-1.839632	0.381376
27	1	0	-4.172365	-1.282962	1.828471
28	1	0	-4.906253	0.091631	0.997720
29	1	0	-6.525644	-1.834629	1.107782
30	1	0	-6.095046	-1.488947	-0.579747
31	1	0	-5.361032	-2.871295	0.258259
32	6	0	3.401690	-1.798654	-0.804056
33	6	0	4.629677	-1.459340	-0.243150
34	6	0	4.692876	-0.961901	1.060826
35	6	0	3.512537	-0.812550	1.794157
36	6	0	2.284613	-1.157054	1.235427
37	1	0	3.358884	-2.176137	-1.822875
38	1	0	5.539581	-1.581985	-0.825018
39	1	0	5.649968	-0.697185	1.501948
40	1	0	3.548561	-0.428531	2.810421
41	1	0	1.383080	-1.030524	1.827196
Sum of	electronic and	thermal Free	Energies=-97	 7.384641	

In silico analysis and experimental validation. A chemical similarity approach (SEA) was recently developed to predict targets for new drugs.¹ With the use of the same approach, ¹ the potential target of isoxazolidines was identified to be leukotriene A4 hydrolase (LTA4H). In brief, SEA is a database of a large number of compounds, whose biological targets are known. These reference compounds are classified according to their molecular targets (named as "target set"). Using a statistical model, the chemical similarity between isoxazolidines and all compounds in each target sets were computed and ranked. For more details about the method, please refer to the *Nature* article. ¹ Docking was performed using ICM-Pro 3.7-2b program (Molsoft)² to evaluate the binding of isoxazolidines with LTA4H. The coordinates of leukotriene A4 hydrolase were taken from the Protein Data Bank (PDB ID: 1HS6).³ Hydrogen and missing heavy atoms were added to the receptor structure followed by local minimization using the conjugate gradient algorithm and analytical derivatives in the internal coordinate space. The energetically most favorable tautomeric state of His was chosen. Positions of Asn and Gln were optimized to maximize hydrogen bonding. The correct stereochemistry and formal charges were assigned. Each compound was then assigned the MMFF atom types and charges, and subjected to a global energy optimization using the ICM stochastic optimization algorithm. The molecular system is described in terms of internal coordinate variables, using a modified ECEPP/3 force-field with distance-dependent dielectric constant for the energy calculations as implemented in ICM. The biased probability Monte Carlo (BPMC) minimization method consists of the following steps: (1) a random conformation change of the free variables according to a predefined continuous probability distribution, (2) local energy minimization of analytical differentiable terms; (3) calculation of the complete energy including non-differentiable terms such as entropy and salvation energy; (4) acceptance or rejection of the total energy based on the Metropolis criterion and return to step 1.

Aminopeptidase activity of LTA4H was determined as previously described with modification. ⁴ Recombinant human LTA4H (Cayman, 0.8 μ g) was preincubated with the test compounds (2 mM) or vehicle (0.2% DMSO) for 30 min at room temperature in a volume of 90 μ L of assay buffer (50 mM Tris-HCl, pH 8.0, 100 mM KCl). Reaction was started with addition of 10 μ L of L-alanine-4-nitro-anilide

hydrochloride (Sigma, 5 mM final concentration). The aminopeptidase activity was determined by monitoring absorbance at 405 nm for 2 h.

Reference:

M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B. Kuijer, R. C. Matos, T. B. Tran, R. Whaley, R. A. Glennon, J. Hert, K. L. H. Thomas, D. D. Edwards, B. K. Shoichet and B. L. Roth, *Nature*, 2009, 462, 175.
 R. A. Abagyan, M. M. Totrov and D. N. Kuznetsov, *J. Comp. Chem.*, 1994, 15, 488.

(3) M. M. Thunnissen, P. Nordlund and J. Z. Haeggstrom, *Nat. Struct. Biol.*, 2001, **8**, 131.

(4) P. C. Rudberg, F. Tholander, M. M. Thunnissen and J. Z. Haeggström, J. Biol. Chem., 2002, 277, 1398.

Characterization Data of Isoxazolidines

Triethyl 2-phenylisoxazolidine-3,4,5-tricarboxylate (4b)

Oil, Yield: 95%; ¹H NMR (CDCl₃, 400 MHz), δ 1.03 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H), 3.83-3.97 (m, 2H), 4.10-4.15 (m, 2H), 4.27-4.35 (m, 3H), 4.78 (d, J = 7.2 Hz, 1H), 4.97 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.23-7.27 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 13.47, 13.84, 13.99, 53.99, 61.62, 61.68, 62.30, 68.13, 77.86, 114.28, 122.33, 128.61, 150.80, 167.79, 167.83, 169.77; EIMS m/z 365.2 (M⁺); HRMS (EI) for C₁₈H₂₃O₇N, calcd. 365.1475, found 365.1468.

3-Ethyl 4,5-dimethyl 2-phenylisoxazolidine-3,4,5-tricarboxylate (4c)

Oil, Yield: 90%; ¹H NMR (CDCl₃, 400 MHz), δ 1.30 (t, *J* = 7.2 Hz, 3H), 3.59 (s, 3H), 3.83 (s, 3H), 4.26-4.30 (m, 2H), 4.32-4.34 (m, 1H), 4.81 (d, *J* = 3.6 Hz, 1H), 5.13 (d, *J* = 5.2 Hz, 1H), 7.04 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.05, 52.95, 54.20, 62.41, 70.34, 78.01, 115.35, 123.52, 129.02, 148.92, 168.75, 169.04, 169.86; EIMS *m*/*z* 337.1 (M⁺); HRMS (EI) for C₁₆H₁₉O₇N, calcd. 337.1162, found 337.1158.

3-Ethyl 4-methyl 5-(2-((tert-butoxycarbonyl)amino)ethyl)-2-phenylisoxazolidine-3,4-dicarboxylate (4d)

Oil, Yield: 55%; ¹H NMR (CDCl₃, 400 MHz), δ 1.32 (t, *J* = 7.2 Hz, 3H), 1.44 (s, 9H), 1.94-2.03 (m, 1H), 2.17-2.21 (m, 1H), 3.28-3.36 (m, 1H), 3.42-3.46 (m, 1H), 3.65 (s, 3H), 3.74 (dd, *J* = 8.8, 5.2 Hz, 1H), 4.22-4.35 (m, 3H), 4.83 (d, *J* = 5.2 Hz, 1H), 4.93 (brs, 1H), 6.98 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.4 Hz, 2H);

¹³C NMR (CDCl₃, 100 MHz), δ 14.20, 28.50, 32.45, 37.99, 52.84, 56.45, 62.40, 70.40, 79.36, 79.95, 114.32, 122.56, 129.26, 150.07, 155.99, 170.33, 170.43; EIMS m/z 422.2 (M⁺); HRMS (EI) for C₂₁H₃₀O₇N₂, calcd. 422.2053, found 422.2041.

Ethyl 2,5-diphenylisoxazolidine-3-carboxylate (4e)

Oil, Yield: 75%; ¹H NMR (CDCl₃, 400 MHz), δ 1.32 (t, J = 7.2 Hz, 3H), 2.70-2.77 (m, 1H), 2.86-2.93 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 4.51 (dd, J = 9.2, 6.0 Hz, 1H), 5.05 (dd, J = 9.2, 6.8 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.25-7.41 (m, 6H), 7.47-7.49 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.31, 41.31, 61.95, 68.72, 80.29, 114.28, 122.20, 127.21, 128.70, 128.75, 129.27, 137.47, 151.32, 171.62; EIMS *m*/*z* 297.1 (M⁺); HRMS (EI) for C₁₈H₁₉O₃N, calcd. 297.1365, found 297.1359.

Ethyl -5-(4-bromophenyl)-2-phenylisoxazolidine-3-carboxylate (4f)

Oil, Yield: 63%; ¹H NMR (CDCl₃, 400 MHz), δ 1.32 (t, J = 7.2 Hz, 3H), 2.65-2.72 (m, 1H), 2.85-2.92 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 4.51 (dd, J = 8.8, 5.2 Hz, 1H), 5.03 (dd, J = 9.2, 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.29-7.37 (m, 4H), 7.50-7.52 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.13, 40.92, 61.87, 68.39, 79.37, 114.14, 122.23, 122.45, 128.71, 129.14, 131.71, 136.58, 150.84, 171.28; EIMS m/z 375.0 (M⁺); HRMS (EI) for C₁₈H₁₈O₃NBr, calcd. 375.0470, found 375.0441.

Ethyl 5-(4-chlorophenyl)-2-phenylisoxazolidine-3-carboxylate (4g)

Oil, Yield: 77%; ¹H NMR (CDCl₃, 400 MHz), δ 1.31 (t, J = 7.2 Hz, 3H), 2.65-2.72 (m, 1H), 2.84-2.89 (m, 1H), 4.28 (q, J = 7.2 Hz, 2H), 4.50 (dd, J = 8.9, 5.2 Hz, 1H), 5.03 (dd, J = 9.2, 7.2 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 7.27-7.36 (m, 4H), 7.40-7.43 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.29, 41.09, 62.00, 68.56, 79.51, 114.32, 122.38, 128.59, 128.92, 129.30, 134.45, 136.25, 151.05, 171.44; EIMS m/z 331.1 (M⁺); HRMS (EI) for C₁₈H₁₈O₃NCl, calcd. 331.0975, found 331.0967.

Ethyl 5-(bromomethyl)-2-phenylisoxazolidine-3-carboxylate (4i)

Oil, Yield: 82%; ¹H NMR (CDCl₃, 400 MHz), δ 1.33 (t, J = 7.2 Hz, 3H), 2.54-2.67 (m, 2H), 3.53-3.64 (m, 2H), 4.25-4.31 (m, 2H), 4.41 (dd, J = 8.8, 4.4 Hz, Hz, 1H), 4.48 (q, J = 6.8 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.31, 31.52, 37.04, 62.12, 68.10, 77.83, 114.70, 122.80, 129.27, 150.50, 171.16; EIMS *m*/*z* 313.0 (M⁺); HRMS (EI) for C₁₃H₁₆O₃NBr, calcd. 313.0314, found 313.0306.

Ethyl 5-(2-hydroxyethyl)-2-phenylisoxazolidine-3-carboxylate (4k)

Oil, Yield: 88%; ¹H NMR (CDCl₃, 400 MHz), δ 1.31 (t, J = 7.2 Hz, 3H), 1.98-2.03 (m, 2H), 2.35-2.42 (m, 2H), 2.58-2.64 (m, 1H), 3.81 (t, J = 5.6 Hz, 2H), 4.24-4.29 (m, 3H), 4.35 (dd, J = 8.8, 5.6 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.23, 35.35, 38.48, 60.07, 61.90, 68.12, 76.63, 114.24, 122.14, 129.15, 151.13, 171.76; EIMS *m*/*z* 265.1 (M⁺); HRMS (EI) for C₁₄H₁₉O₄N, calcd. 265.1314, found 265.1309.

Ethyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-phenylisoxazolidine-3carboxylate (4l)

Oil, Yield: 63%; ¹H NMR (CDCl₃, 400 MHz), δ 0.10 (d, J = 3.7 Hz, 6H), 0.91 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H), 2.48-2.52 (m, 2H), 3.79-3.89 (m, 2H), 4.23-4.29 (m, 3H), 4.35 (dd, J = 8.0, 6.4, Hz, 1H), 6.95 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.6 Hz, 2H), 7.26 (t, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ -5.21, -5.17, 14.29, 18.42, 25.97, 34.94, 61.79, 63.56, 67.96, 79.02, 114.49, 122.16, 129.09, 151.15, 171.54; EIMS m/z365.2 (M⁺); HRMS (EI) for C₁₉H₃₁O₄NSi, calcd. 365.2022, found 365.2030.

Ethyl 5-((((benzyloxy)carbonyl)amino)methyl)-2-phenylisoxazolidine-3carboxylate (4m)

Ph-N EtO₂C

Oil, Yield: 91%; ¹H NMR (CDCl₃, 400 MHz), δ 1.26 (t, J = 7.2 Hz, 3H), 2.37-2.43 (m, 1H), 2.48-2.56 (m, 1H), 3.46-3.53 (m, 1H), 3.58-3.63 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 4.28-4.39 (m, 2H), 5.12 (dd, J = 12.2, 2.8 Hz, 2H), 5.46 (brs, 1H), 6.97 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 7.8 Hz, 2H), 7.24-7.37 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.16, 34.77, 42.34, 61.88, 66.87, 67.86, 76.88, 114.53, 122.52, 128.08, 128.15, 128.55, 129.13, 136.56, 150.35, 156.77, 171.36; EIMS *m*/*z* 384.2 (M⁺); HRMS (EI) for C₂₁H₂₄N₂O₅, calcd. 384.1685, found 384.1680.

3-Ethyl 4,5-dimethyl 2-phenyl-2,3-dihydroisoxazole-3,4,5-tricarboxylate (4n)

Oil, Yield: 81%; ¹H NMR (CDCl₃, 400 MHz), δ 1.28 (t, *J* = 6.8 Hz, 3H), 3.61 (s, 3H), 3.89 (s, 1H), 3.93 (s, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 7.02-7.09 (m, 3H), 7.27 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.00, 48.33, 53.44, 53.60, 53.98, 62.77, 119.39, 124.53, 129.29, 145.99, 160.22, 163.40, 166.57, 182.37; EIMS *m/z* 335.1 (M⁺); HRMS (EI) for C₁₉H₁₇NO₇, calcd. 335.1005, found 335.1000.

Ethyl 2-(4-nitrophenyl)-4,6-dioxo-5-phenylhexahydro-2H-pyrrolo[3,4-

d]isoxazole-3-carboxylate (5a)

Solid, Yield: 88%; ¹H NMR (CDCl₃, 400 MHz), δ 1.26 (t, *J* = 7.1 Hz, 3H), 4.24-4.30 (m, 2H), 4.43 (d, *J* = 8.1 Hz, 1H), 5.23 (d, *J* = 7.8 Hz, 2H), 6.77-6.79 (m, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 7.34-7.36 (m, 3H), 8.16 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.19, 51.38, 63.23, 67.62, 114.42, 125.50, 125.70, 129.45, 129.52, 130.67, 143.14, 152.53, 166.92, 171.75, 173.08; EIMS *m*/*z* 411.1 (M⁺); HRMS (EI) for C₂₀H₁₇O₇N₃, calcd 411.1066, found 411.1056.

Ethyl 2-(4-(ethoxycarbonyl)phenyl)-4,6-dioxo-5-phenylhexahydro-2Hpyrrolo[3,4-d]isoxazole-3-carboxylate (5b)

$$EtO_2C - \bigvee_{\substack{O \\ \downarrow \\ EtO_2C}} H O \\ H O$$

Oil, Yield: 76%; ¹H NMR (CDCl₃, 400 MHz), δ 1.28 (t, J = 7.2 Hz, 3H), 1.36 (t, J = 7.2 Hz, 3H), 4.25-4.37 (m, 4H), 4.41 (d, J = 7.6 Hz, 1H), 5.19 (d, J = 7.6 Hz, 1H), 5.24 (s, 1H), 6.60-6.63 (m, 2H), 7.16 (d, J = 8.8 Hz, 2H), 7.29-7.31 (m, 3H), 7.94-7.96 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.17, 14.47, 51.39, 60.99, 63.02, 68.02, 77.41, 114.02, 125.56, 125.92, 129.23, 129.30, 130.73, 131.25, 151.58, 165.94, 167.57, 172.12, 173.42; EIMS m/z 438.2 (M⁺); HRMS (EI) for C₂₃H₂₂O₇N₂, calcd. 438.1427, found 438.1414.

Ethyl 2-(4-bromophenyl)-4,6-dioxo-5-phenylhexahydro-2H-pyrrolo[3,4d]isoxazole-3-carboxylate (5c)

Oil, Yield: 93%; ¹H NMR (CDCl₃, 400 MHz), δ 1.26 (t, J = 7.2 Hz, 3H), 4.18-4.31 (m, 2H), 4.36 (d, J = 8.0 Hz, 1H), 5.13 (d, J = 7.6 Hz, 1H), 5.15 (s, 1H), 6.55-6.59 (m,

2H), 6.98-7.02 (m, 2H), 7.30-7.37 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.09, 51.38, 62.87, 68.18, 77.42, 116.42, 116.44, 125.94, 129.25, 130.73, 132.31, 147.12, 167.66, 172.31, 173.59; EIMS *m*/*z* 444.0 (M⁺); HRMS (EI) for C₂₀H₁₇BrO₅N₂, calcd. 444.0321, found 446.0297.

Ethyl 2-(4-chlorophenyl)-4,6-dioxo-5-phenylhexahydro-2H-pyrrolo[3,4d]isoxazole-3-carboxylate (5d)

Oil, Yield: 87%; ¹H NMR (CDCl₃, 400 MHz), δ 1.26 (t, J = 7.2 Hz, 3H), 4.19-4.29 (m, 2H), 4.36 (d, J = 7.6 Hz, 1H), 5.13 (d, J = 7.6 Hz, 1H), 5.15 (s, 1H), 6.58-6.61 (m, 2H), 7.04-7.07 (m, 2H), 7.18-7.21 (m, 2H), 7.31-7.34 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.07, 51.39, 62.83, 68.25, 77.41, 116.09, 125.90, 128.93, 129.21, 129.35, 130.74, 146.56, 167.67, 172.34, 173.61; EIMS *m*/*z* 400.1 (M⁺); HRMS (EI) for C₂₀H₁₇ClO₅N₂, calcd. 400.0826, found 400.0818.

Ethyl 4,6-dioxo-5-phenyl-2-(p-tolyl)hexahydro-2H-pyrrolo[3,4-d]isoxazole-3carboxylate (5e)

Oil, Yield: 79%; ¹H NMR (CDCl₃, 400 MHz), δ 1.27 (t, *J* = 7.2 Hz, 3H), 2.24 (s, 3H), 4.21-4.30 (m, 2H), 4.35 (d, *J* = 7.6 Hz, 1H), 5.09 (d, *J* = 7.6 Hz, 1H), 5.21 (s, 1H), 6.47-6.50 (m, 2H), 7.02 (m, 4H), 7.24-7.28 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.04, 20.40, 51.43, 62.67, 68.21, 77.51, 114.55, 126.11, 128.91, 128.98, 129.92, 130.86, 133.27, 145.80, 168.16, 172.55, 173.85; EIMS *m*/*z* 380.1 (M⁺); HRMS (EI) for C₂₁H₂₀O₅N₂, calcd. 380.1372, found 380.1365.

Ethyl 4,6-dioxo-5-phenyl-2-(o-tolyl)hexahydro-2H-pyrrolo[3,4-d]isoxazole-3carboxylate (5f)

Oil, Yield: 24%; ¹H NMR (CDCl₃, 400 MHz), δ 0.90 (t, *J* = 7.2 Hz, 3H), 2.25 (s, 3H), 3.87-3.97 (m, 2H), 4.24 (d, *J* = 7.6 Hz, 1H), 4.78 (s, 1H), 5.21 (d, *J* = 7.2 Hz, 1H), 7.04-7.16 (m, 3H), 7.20-7.22 (m, 2H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.39-7.49 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ 13.75, 18.32, 51.61, 61.80, 66.92, 75.44, 117.97, 125.83, 126.42, 126.58, 129.08, 129.29, 129.47, 130.98, 131.33, 143.63, 167.02, 173.21, 174.27; EIMS *m*/*z* 380.1 (M⁺); HRMS (EI) for C₂₁H₂₀O₅N₂, calcd. 380.1372, found 380.1365.

Tert-butyl4,6-dioxo-2,5-diphenylhexahydro-2H-pyrrolo[3,4-d]isoxazole-3-carboxylate (5i)

Oil, Yield: 73%; ¹H NMR (CDCl₃, 400 MHz), δ 1.44 (s, 9H), 4.30 (d, J = 7.6 Hz, 1H), 5.09 (s, 1H), 5.13 (d, J = 7.6 Hz, 1H), 6.60-6.63 (m, 2H), 7.01 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.23-7.27 (m, 2H), 7.29-7.31 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ 27.90, 51.32, 69.13, 77.32, 83.59, 114.81, 123.50, 126.23, 129.13, 129.40, 130.95, 148.10, 166.93, 172.73, 174.12; EIMS *m*/*z* 394.1 (M⁺); HRMS (EI) for C₂₂H₂₂O₅N₂, calcd. 394.1529, found 394.1527.

2,5-Diphenyl-3-(5-phenylpentanoyl)dihydro-2H-pyrrolo[3,4-d]isoxazole-4,6(5H,6aH)-dione (5j)

Oil, Yield: 82%; ¹H NMR (CDCl₃, 400 MHz), δ 1.61-1.70 (m, 4H), 2.60-2.71 (m, 3H), 2.90-2.96 (m, 1H), 4.56 (d, J = 7.6 Hz, 1H), 4.91 (d, J = 7.6 Hz, 1H), 5.15 (s, 1H),

6.35-6.37 (m, 2H), 7.03 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.15-7.18 (m, 3H), 7.23-7.28 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz), δ 23.34, 30.80, 35.69, 38.54, 49.28, 73.38, 77.91, 113.98, 123.74, 125.94, 126.14, 128.48, 128.52, 129.05, 129.11, 129.88, 130.87, 142.12, 148.66, 172.51, 174.72, 205.26; EIMS *m/z* 454.2 (M⁺); HRMS (EI) for C₂₈H₂₆O₄N₂, calcd. 454.1893, found 454.1886.

Ethyl 5-(hydroxymethyl)-2-(4-nitrophenyl)isoxazolidine-3-carboxylate (5k)

Oil, Yield: 62%; ¹H NMR (CDCl₃, 400 MHz), δ 1.31 (t, J = 7.2 Hz, 3H), 2.39 (brs, 1H), 2.67 (t, J = 7.2 Hz, 2H), 3.76-3.79 (m, 1H), 3.97-4.01 (m, 1H), 4.23-4.31 (m, 2H), 4.32-4.38 (m, 1H), 4.52 (t, J = 7.0 Hz, 1H), 7.05-7.08 (m, 2H), 8.12-8.16 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.24, 34.05, 61.84, 62.36, 66.08, 79.50, 113.35, 125.55, 142.00, 154.92, 170.59; EIMS *m*/*z* 296.1 (M⁺); HRMS (EI) for C₁₃H₁₆O₆N₂, calcd. 296.1008, found 296.1001.

Ethyl 5-(hydroxymethyl)-2-(4-bromophenyl)isoxazolidine-3-carboxylate (5l)

Oil, Yield: 94%; ¹H NMR (CDCl₃, 400 MHz), δ 1.30 (t, J = 7.2 Hz, 3H), 2.48-2.59 (m, 2H), 2.82 (brs, 1H), 3.70-3.73 (m, 1H), 3.92 (d, J = 12.4 Hz, 1H), 4.18-4.28 (m, 2H), 4.30-4.37 (m, 2H), 6.93-6.96 (m, 2H), 7.34-7.38 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.17, 33.69, 61.99, 62.09, 67.69, 78.71, 114.90, 116.36, 131.95, 149.53, 171.31; EIMS *m*/*z* 329.0 (M⁺); HRMS (EI) for C₁₃H₁₆O₄NBr, calcd. 329.0263, found 329.0251.

Ethyl 5-(hydroxymethyl)-2-(4-chlorophenyl)isoxazolidine-3-carboxylate (5m)

Oil, Yield: 89%; ¹H NMR (CDCl₃, 400 MHz), δ 1.30 (t, J = 7.2 Hz, 3H), 2.51-2.58 (m, 2H), 2.72 (brs, 1H), 3.72 (dd, J = 12.4, 4.8 Hz, 1H), 3.93 (dd, J = 12.4, 2.0 Hz,

1H), 4.22-4.28 (m, 2H), 4.33-4.38 (m, 2H), 6.98-7.02 (m, 2H), 7.21-7.24 (m, 2H); 13 C NMR (CDCl₃, 100 MHz), δ 14.19, 33.69, 62.02, 62.17, 67.81, 78.71, 116.04, 129.08, 149.03, 171.36; EIMS *m*/*z* 285.0 (M⁺); HRMS (EI) for C₁₃H₁₆O₄NCl, calcd. 285.0768, found 285.0761.

Ethyl 5-(hydroxymethyl)-2-(6-methylpyridin-2-yl)isoxazolidine-3-carboxylate (5n)

Oil, Yield: 65%; ¹H NMR (CDCl₃, 400 MHz), δ 1.32 (t, *J* = 7.2 Hz, 3H), 2.43 (s, 3H), 2.46-2.53 (m, 2H), 3.69 (dd, *J* = 12.5, 4.2 Hz, 1H), 3.93 (dd, *J* = 12.5, 2.3 Hz, 1H), 4.22-4.30 (m, 3H), 5.54 (dd, *J* = 9.0, 3.7 Hz, 1H), 6.75 (d, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz), δ 14.34, 24.37, 33.16, 61.77, 62.35, 62.80, 79.21, 107.01, 117.51, 138.50, 156.81, 160.62, 172.51; EIMS *m*/*z* 266.1 (M⁺); HRMS (EI) for C₁₃H₁₈N₂O₄, calcd. 266.1267, found 266.1257.

¹H and ¹³C NMR Spectra

ppm 180 160 140 120 100 80 60 40 20

ppm 180 160 140 120 100 80 60 40 20

ppm 200 180 160 140 120 100 60 60 40 20

[Ru(TTP)(CO)(MeOH)]-catalyzed reaction of EDA with nitrosobenzene

To nitrosobenzene (2.2 mmol) and [Ru(TTP)(CO)(MeOH)] (0.02 mmol) in CH₂Cl₂ (10 mL) was added EDA (2.0 mmol) in CH₂Cl₂ (10 mL) over 3 h via a syringe pump at room temperature. After addition, the resultant solution was stirred for an additional 0.5 h. The ¹H NMR of reaction mixture indicated that the intermediate nitrone was formed.

