Supporting Information

Total synthesis of (29S,37S)-isomer of malevamide E, a potent ion-channel inhibitor Praveen Kumar Gajula ${ }^{\text {a }}$, Shrikant Sharma ${ }^{\text {b }}$, Ravi Sankar Ampapathi ${ }^{\text {b }}$ and Tushar Kanti Chakraborty ${ }^{\text {a* }}$ a'CSIR-Central Drug Research Institute, Lucknow - 226001, India
${ }^{b}$ NMR center, SAIF, CSIR-Central Drug Research Institute, Lucknow - 226001, India
chakraborty@cdri.res.in

Table of Contents:

1. Experimental procedures and data for the compounds: 6,10,12-14,16,17,18,20,21,23,24.
2. Spectra $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR $)$ of compounds: $\mathbf{1 , 6 , 1 0 , 1 2 - 1 4 , 1 6 - 1 8 , 2 0 , 2 1 , 2 3 - 2 5}$.
3. Chemical Shift tables and Spectral expansions for compounds 20, 21, 24,25 and 1.

General Experimental Procedures. All reactions were carried out in oven or flame-dried glassware with magnetic stirring under nitrogen atmosphere using dry, freshly distilled solvents, unless otherwise noted. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm silica gel plates with UV light, $\mathrm{I}_{2}, 7 \%$ ethanolic phosphomolybdic acid-heat and 2.5% ethanolic anisaldehyde (with $1 \% \mathrm{AcOH}$ and 3.3% conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$)-heat as developing agents. Silica gel finer than 200 mesh was used for flash column chromatography. Yields refer to chromatographically and spectroscopically homogeneous materials unless otherwise stated. Melting points are uncorrected.
Optical rotations were measured using Autopol III manufactured by Rudolph using sodium (589, D line) lamp and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{25}(c=\mathrm{g} / 100 \mathrm{ml}$, solvent). MALDI-TOF was recorded on ABSciex Tof spectrometer. Analytical HPLC analyses were performed on a Merck Hitachi HPLC system equipped with a 5μ Thermo C-8 column ($250 \times 4.6 \mathrm{~mm}$) and a UV/vis detector setting of $\lambda=254 \mathrm{~nm}$.
IR spectra were recorded as neat liquids or KBr pellets. Mass spectra were obtained under electron impact ionisation (EI), liquid secondary ion mass spectrometric (LSIMS) technique, electron spray ionisation (ESI) and MALDI techniques. Optical rotations were measured with a digital polarimeter.
NMR spectra were recorded on $600,400,300$ and 200 MHz spectrometers at $30^{\circ} \mathrm{C}$ with $2-10 \mathrm{mM}$ solutions in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. Multiplicities of NMR signals are designated as s (singlet), d (doublet), t (triplet), q (quartet), br (broad), m (multiplet, for unresolved lines), etc. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 100, 75 and 50 MHz spectrometers with complete proton decoupling.

Compound 10:

10

A solution of thione $9(2.18 \mathrm{gm}, 10.74 \mathrm{mmol})$ in $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$. Neat TiCl $\mathrm{Cl}_{4}(1.25 \mathrm{~mL}$, 11.81 mmol) was added dropwise and the resulting slurry was stirred for 5 min . The reaction was then cooled to $-78{ }^{\circ} \mathrm{C}$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(2.06 \mathrm{~mL}, 11.81 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The resulting dark red solution was warmed to $-40^{\circ} \mathrm{C}$ and stirred for 2 h . After 2 h , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and freshly distilled, neat $\mathrm{SnCl}_{4}(0.63 \mathrm{~mL}, 5.37 \mathrm{mmol})$ was added dropwise, followed by the addition of acetal $\mathbf{8}(2.0 \mathrm{gm}$, 5.37 mmol) in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. After addition was complete, the reaction was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for an additional 15 min , and then transferred into a $-20^{\circ} \mathrm{C}$ bath where it was allowed to stir for 2 h . The reaction was then quenched by the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous layer was then extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 50 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a crude yellow oil which was purified by flash chromatography ($8 \% \mathrm{EtOAc} /$ hexanes to 10% EtOAc /hexanes) to afford the product $10(1.57 \mathrm{gm}, 54 \%)$ as a yellow oil along with the other isomer. $\mathrm{R}_{f}=0.3$ $\left(\mathrm{SiO}_{2}, 15 \% \mathrm{EtOAc}\right.$ in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=94.1$ (c 1.2, CHCl_{3}); IR (neat): $v_{\text {max }} 3749$, 3180, 2932, 2862, 2361, 1704, 1466, 1217, 1103, 768, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.61$ (m, $4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.14(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}) 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.15-0.93(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 201.80,131.75,135.48,133.85,129.49,127.56,71.64,69.93,63.69,56.87,43.10,35.92,31.98$, $30.78,30.58,29.42,27.91,26.79,19.12,19.03,18.74,18.19,17.70$; MS (ESIMS): $m / z(\%): 544(90)[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 544.2375$, found: 544.2372.

Compound 12:

12

Compound $10(1.10 \mathrm{~g}, 2.0 \mathrm{mmol})$ was taken in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, cooled to $-78{ }^{\circ} \mathrm{C}$ and DIBAL-H $(4.0 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, 4.0 mmol) was added portion-wise and stirred at that temperature for 15 min . The reaction was then quenched by slow addition of dry methanol and brought to room temperature. Saturated aqueous potassium-sodium tartrate solution was added to the reaction mixture and stirred ($\sim 2 \mathrm{~h}$) until two clear layers got separated. Solvent was evaporated under reduced pressure and the aqueous layer was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The aldehyde thus obtained by flash chromatography ($745 \mathrm{mg}, 96 \%$) was directly used in the next step without further characterization.

To a solution of aldehyde ($745 \mathrm{mg}, 1.94 \mathrm{mmol}$) in dry THF $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(79 \mathrm{mg}$, $1.98 \mathrm{mmol})$ in portion wise followed by N-methyl diethylphosphoacetamide (11) ($0.41 \mathrm{~mL}, 1.98 \mathrm{mmol}$), and slowly the reaction mixture was brought to $-40^{\circ} \mathrm{C}$ and allowed to stir at the same temperature for 1 h . The reaction was then quenched by slow addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. THF was removed under reduced pressure and the product was extracted from aqueous layer with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}\right.$ in petroleum ether eluant) afforded the Wenreb amide $\mathbf{1 2} \mathbf{(7 0 2 \mathrm { mg } ,}$ $78 \%)$ as colorless oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=13.4$ (c 0.24, CHCl_{3}); IR (neat): $v_{\max } 3415,2355,1634,1381,1218,1103,769,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.75-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=15.56 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.62(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.31(\mathrm{~m}, 2 \mathrm{H}) 1.70-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta 166.68,143.88,135.56,133.99,129.54,127.61,120.76,79.70,63.85,61.66,56.73,36.91,32.35$, 29.90, 28.14, 26.87, 19.20; MS (ESIMS): m/z (\%): 470 (100) $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 470.2724$, found: 470.2715 .

Compound 13:

13

Compound 12 ($650 \mathrm{mg}, 1.38 \mathrm{mmol}$) was taken in dry THF $(4 \mathrm{~mL})$, cooled to $-78^{\circ} \mathrm{C}$ and DIBAL-H ($4.15 \mathrm{~mL}, 1.0 \mathrm{M}$ in toluene, 4.15 mmol) was added portion-wise and stirred at that temperature for 15 min . The reaction was then quenched by slow addition of dry methanol and brought to room temperature. Saturated aqueous potassium-sodium tartrate solution was added to the reaction mixture and stirred ($\sim 2 \mathrm{~h}$) until two clear layers got separated. Solvent was evaporated under reduced pressure and the aqueous layer was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated vacuo. The aldehyde thus obtained by flash chromatography ($550 \mathrm{mg}, 97 \%$) was directly used in the next step without further characterization.

To a solution of aldehyde obtained above ($550 \mathrm{mg}, 1.34 \mathrm{mmol}$) in dry benzene (4 mL) was added (1-ethoxycarbonylethylidene)-triphenylphosphorane ($971 \mathrm{mg}, 2.68 \mathrm{mmol}$) at room temperature. The mixture was stirred for 4 h at reflux conditions. It was then concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes to $15 \% \mathrm{EtOAc} /$ hexanes eluant) furnished $\mathbf{1 3}(530 \mathrm{mg}, 80 \%)$ as a colorless liquid. R_{f} $=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=24.97\left(c 0.38, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }}$ 3441, 2933, 2359, 1700, 1360, 1219, 1104, 769, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77-7.61(\mathrm{~m}, 4 \mathrm{H})$, $7.50-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{dd}, \mathrm{J}=15.34 \mathrm{~Hz}, 11.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.01 \mathrm{~Hz}, 2 \mathrm{H})$, 3.77-3.63 (m, 2H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}$, $J=7.01 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.61,138.57,138.24,135.57,133.97,129.57$, $128.08,127.62,125.63,80.12,63.82,60.49,56.67,37.34,29.75,28.18,26.87,19.22,14.35,12.63$; MS
(ESIMS): $m / z(\%): 517$ (100) [M + Na HRMS (ESIMS): calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 517.2750$, found: 517.2798.

Compound 14:

14
To a solution of $13(500 \mathrm{mg}, 1.01 \mathrm{mmol})$ in dry THF (3 mL), TBAF (1 M in THF, $2.02 \mathrm{~mL}, 2.02 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature and stirred for 1 h . It was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc , washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 25\right.$ to $30 \% \mathrm{EtOAc}$ in petroleum ether eluant) afforded compound $14(220 \mathrm{mg}, 85 \%)$ as a clear oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}\right.$ in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=48.3$ (c 0.12, CHCl_{3}); IR (neat): $v_{\text {max }} 3422,2931,2359,1707,1373,1221,1095,770$, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=15.27,11.81 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~m}, 1 \mathrm{H}), 4.22$ (q, $J=7.11 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.34(\mathrm{~m}, 2 \mathrm{H}) 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.51$ $(\mathrm{m}, 5 \mathrm{H}), 1.31(\mathrm{t}, J=7.11 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.57,138.04,128.25,125.86,80.38,62.85$, 60.50, 56.72, 37.08, 30.32, 28.60, 14.30, 12.59; MS (ESIMS): $m / z(\%): 279(80)[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 279.1572$, found: 279.1586.

Compound 16:

16
BMS ($0.561 \mathrm{~mL}, 5.91 \mathrm{mmol}$) was added to olefin $\mathbf{1 5}(1.0 \mathrm{gm}, 2.95 \mathrm{mmol})$ in anhydrous THF $(15 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 6 h . Basic workup: To the reaction solution were added 12 mL of $\mathrm{EtOH} / \mathrm{THF}(1: 1)$ and then 12 mL of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{aq})$, and the resulting mixture was stirred at room temperature for 4 h and extracted by ethyl acetate (EtOAc). The combined organic layers were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification on silica gel (15 to 20% EtOAc in petroleum ether eluant) gave 842 mg of 16 in 80% yield. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-6.8\left(c 2.52, \mathrm{CHCl}_{3}\right.$); IR (neat): $v_{\max } 3477,3402,2934,2861,1725,1590,1466$, 1218, 1109, 764, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.26(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.50(\mathrm{t}, J=6.82 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.18-0.91(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.93,134.89$, $129.55,127.55,69.50,62.82,39.16,32.16,32.68,27.12,23.25,21.39,19.32$; MS (ESIMS): m / z (\%): 357 (100) $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 357.2250$, found: 357.2268 .

Compound 6:

Triphenylphosphine ($884 \mathrm{mg}, 3.37 \mathrm{mmol}$), 1-phenyl-1H-tetrazole-5-thiol (PT-SH, $600 \mathrm{mg}, 3.37 \mathrm{mmol}$) and $\mathbf{1 6}$ $(800 \mathrm{mg}, 2.24 \mathrm{mmol})$ were dissolved in anhydrous THF (22 mL), to which was added DIAD ($0.66 \mathrm{~g}, 3.37$ $\mathrm{mmol})$ at room temperature. After being stirred for 0.5 h , the reaction mixture was diluted with $\mathrm{EtOH}(25 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. In a separate flask were mixed 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5.09 \mathrm{~mL}, 44.80 \mathrm{mmol})$ and ammonium molybdate ($554 \mathrm{mg}, 0.45 \mathrm{mmol}$), producing a bright yellow solution that was added to the reaction via pipette. After being stirred overnight at room temperature, the reaction mixture was diluted by the addition of water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification on silica gel (15 to 20% EtOAc in petroleum ether eluant) provided 1.04 g (85% yield) of 6 as colorless oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ in petroleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-14.4\left(c 3.04, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\text {max }} 3848,2936,2860,1724,1594,1344,1149,1107,760,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.85-7.58 (m, 8H), 7.54-7.34 (m, 7H), $3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.56(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.40(\mathrm{~m}, 4 \mathrm{H})$, 1.22-0.96 (m, 12H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.30,135.69,134.64,134.38,134.14,132.89,131.25$, $129.51,129.41,127.46,127.33,124.91,68.70,55.72,38.24,26.89,23.57,23.03,21.79,19.09 ;$ MS (ESIMS): m / z (\%): 549 (100) $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 549.2356$, found: 549.2348.

Compound 17:

To a solution of compound $\mathbf{1 4}(200 \mathrm{mg}, 0.78 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added, with stirring, DMSO (1.6 mL), $\mathrm{Et}_{3} \mathrm{~N}(0.54 \mathrm{~mL}, 3.90 \mathrm{mmol})$ and SO_{3}-Py complex ($622 \mathrm{mg}, 3.90 \mathrm{mmol}$) portion wise at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 1 h of stirring at $0^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The aldehyde $7\left(\mathrm{R}_{f}=0.55,15 \% \mathrm{EtOAc}\right.$ in petroleum ether) thus obtained by flash chromatography ($190 \mathrm{mg}, 96 \%$) was directly used in the next reaction.

To a solution of sulfone $\mathbf{6}(615 \mathrm{mg}, 1.12 \mathrm{mmol})$ in 4 mL of THF/HMPA ($4: 1 \mathrm{v} / \mathrm{v}$) was added LiHMDS (1 M in THF, $0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred for 15 min , a solution of the aldehyde $7(190 \mathrm{mg}, 0.75 \mathrm{mmol})$ in 1 mL of THF/HMPA ($4: 1 \mathrm{v} / \mathrm{v}$) obtained above was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ was added. The mixture was then extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (4 to 6%

EtOAc in petroleum ether eluant) to afford a mixture of two geometrical isomers $17(310 \mathrm{mg}, 72 \%$ yield, $E / Z 13$ based on ${ }^{1} \mathrm{H}$ NMR $): \mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc in petroleum ether). Specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-9.4$ (c 2.46, CHCl_{3}); IR (neat): $v_{\max } 3620,3404,2929,2360,1704,1365,1219,1105,769,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.76-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=15.33,11.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~m}$, $1 \mathrm{H}), 5.42-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) 3.26(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{t}, J=6.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.21(\mathrm{~m}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.59,138.56,135.88,134.81,131.44,129.71,129.37,127.60,127.45,127.38,125.08,79.80$, $69.50,68.86,60.48,56.77,55.93,38.95,38.95,38.42,37.31,33.65,32.52,29.70,28.37,27.05,25.15,23.76$, 23.18, 19.28, 14.33, 12.60; MS (ESIMS): $m / z(\%): 578$ (100) [M + 2H $]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+2 \mathrm{H}]^{+}: 578.3791$, found: 578.3767.

Compound 18:

18
To a solution of $\mathbf{1 7}(250 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry DMF (3.0 mL), TBAF (1 M in THF, $2.17 \mathrm{~mL}, 2.17$ mmol) was added at room temperature, followed by $\mathrm{AcOH}(0.12 \mathrm{~mL}, 2.17 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.19 \mathrm{~mL}, 10.75$ $\mathrm{mmol})$. The reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred for 12 h . It was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 15\right.$ to $20 \% \mathrm{EtOAc}$ in petroleum ether eluant) afforded compound $18(125 \mathrm{mg}, 85 \%)$ as a clear oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in petrleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-2.0$ (c $0.15, \mathrm{CHCl}_{3}$); IR (neat): $v_{\max } 3416,2364,1635,1426,1220,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18$ (m, 1H), 6.41 (dd, $J=15.10,11.33 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H})$ 2.47-2.32 (m, 2H), 2.15-1.98(m, 5H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.14(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.63,138.48,134.79,130.51,129.97,128.08,125.66,79.81,68.05,60.49,56.75$, 38.77, 37.27, 33.62, 32.46, 28.35, 27.09, 23.50, 14.30, 12.58; MS (ESIMS): $m / z(\%): 339(100)[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 339.2535$, found: 339.2523.

Compound 20:

Silver oxide ($1.20 \mathrm{~g}, 5.22 \mathrm{mmol}$) was added portion wise to a stirred solution of compound $19(500 \mathrm{mg}$, $0.87 \mathrm{mmol})$ in DMF (3 mL) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min . Then MeI $(0.33 \mathrm{~mL}, 5.22 \mathrm{mmol})$ was added slowly to the stirred reaction mixture. The reaction mixture was warmed to room temperature and stirred for 12 h . It was then diluted with EtOAc, extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by
column chromatography $\left(\mathrm{SiO}_{2}, 50 \%\right.$ to $60 \% \mathrm{EtOAc}$ in petroleum ether eluant) afforded compound $\mathbf{2 0}$ (443 mg , $72 \%)$ as colorless oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc}\right.$ in petrleum ether); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-3.9(c 0.10$, CHCl_{3}); IR (neat): $v_{\max } 3507,3247,3022,2698,1638,1461,1217,769,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for chemical shifts of four isomers see Tables 1a-1d; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of rotamers): δ $172.47,170.20,169.67,168.38,155.46,137.95,129.40,128.29,126.40,58.89,58.37,57.47,55.02,52.08$, $46.99,35.53,31.88,30.02,29.65,29.27,28.13,27.90,26.92,25.98,24.71,19.85,19.39,18.97,18.03$; MS (ESIMS): $m / z(\%): 639$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 639.3734$, found: 639.3737.

Compound 23:

23
Silver oxide ($811 \mathrm{mg}, 3.50 \mathrm{mmol}$) was added portion wise to a stirred solution of compound 21 (300 $\mathrm{mg}, 0.95 \mathrm{mmol})$ in DMF (3 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . Then MeI $(0.22 \mathrm{~mL}, 3.50 \mathrm{mmol})$ was added slowly to the stirred reaction mixture. The reaction mixture was warmed to room temperature and stirred for 12 h . The reaction mixture was diluted with EtOAc, extracted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 80 \%\right.$ to $90 \% \mathrm{EtOAc}$ in petroleum ether eluant) afforded compound $23(230 \mathrm{mg}, 68 \%)$ as colorless oil. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$; specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-28.6(c 0.05$, CHCl_{3}); IR (neat): $v_{\max } 3449,3375,2863,1668,1540,1158,1056,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{a}$ mixture of rotamers): $\delta 6.15(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.13-2.55(\mathrm{~m}, 10 \mathrm{H}), 2.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.33(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of rotamers): δ 172.48, 171.67, 170.48, $155.30,54.32,52.25,35.79,32.28,29.65,28.26,26.28,15.98$; MS (ESIMS): $m / z(\%): 382(100)[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 382.1954$, found: 382.1960 .

Compound 21:

To a solution of $\mathbf{2 0}(200 \mathrm{mg}, 0.32 \mathrm{mmol})$ in THF:MeOH: $\mathrm{H}_{2} \mathrm{O}(3: 1: 1,3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, LiOH. $\mathrm{H}_{2} \mathrm{O}(41$ $\mathrm{mg}, 0.97 \mathrm{mmol}$) was added and stirred from $0{ }^{\circ} \mathrm{C}$ to room temperature for 1 h . The reaction mixture was then acidified to $\mathrm{pH} \sim 2$ with 1 N HCl . It was diluted with EtOAc , washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to obtain the crude acid, which was used directly in the next step without further characterization.

In another round bottom flask a solution of $\mathbf{2 3}(93 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was taken. To this solution, trifluoroacetic acid (1 mL) was added at $0^{\circ} \mathrm{C}$ and allowed to slowly warm up to room temperature and stirred for 1 h . The reaction mixture was then concentrated in vacuo and azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL) to give the Boc-deprotected TFA salt of $\mathbf{2 3}$.

The above prepared acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then to it was added BOP-Cl ($124 \mathrm{mg}, 0.49 \mathrm{mmol}$). After 10 minute, TFA salt of 23 prepared above and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, was added to the reaction mixture followed by the addition of DIPEA ($0.28 \mathrm{~mL}, 1.62 \mathrm{mmol}$). After stirring for 12 h at room temperature, the reaction mixture was diluted with EtOAc, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, 1 N HCl , saturated NaHCO_{3} solution, water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography (silica gel, 1% to $2 \% \mathrm{MeOH}$ in CHCl_{3} as eluant) afforded the 21 (207 $\mathrm{mg}, 76 \%)$ as white solid. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in CHCl_{3}, a mixture of rotamers); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=$ -64.8 (c 0.61, CHCl_{3}); IR (neat): $v_{\max } 3606,3391,2790,1638,1459,1218,766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): Major conformation chemical shifts, see Table 2; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of rotamers): $\delta 172.16,171.82,171.54,171.28,170.65,170.24,170.05,169.73,168.24,168.13,156.05,155.56,154.67$, $154.59,138.26,137.84,137.27,129.38,129.04,128.89,128.31,128.21,126.52,126.18,80.33,79.87,60.07$, $59.89,59.29,58.91,56.97,56.86,55.94,54.72,52.21,51.16,50.86,47.29,47.22,35.66,34.95,34.52,32.01$, $30.33,29.77,29.43,28.28,28.05,27.17,27.08,26.97,26.44,24.95,22.76,20.61,19.91,19.86,19.52,18.48$, 18.21, 18.09, 17.96, 14.25, 14.19; MS (ESIMS): $m / z(\%): 866$ (100) $\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$; HRMS (ESIMS): calcd for $\mathrm{C}_{43} \mathrm{H}_{69} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 866.5004$, found: 866.5015.

Compounds 24:

In round bottom flask a solution of $21(150 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was taken. To this solution, trifluoroacetic acid $(1 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and slowly warmed up to room temperature and stirred for 1 h . The reaction mixture was then concentrated in vacuo and azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ to give the Boc-deprotectedTFA salt of $\mathbf{2 1}$.

The Boc-D-Val-OH ($52 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then to it was added BOP-Cl ($86 \mathrm{mg}, 0.34 \mathrm{mmol}$). After 10 minute, Boc-deprotected TFA salt of 21 prepared above, and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, was added to the reaction mixture followed by the addition of DIPEA (0.2 mL , 1.13 mmol). After stirring for 12 h at room temperature, the reaction mixture was diluted with CHCl_{3}, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, 1 N HCl , saturated NaHCO_{3} solution, water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography (silica gel, 2% to $3 \% \mathrm{MeOH}$ in CHCl_{3} as eluant) afforded the $24(167 \mathrm{mg}, 79 \%)$ as white solid. $\mathrm{R}_{f}=0.3\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in CHCl_{3}, a mixture of rotamers); specific rotation $[\alpha]_{\mathrm{D}}{ }^{25}=-39.8\left(c 0.23, \mathrm{CHCl}_{3}\right)$; IR (neat): $v_{\max } 3434,2967,2374,1636,1450,1220,1017,771$, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): For major conformation chemical shifts, see Table $3 ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of rotamers): $\delta 173.17,172.24,171.61,170.15,170.09,169.85,169.71,168.28,155.96$, $137.55,129.45,129.13,128.99,128.48,126.95,126.60,79.81,60.24,60.05,59.01,58.78,58.16,56.74,55.56$, $55.21,53.55,53.27,52.22,51.13,47.34,35.76,35.60,32.74,31.91,30.75,30.61,30.11,29.78,29.58,29.42$, 27.04, 26.44, 26.01, 24.93, 22.76, 19.99, 19.89, 19.31, 18.44, 18.02, 16.95, 14.19, 14.10; MS (ESIMS): $m / z(\%)$: 965 (100) [M + Na] $]^{+}$; HRMS (ESIMS): calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{~N}_{8} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}: 943.5868$, found: 943.5876.

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 6}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 16 in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound 6 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{6}$ in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 0}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 4}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 14 in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound 17 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 17 in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1 8}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{1 8}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound 23 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 23 in $\mathrm{CDCl}_{3}(50 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{2 0}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 20 in $\mathrm{CDCl}_{3}(50 \mathrm{MHz})$

ESI-MS Spectrum of compound $\mathbf{2 0}$

${ }^{1} \mathrm{H}$ Spectrum of compound 21 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 21 in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

ESI-MS Spectrum of compound 21

${ }^{13} \mathrm{C}$ Spectrum of compound 24 in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

${ }^{1} \mathrm{H}$ Spectrum of compound 25 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound 25 in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

ESI-MS Spectrum of compound $\mathbf{2 5}$

${ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{1}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

${ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{1}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz})$

ESI-MS Spectrum of compound 1

HRMS Spectrum of compound 1

Tetramer-20
Table 1a: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of Tetramer 20 Conformer-1A

Proton/AA	Phe1	Val2	Val3	Pro4
$\mathrm{C} \alpha \mathrm{H}$	5.15	5.13	5.08	4.48
$\mathrm{C} \beta \mathrm{H}$	3.05	2.37	2.31	1.92,
				2.17
$\mathrm{C} \gamma \mathrm{H}$	---	0.848,	0.81,	2.05
		0.943	0.92	
$\mathrm{C} \delta \mathrm{H}$	---	--	--	3.57,
				3.74
$\mathrm{~N}-\mathrm{CH}_{3}$	2.78	2.81	2.97	---

Others: $\mathrm{Boc}=1.18,-\mathrm{OCH}_{3}=3.67$, Ph AArH=7.17-7.22

Table 1b: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of Tetramer 20 Conformer-1B

Proton/AA	Phe1	Val2	Val3	Pro4
$\mathrm{C} \alpha \mathrm{H}$	5.47	5.103	5.105	4.51
$\mathrm{C} \beta \mathrm{H}$	3.05	2.35	2.35	1.933,
				2.185
$\mathrm{C} \gamma \mathrm{H}$	---	0.828,	0.828,	2.05
		0.93	0.93	
$\mathrm{C} \delta \mathrm{H}$	---	---	---	3.57,
			3.85	
$\mathrm{~N}-\mathrm{CH}_{3}$	2.78	2.87	3.01	----

Others: $\mathrm{Boc}=1.31,-\mathrm{OCH}_{3}=3.58$, PheArH=7.17-7.22

Table 1c: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of Tetramer 20 Conformer-2A

Proton/AA	Phe1	Val2	Val3	Pro4
$\mathrm{C} \alpha \mathrm{H}$	5.007	5.05	4.75	4.76
$\mathrm{C} \beta \mathrm{H}$	2.904,	2.66	2.336	1.76,
	3.114			2.15
$\mathrm{C} \gamma \mathrm{H}$	---	0.805,	0.751,	2.05
		0.899	0.927	
$\mathrm{C} \delta \mathrm{H}$	---	--	---	3.40,
				3.57
$\mathrm{~N}-\mathrm{CH}_{3}$	2.78	3.01	2.84	----

Others: $\mathrm{Boc}=1.26,-\mathrm{OCH}_{3}=3.58$, $\mathrm{PheArH}=7.17-7.22$

Table 1d: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of Tetramer 20 Conformer-2B

Proton/AA	Phe1	Val2	Val3	Pro4
$\mathrm{C} \alpha \mathrm{H}$	5.33	5.20	4.74	4.837
$\mathrm{C} \beta \mathrm{H}$	2.841,	2.83	2.336	1.786,
	3.24			2.176
$\mathrm{C} \gamma \mathrm{H}$	---	0.864,	0.805,	2.05
		0.947	0.928	
$\mathrm{C} \delta \mathrm{H}$	---	--	--	3.43,
			3.59	
$\mathrm{~N}-\mathrm{CH}_{3}$	2.78	2.84	2.82	----

Others: $\mathrm{Boc}=1.40,-\mathrm{OCH}_{3}=3.67$, $\mathrm{PheArH}=7.17-7.22$

Figure 1: Multiple conformations of compound 20. A) Four conformations in proline $\mathrm{C} \alpha \mathrm{H}$ region were found. B) Characteristic nOes in ROESY Experiment shows that proline exists predominantly in trans conformation for $1 \mathrm{a}, \mathrm{lb}$ and absence of such nOes for 2 a , and 2 b suggests cis configuration for $2 \mathrm{a}, 2 \mathrm{~b} . \mathrm{C}$) Exchange peaks in Valine $\mathrm{C} \alpha \mathrm{H}$ and Phe $\mathrm{C} \alpha \mathrm{H}$ region.

Table 2: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of compound 21 (Major conformer)

Proton/AA	Phe1	Val2	Val3	Pro4	Asn5	Ala6
$\mathrm{C} \alpha \mathrm{H}$	5.88	5.14	5.003	4.68	5.38	4.46
$\mathrm{C} \beta \mathrm{H}$	3.08,	2.301	2.22	2.12,	2.357,	1.35
	2.65			1.89	2.76	
$\mathrm{C} \gamma \mathrm{H}$	---	0.783,	0.7971,	2.05	---	--
$\mathrm{C} \delta \mathrm{H}$	---	---	---	3617 0.51, 3.575	---	---
$\mathrm{N}-\mathrm{CH}_{3}$	2.81	2.83	2.78	----	2.764,	2.75

Others: $\mathrm{Boc}=1.30,-\mathrm{OCH}_{3}=3.66$, PheArH $=7.10-7.24, \mathrm{NH}=5.82$, AsnNH $-\mathrm{CH}_{3}=2.81$
Table 3: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of compound 24 (Major conformer)

Proton/AA	Val1	Phe2	Val3	Val4	Pro5	Asn6	Ala7
NH	5.082	---	---	---	---	---	---
$\mathrm{C} \alpha \mathrm{H}$	4.28	5.93	5.13	5.095	4.743	5.42	4.63
$\mathrm{C} \beta \mathrm{H}$	2.269	2.710,	2.347	2.320	1.97, 2.175	2.368, 2.859	1.43
$\mathrm{C} \gamma \mathrm{H}$	0.808,	---	0.820,	0.825, 0.927	2.05	---	---
$\mathrm{C} \delta \mathrm{H}$	0.920	--	---	---	---	3.657, 3.705	---
$\mathrm{N}-\mathrm{CH}_{3}$	2.83	2.81	2.84	2.80	----	2.98	2.97

Others: $\mathrm{Boc}=1.31,-\mathrm{OCH}_{3}=3.59$, PheArH=7.14-7.24, $\mathrm{NH}=5.81$, AsnNH-CH $=2.81$

Table 6: ${ }^{1} \mathrm{H}$ NMR chemical shift assignments of compound 25 (Major conformer)

Proton/AA	Val1	Phe1	Val2	Val3	Pro4	Asn5	Ala6
$\mathrm{C} \alpha \mathrm{H}$	4.78	5.98	5.09	5.11	4.74	5.83	4.75
$\mathrm{C} \beta \mathrm{H}$	2.36	$\begin{aligned} & 3.24, \\ & 2.71 \end{aligned}$	2.34	2.31	$\begin{aligned} & \text { 1.95, } \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.37 \\ & 2.75 \end{aligned}$	1.40
$\mathrm{C}_{\gamma} \mathrm{H}$	$\begin{aligned} & \hline 0.81, \\ & 0.72 \end{aligned}$	---	$\begin{aligned} & \hline 0.82, \\ & 0.93 \end{aligned}$	$\begin{aligned} & 0.81, \\ & 0.92 \end{aligned}$	2.04	--	---
$\mathrm{C} \delta \mathrm{H}$	----	---	---	---	$\begin{aligned} & 3.65, \\ & 3.71 \end{aligned}$	---	---
$\mathrm{N}-\mathrm{CH}_{3}$	-----	3.01	3.01	2.96	-----	$\begin{aligned} & 2.93 \\ & 2.73 \end{aligned}$	2.91
NH	6.34	-----	-----	-----	-----	5.68	-----
DTA/others	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}=1.93, \mathrm{C}_{25} \mathrm{H}=6.81, \mathrm{C}_{26} \mathrm{H}=6.33, \mathrm{C}_{27} \mathrm{H}=6.09, \mathrm{C}_{32} \mathrm{H}=5.40, \mathrm{C}_{33} \mathrm{H}=5.36, \\ & \mathrm{C}_{29} \mathrm{H}=3.25, \mathrm{C}_{28} \mathrm{H}=2.37,2.32, \mathrm{C}_{31} \mathrm{H}=2.02, \mathrm{C}_{34} \mathrm{H}=1.93, \mathrm{C}_{36} \mathrm{H}=1.51,1.42, \\ & \mathrm{C}_{30} \mathrm{H}=1.60,1.58, \mathrm{C}_{35} \mathrm{H}=1.25, \mathrm{C}_{37} \mathrm{H}=4.77,1.26, \\ & \mathrm{C}_{29}-\mathrm{OCH}_{3}=3.36, \text { PheArH=7.13-7.26. } \end{aligned}$						

Table 8. Comparision of NMR Assignments of Malevamide E with synthetic compound 1(Major conformer) in CDCl_{3}

		Compound (1)		Compound (1)
Position	$\begin{gathered} { }^{1} \mathrm{H} \\ \text { (natural) } \\ \hline \end{gathered}$	${ }^{1} \mathrm{H}$ (synthetic)	$\begin{gathered} { }^{13} \mathrm{C} \\ \text { (natural) } \end{gathered}$	${ }^{13} \mathrm{C}$ (synthetic)
2			170.7	169.1
3	4.87	4.90	55.6	57.6
3a	1.48	1.54	16.0	14.4
4a	2.78	2.94	29.8	30.4
5			169.3	168.5
6	5.87	5.93	49.1	51.5
6a	2.98,2.39	3.03,2.27	35.6	36.1
6b			170.2	169.4
6c	5.61	5.45		
6d	2.75	2.76	26.3	26.6
7a	2.95	2.84	30.2	30.4
8			171.0	169.5
9	4.72	4.77	57.1	56.7
9a	2.01,1.71	2.19,1.86	28.3	28.5
9b	1.75,1.85	2.06	24.6	24.8
9c	3.58,3.77	3.67	47.3	47.6
11			168.6	168.2
12	4.89	4.94	59.8	59.1
12a	2.09	2.37	27.0	26.3
12b	0.50	0.83	18.0	16.8
12c	0.93	0.93	19.7	18.1
13a	2.66	2.81	30.1	29.7
14			170.3	169.8
15	5.01	5.01	58.5	59.4
15a	2.17	2.27	27.5	27.1
15b	0.77	0.78	18.3	18.8
15c	0.78	0.87	19.5	19.8
16a	2.68	2.79	29.6	29.9
17			169.2	168.9
18	5.76	5.80	54.9	54.5
18a	2.83,3.28	2.83,3.28	35.5	35.8
18b			136.9	136.4
18c, c'	7.25	7.24	129.6	129.5
18d, d'	7.20	7.23	128.3	128.3
18 e	7.14	7.20	126.6	126.9
19a	3.13	2.71	30.8	30.4
20			172.7	168.3
21	4.68	4.82	54.8	53.9
21a	1.94	1.82	30.5	30.9
21b	0.68	0.69	18.9	18.4
21c	0.90	0.87	18.5	18.8
22	6.02	6.37		
23			169.2	169.1
24			127.8	127.5
24a	1.88	1.94	12.7	13.1
25	6.73	6.79	134.6	133.6
26	6.30	6.35	127.5	128.2
27	5.96	5.97	137.5	137.3
28	2.48,2.31	2.41,2.36	36.8	36.6
29	3.25	3.26	79.6	79.8
29a	3.35	3.36	56.8	56.7
30	1.47,1.53	1.47,1.53	34.1	33.6
31	2.05	2.02	29.3	30.6
32	5.39	5.39	130.7	13.3
33	5.37	5.35	130.1	129.9
34	1.95	1.98	32.8	32.4
35	1.27	1.32	26.2	25.9
36	1.44,1.52	1.37,1.49	35.3	35.4
37	4.78	4.79	72.7	72.8
37a'	1.19	1.20	19.7	19.9

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Figure 2: TOCSY expansion of 21, $\mathrm{Ala}^{-} \mathrm{C}_{\alpha} \mathrm{H}-\mathrm{C}_{\beta} \mathrm{H}$ region, suggests at least 8 conformations.

Figure 3: TOCSY expansion of $\mathbf{2 4}$, Ala $-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{C}_{\beta} \mathrm{H}$ region.

Figure 4: TOCSY expansion of compound 1, Val $\mathrm{NH}-\mathrm{C}_{\beta} \mathrm{H}$ region.

Figure 5: VT study of tetramer 20

Figure 6: Comparison of compound of $\mathbf{1}$ at variable temperature with natural compound in CDCl_{3}

CDRI- SAIF GLC-HPLC LAB-CDRI-LUCKNOW

Analyzed: 12/08/11 12:06 PM
Data Path: C: \Win32App\HSM\samples \DATA
Processing Method: General-HPLC
System(acquisition): Sys 1
Application: Samples Series:2487
Application: Samples \quad Vial Type: UNK
Sample Description: 011-0862 Chrom Type: HPLC Channel : 1


```
Peak rejection level: 0
Column Type: MERCK silica
Pump A Type: L-7100
    Solvent A: water
    Solvent C: hexane
        Solvent B: ACN 
```

HPLC Spectrum of compound 1

