Electronic Supplementary Information for

Synthesis and Characterization of pH-sensitive, Biotinylated MRI Contrast Agents and Their Conjugates with Avidin

Sandip M. Vibhute,^a Jörn Engelmann,^b Tatjana Verbić,^c Martin E. Maier,^d Nikos K. Logothetis^{a,e} and Goran Angelovski*^a

^a Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

^b High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

^c Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Serbia.

^d Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany.

^e Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK.

Time (minute)	% H ₂ O	% CH ₃ CN
0.0	80	20
5.0	80	20
17.0	20	80
23.0	20	80
26.0	80	20
30.0	80	20

Table S1. Elution conditions for analytical and semi-preparative HPLC. The flow rates of 1 and10 mL/min were used for the analytical and semi-preparative HPLC respectively.

Fluorescence assay

The interaction of biotin (Bio) or $\mathbf{GdL}^{3,4}$ with avidin (Av) was followed by the displacement of the fluorescence probe 2-anilinonaphthalene-6-sulfonic acid (ANS) using the fluorescence assay as previously described.¹

Figure S1. Fluorescence titration of the avidin-ANS complex with biotin and GdL^{3-4} . The corrected and normalized fluorescence signal is plotted as a function of the ratio of added biotin/ GdL^{3-4} to avidin.

Since three, rather than four binding sites are available on the avidin tetramer, this stoichiometry was used to develop a linear relationship used to determine the conditional stability constant value K_s for the reaction of avidin-2,6-ANS complex with biotin (Eq. 1), as well as with GdL^{3,4}.

$$Av(ANS)_3 + 3Bio \rightleftharpoons Av(Bio)_3 + 3ANS, \quad K_s = \frac{[Av(Bio)_3][ANS]^3}{[Av(ANS)_3][Bio]^3}$$
 (1)

If the basic avidin-ANS and avidin-biotin reactions are considered:

$$Av + 3ANS \rightleftharpoons Av(ANS)_3, \quad K_s^I = \frac{[Av(ANS)_3]}{[Av][ANS]^3}$$
 (2)

$$Av + 3Bio \rightleftharpoons Av(Bio)_3, \qquad K_s^{II} = \frac{[Av(Bio)_3]}{[Av][Bio]^3}$$
 (3)

then K_s from Eq. 1 can be rearranged:

$$K_{\rm s} = \frac{[{\rm Av}({\rm Bio})_3][{\rm ANS}]^3}{[{\rm Av}({\rm ANS})_3][{\rm Bio}]^3} \times \frac{[{\rm Av}]}{[{\rm Av}]} = \frac{K_{\rm s}^{\rm II}}{K_{\rm s}^{\rm I}}$$
(4)

to give the linear dependence:

$$\frac{[\operatorname{Av}(\operatorname{Bio})_3]}{[\operatorname{Av}(\operatorname{ANS})_3]} = K_s \times \frac{[\operatorname{Bio}]^3}{[\operatorname{ANS}]^3}$$
(5)

where [ANS] represents the fixed concentration of ANS (experimental details given in the Experimental section), [Bio] is the concentration of added biotin in each titration point, and $[Av(Bio)_3]$ and $[Av(ANS)_3]$ are the concentrations of avidin-biotin and avidin-ANS complexes, respectively. As these concentrations are proportional to measured fluorescence intensities,² the obtained experimental data (Figure S1) can be used for conditional stability constant determination:

$$\frac{Y_0 - Y}{Y - Y_{\text{lim}}} = K_s \times \frac{[\text{Bio}]^3}{[\text{ANS}]^3}$$
(6)

where Y_0 stands for fluorescence intensity at the beginning of titration (no biotin added), Y_{lim} is an average value of all measured fluorescence intensities after the equivalence point was reached, and Y stands for measured fluorescence intensities during the titration (as reaction (1) proceeds). The measured fluorescence intensities were corrected for inner-filter effects³ and normalized. The conditional stability constant values K_s for avidin-biotin, avidin-GdL³ and avidin-GdL⁴ are obtained as slopes from the linear fit based on Eq. 6, with R²>0.98 (Figure S2).

Figure S2. Conditional stability constant (K_s) determination according to Eq. 6.

 $K_{\rm s}$ values are obtained as mean values of five times repeated titrations. Results are shown in Table S2.

Sample	$K_{\rm s} \pm { m SD}$		
fluorescence Titration	Av-Bio	Av-GdL ³	Av-GdL ⁴
1.	302 ± 11	413 ± 24	464 ± 19
2.	417 ± 16	735 ± 30	618 ± 22
3.	527 ± 22	541 ± 21	751 ± 29
4.	379 ± 12	625 ± 23	676 ± 16
5.	487 ± 18	662 ± 33	818 ± 29
$< K_{\rm s} \ge \pm { m SD}$	$(4.2 \pm 0.9) \times 10^2$	$(6 \pm 1) \times 10^2$	$(7 \pm 1) x 10^2$

Table S2. Conditional stability constant values (K_s) obtained as the slope of the linear fit basedon Eq. 6

As the dissociation constant of the avidin(monomer)-ANS was already reported (K_d =203 μ M)^[3], K_s^I value (Eq. 2) is calculated ($K_s^I = \frac{1}{(K_d)^3} = 1.2 \times 10^{11}$), and used for the overall stability

constants K_s^{II} (Eq. 4) calculation, resulting in $K_s^{\text{II}}(\text{Av}(\text{Bio})_3)=5.1\times10^{13}$, $K_s^{\text{II}}(\text{Av}(\text{GdL}^3)_3)=7.1\times10^{13}$, $K_s^{\text{II}}(\text{Av}(\text{GdL}^4)_3)=8.0\times10^{13}$.

MRI phantom experiments

Figure S3. pH dependent r_1 response of \mathbf{GdL}^3 (left) and \mathbf{GdL}^4 (right) in the absence of avidin (3T MRI scanner, 21 °C). Values are presented as mean \pm SEM of five independent experiments. The lines represent result of the sigmoidal fit and are displayed to aid a better visualization of the pH dependent r_1 decrease.

Figure S4. pH dependent r_2 response of GdL³ (left) and GdL⁴ (right) in the absence of avidin (3T MRI scanner, 21 °C). Values are presented as mean ± SEM of five independent experiments. The lines represent result of the sigmoidal fit and are displayed to aid a better visualization of the pH dependent r_2 decrease.

MRI phantom experiments/E-titrations

The curves obtained from the MRI E-titrations were fitted based on the previously published formula,⁴ however they were slightly modified to use relaxivity values instead of relaxation rates (Eq. 7).

$$r_{1,2}^{obs} = 1000 \times \left\{ \left(L_0 \times r_{1,2}^f \right) + 0.5 \times \left(r_{1,2}^b - r_{1,2}^f \right) \times \left((n \times c_{Av}) + L_0 + K_a^{-1} - \sqrt{\left((n \times c_{Av}) + L_0 + K_a^{-1} \right)^2 - 4 \times n \times L_0 \times c_{Av}} \right) \right\}$$
(7)

where:

 $r_{1,2}^{obs}$: observed longitudinal or transversal relaxivity

 L_0 : concentration of SCA in M (set to 0.001 M since relaxivities are used)

 $r_{1,2}^{f}$: longitudinal or transversal relaxivity of the free SCA

 $r_{1,2}^b$: longitudinal or transversal relaxivity of the avidin bound SCA

n: number of binding sites on the avidin tetramer (set to n=3 as obtained from fluorescence displacement assay)

 c_{Av} : normalized concentration of avidin in M

 K_a : binding constant of respective SCA (set to 7.1×10¹³ and 8.0×10¹³ for GdL³ and GdL⁴, respectively, as obtained from the fluorescence displacement assay).

References:

1. D. M. Mock, G. Langford, D. Dubois, N. Criscimagna and P. Horowitz, *Anal. Biochem*. 1985, **151**, 178-181.

2. B. Valeur, *Molecular Fluorescence: principles and applications*, Wiley-VCH, Weinheim; Chichester, 2002.

3. D. M. Mock, G. Lankford and P. Horowitz, Biochim. Biophys. Acta 1988, 956, 23-29.

4. T. N. Parac-Vogt, K. Kimpe, S. Laurent, L. Vander Elst, C. Burtea, F. Chen, R. N. Muller, Y.

C. Ni, A. Verbruggen and K. Binnemans, Chem. Eur. J. 2005, 11, 3077-3086.