Electronic Supplementary Information

A bis-bisurea receptor with the *R*,*R*-cyclohexane-1,2-diamino spacer for phosphate and sulfate ions

Meiying Wei,^{*a*} Biao Wu,^{**b*} Lei Zhao,^{*c*} Hui Zhang,^{*c*} Shaoguang Li,^{*a*} Yanxia Zhao,^{*a*} Xiao-Juan Yang^{*a*}

^{*a*} State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, China

^b College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China

^c State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

wubiao@nwu.edu.cn

Table of contents:

S1.	General	S2
S2.	Synthesis and ${}^{1}H$ and ${}^{13}C$ NMR spectra of the ligand L	S2
S3.	Crystallography	S6
S4.	NMR titration	S8
S5.	UV-vis titration	S10
S6.	CD studies	S12
S7.	Computational details	S13

S1. General

All tetrabutylammonium salts and *p*-nitrophenylisocyanate were purchased from Alfa Aesar and used as received. Solvents and other reagents were of reagent grade quality. ¹H, ³¹P and ¹³C NMR spectra were recorded on a Mercury plus-400 spectrometer at 400, 100, and 162 MHz, respectively. UV-vis spectra were performed on an HP8453 spectrophotometer (1-cm quartz cell). Elemental analyses were performed on an Elementar VarioEL instrument. IR spectra were recorded on a Bruker IFS 120HR spectrometer. ESI-MS measurements were carried out using a Waters ZQ4000 spectrometer. Melting points were detected on an X-4 Digital Vision MP Instrument. Circular dichroism spectra were performed on a Jasco J-810 Circular Dichroism Chiroptical Spectrometer.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

S2. Synthesis and ¹H and ¹³C NMR spectra of the ligand L

Scheme S1. Synthesis of L: (1) THF; (2) $NH_2NH_2 \cdot H_2O$, Pd/C 10% cat., MeOH; (3) *p*-nitrophenylisocyanate, THF.

Lh

1,1-Bis-(2-nitrophenylurea)-(1R,2R)-cyclohexane (La).

L

A solution of *R*,*R*-cyclohexane-1,2-diamine (0.29 g, 2.5 mmol) in 50 mL THF was added dropwise to a THF solution (100 mL) of *o*-nitrophenylisocyanate (0.98 g, 6.0 mmol). After refluxing under stirring for 10 hours, the mixture was concentrated and filtered off, and washed with acetone and diethyl ether and then dried in vacuum to yield compound La as a yellow solid (1.02 g, 91 %). M.p.: > 300 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 9.34 (s, 2H, Hb), 8.29 (d, *J* = 8.4 Hz, 2H, H7), 8.00 (d, *J* = 8.4 Hz, 2H, H4), 7.56 (m, 4H, H6+Ha), 7.07 (t, *J* = 8.4 Hz, 2H, H5), 3.46 (s, 2H, H3), 1.94 (d, *J* = 10.4 Hz, 2H, H2), 1.67 (s, 2H, H2), 1.27 (s, 4H, H1). ¹³C NMR (100 MHz, DMSO-*d*₆), 153.9 (CO), 136.5 (C), 135.8 (C), 134.7 (CH), 125.2 (CH), 121.7 (CH), 121.2 (CH), 52.7 (CH), 32.3 (CH₂), 24.2 (CH₂). IR (KBr, v/cm⁻¹): 3294, 3083, 1650, 1581, 1511, 1339, 1281. Anal. Calcd for C₂₀H₂₂N₆O₆: C, 54.29; H, 5.01; N, 19.00%. Found: C, 54.26; H, 5.01; N, 18.96%. ESI-MS: *m/z* 443.2, 100%, [M + H]⁺.

¹H NMR and ¹³C NMR spectra of La (r.t., DMSO- d_6)

1,1-Bis-(2-aminophenylurea)-(1R,2R)-cyclohexane (Lb).

Hydrazine monohydrate (5.0 mL) was added dropwise to a suspension of 1,1-bis-(2-nitrophenyl-urea)-(1*R*,2*R*)-cyclohexane (**a**, 1.00 g, 2.3 mmol) and 10% Pd/C (0.05 g, cat.) in methanol (150 mL). After refluxing under intense stirring for 12 hours, the solid was filtered off and then dissolved in DMSO (40 mL) and filtered through Celite to remove Pd/C. The DMSO solution was poured in water (400 mL) and the precipitate thus obtained was filtered off, washed several times with ethanol and

diethyl ether, and dried over vacuum to give pure **Lb** as a white solid (0.70 g, 81 %). M.p.: 279 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 7.61 (s, 2H, Hb), 7.26 (d, *J* = 7.2 Hz, 2H, H4), 6.76 (t, *J* = 7.2 Hz, 2H, H5), 6.67 (d, *J* = 7.2 Hz, 2H, H7), 6.49 (t, *J* = 7.6 Hz, 2H, H6), 6.13 (d, *J* = 6.8 Hz, 2H, Ha), 4.66 (s, 4H, Hc), 3.40 (s, 2H, H3), 1.95 (d, *J* = 11.6 Hz, 2H, H2), 1.64 (s, 2H, H2), 1.23 (m, 4H, H1). ¹³C NMR (100 MHz, DMSO-*d*₆), 155.7 (CO), 140.4 (C), 125.4 (C), 123.7 (CH), 123.3 (CH), 116.6 (CH), 115.6 (CH), 52.8 (CH), 32.8 (CH₂), 24.3 (CH₂). IR (KBr, v/cm⁻¹): 3285, 3112, 1625, 1585, 1508, 1306, 1277. Anal. Calcd for C₂₀H₂₆N₆O₂: C, 62.81; H, 6.85; N, 21.97%. Found: C, 62.84; H, 6.63; N, 21.97%. ESI-MS: *m/z* 383.3, 100%, [M + H]⁺.

¹H NMR and ¹³C NMR spectra of **Lb** (r.t., DMSO- d_6)

1,1-((1R,2R)-cyclohexane-1,2-diyl)bis(3-(2-(3-(4-nitrophenyl)ureido)phenyl)urea) (L).

1,1-Bis-(2-aminophenyl-urea)-(1*R*,2*R*)-cyclohexane (**Lb**, 0.20 g, 0.5 mmol) was dispersed in 60 mL THF and added dropwise into a 60 mL THF solution of *p*-nitrophenylisocyanate (0.20 g, 10.0 mmol). The mixture was refluxed for 12 hours and then concentrated. The crude product was poured in water (150 mL) and the precipitate thus obtained was filtered off, washed several times with methanol and diethyl ether and then dried over vacuum to give **L** as a yellow solid (0.34 g, 92%). M.p.: 237 °C. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 9.77 (s, 2H, Hd), 8.20 (s, 2H, Hc), 8.15 (d, *J* = 9.2 Hz, 4H, H9), 7.99 (s, 2H, Hb), 7.65 (d, *J* = 9.2 Hz, 4H, H8), 7.55 (m, 2H, H7), 7.49 (m, 2H, H4), 6.99 (m, 4H, H5+H6), 6.60 (s, 2H, Ha), 3.45 (s, 2H, H3), 1.99 (s, 2H, H2), 1.66 (s, 2H, H2), 1.26 (m, 4H, H1). ¹³C NMR (100 MHz, DMSO-*d*₆, ppm), ¹³C NMR (100 MHz, DMSO-*d*₆), 155.9 (CO), 152.5 (CO), 146.5 (C), 140.7 (C), 132.4(C), 129.7 (CH), 125.0 (C), 124.6 (CH), 124.5 (CH), 123.2 (CH), 123.1 (CH), 117.2 (CH), 52.9 (CH), 32.6 (CH₂), 24.3 (CH₂). IR (KBr, v/cm⁻¹): 3307, 3088, 1645, 1598, 1561, 1504, 1331, 1302, 1260. Anal. Calcd for C₃₄H₃₄N₁₀O₈: C, 57.46; H, 4.82; N, 19.71%. Found: C, 57.60; H, 4.67; N, 19.46%. ESI-MS: *m/z* 711.3, 100%, [M + H]⁺.

S3. X-ray crystallography

Diffraction data were collected on a Bruker SMART APEX II diffractometer at 150 K or 100 K with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical absorption correction using SADABS was applied for all data. The structures were solved by direct methods using the SHELXS program. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on *F*2 by the use of the SHELXL program. Hydrogen atoms bonded to carbon and nitrogen were included in idealized geometric positions with thermal parameters equivalent to 1.2 times those of the atom to which they were attached.

Table S1.	Crystal	data and	structure	refinement	details	for the	anion	complexes	1 and 2.
-----------	---------	----------	-----------	------------	---------	---------	-------	-----------	----------

Formula	$C_{140}H_{234}N_{24}O_{28}P_2$	$C_{134}H_{217}N_{24}O_{25}S_3$
M	2763.45	2660.50
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2(1)	<i>P</i> 1
<i>a</i> /Å	16.201(8)	12.821(3)
b /Å	14.693(7)	16.131(4)
c /Å	31.511(15)	19.300(4)
lpha /°	90.00	77.453(2)
eta /°	100.528(7)	77.365(3)
$\gamma /^{\circ}$	90.00	87.544(3)
$V/\text{\AA}^3$	7375(6)	3801.9(15)

Z	2	1
T/K	150(2)	100(2)
F(000)	2992	1437
$D_{\rm calc}$ /g cm ⁻³	1.244	1.162
μ /mm ⁻¹	0.11	0.12
R(int)	0.082	0.028
Data/restraints/parameters	22279/1/1769	20732/3/1693
GOF	1.04	1.05
$R1 [I > 2\sigma(I)]$	0.071	0.079
$wR2 \left[I > 2\sigma(I)\right]$	0.197	0.239
Flack parameter	0.07(14)	-0.03(9)

Table S2. Hydrogen bonds around the HPO_4^{2-} ion in complex 1.

D−H…A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{\cdot\cdot\cdot}\mathrm{A})(\mathrm{\AA})$	$d(\mathbf{D}\cdots\mathbf{A})$ (Å)	∠(DHA) (°)
N2-H2…O22	0.88	1.84	2.694(6)	163.3
N3-H3…O22	0.88	2.21	2.999(6)	148.3
N4-H4…O21	0.88	2.04	2.868(6)	155.7
N5−H5A…O21	0.88	2.24	2.910(5)	132.5
N6−H6A…O24	0.88	2.02	2.827(5)	152.5
N7-H7…O24	0.88	2.08	2.893(5)	152.2
N8-H8…O22	0.88	1.92	2.787(6)	167.4
N9−H9A…O23	0.88	2.15	2.997(7)	161.6
N12-H12A…O19	0.88	1.84	2.685(5)	161.6
N13-H13…O19	0.88	2.12	2.909(6)	148.4
N14-H14…O18	0.88	2.15	2.954(5)	151.3
N15-H15A…O18	0.88	2.07	2.839(5)	146.1
N16-H16…O17	0.88	2.14	2.884(5)	141.5
N17-H17…O17	0.88	2.02	2.852(5)	157.6
N18-H18…O19	0.88	2.02	2.898(7)	173.7
N19-H19…O17	0.88	2.30	3.083(6)	148.7
N19-H19…O20	0.88	2.54	3.324(7)	149.2
O20-H201O21	0.86	1.84	2.640(5)	154.6
O23-H231…O18	1.10	1.97	2.604(6)	113.1
O25-H251O20	1.08	1.90	2.946(6)	160.7
O25-H252…O24	1.10	1.92	2.712(6)	125.6
O26-H261…O17	0.71	2.07	2.729(6)	156.7
O26-H262…O21	0.68	2.24	2.900(7)	163.7

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{\dots}\mathrm{A})$ (Å)	$d(\mathbf{D}\cdots\mathbf{A})$ (Å)	∠(DHA)(°)
N2-H2A…O17	0.88	2.27	3.125	162.7
N3-H3A…O20	0.88	2.73	3.260	120.2
N3-H3…O18	0.88	1.94	2.822	177.6
N4-H4…O20	0.88	2.14	2.945	152.2
N5-H5A…O20	0.88	2.11	2.866	143.7
N6-H6A…O19	0.88	2.05	2.863	153.5
N7-H7…O19	0.88	2.38	3.105	139.9
N8-H8…O18	0.88	1.95	2.791	160.2
N9-H9A…O17	0.88	2.03	2.900	167.6
N12-H12A…O21	0.88	2.41	3.135	139.3
N12-H12A…O22	0.88	2.39	3.236	160.4
N13-H13…O21	0.88	1.88	2.745	169.5
N14-H14…O23	0.88	2.22	2.987	145.2
N15-H22F…O23	0.88	2.14	2.870	139.9
N16-H16…O24	0.88	2.06	2.873	152.9
N17-H17…O24	0.88	2.25	3.043	149.4
N18-H25B…O21	0.88	1.95	2.826	170.4
N19-H19…O22	0.88	2.07	2.927	165.0
С89-Н89А…О19	0.99	2.35	3.322	165.5
С93-Н93В…О17	0.99	2.53	3.493	165.7
C117-H23F…O22	0.99	2.52	3.469	160.2
C122-H12S…O23	0.99	2.66	3.479	140.3
C129-H12DO23	0.99	2.33	3.307	171.6

Table S3. Hydrogen bonds around the SO_4^{2-} ion in complex 2.

S4. NMR titrations

For ¹H NMR Job's plot: Stock solutions of L (5 mM) and anion (5.0 mM for H₂PO₄⁻ and SO₄²⁻) in DMSO-*d*₆ (5.0 mL) were prepared in separate volumetric flasks. Ten 5 mm-o.d. NMR tubes were separately filled with a total of 500 µL solution of the host and guest in the following ratios (µL, host/guest) at 297 K: 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. The ¹H NMR spectra were obtained for each tube and the NHc signals were used to calculate the complex concentration, $[HG] = [H]_t \times (\delta_{obsd} - \delta_{free})/(\delta_{com} - \delta_{free})$, where $[H]_t$ is the total concentration of the host, δ_{obsd} is the chemical shift observed on every point, δ_{free} and δ_{com} correspond to the chemical shifts of the free ligand and the complex. This value was plotted against the molar fraction of the host. The association constants (*K*) were determined by EQNMR.

Figure S1. Job's plot of **L** with addition of anions and the corresponding ¹H NMR spectra. (1) $H_2PO_4^-$ (as Bu_4N^+ salt, DMSO- d_6); (2) SO_4^{2-} (as Bu_4N^+ salt, DMSO- d_6).

Figure S2. NMR titration of L $(5.0 \times 10^{-3} \text{ M})$ with $(Bu_4N)H_2PO_4$ $(5.0 \times 10^{-3} \text{ M})$ in DMSO- d_6 .

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 10:41:54 on 04/23/2012

Ideal data for M, ML and ML2 system.

IDEAL DATA TAKEN FROM ACTUAL FIT of JIMMY1.FIT Reactions: M + L = ML (beta1 = K1); M + 2L = ML2 (beta2 = K1K2) Theoretical: k1=7290.00, k1k2 =400000.00 del ML = 10.9637, del ML2 = 11.3277 File prepared by M.J. Hynes october 22 2000

NO.	Α	PARAMETER	DELTA	ERROR	CONDITION	DESCRIPTION
1	1	1.09718E+04	1.000E-01	1.531E+03	1.249E+01	BETA1
2	1	7.02835E+05	2.000E+00	3.195E+04	2.287E+00	BETA2
3	1	9.79966E+00	1.000E-01	1.534E-02	1.337E+00	M SHIFT
4	1	1.11209E+01	1.000E-01	1.622E-02	6.355E+00	ML SHIFT
5	1	1.22364E+01	1.000E-01	1.360E-01	2.687E+01	ML2 SHIFT

0RMS ERROR = 2.08E-02 MAX ERROR = 3.91E-02 AT OBS.NO. 18

RESIDUALS SQUARED = 6.90E-03

RFACTOR = 0.1647 PERCENT

S5. UV-vis titrations

Stock solutions of L (1.5×10^{-5} M) in DMSO (100 mL) and anions in DMSO (2 mL, 1.5-50 mM) were prepared for the UV-vis titration. Small portions ($2-5 \mu$ L) of the anion solutions ($H_2PO_4^-$ and $SO_4^{-2}^-$) were added to the solution of ligand L (2.0μ L), and the spectrum was recorded after each addition.

Figure S3. UV-vis titration of L (1.5×10^{-5} M) with H₂PO₄⁻ (as Bu₄N⁺ salt) in DMSO (above: before 2.5 equivalents; below: 2.5 to 100.0 equivalents).

Figure S4. UV-vis titration of L $(1.5 \times 10^{-5} \text{ M})$ with SO₄²⁻ (as Bu₄N⁺ salt) in DMSO (above: before 2.5 equivalents; below: 2.5 to 150.0 equivalents).

Program DynaFit version 3.28.059 [06-13-2008] Execution started Wed Apr 25 14:43:34 2012

S11

SCRIPT FILE

 $. \verb+examples+enzymology+DNA+promoter+wmy-SO4-3.txt$

TASK

Fit of complex equilibria MODEL = fixed DATA file .\examples\enzymology\DNA+promoter\data\mlp-wmy-3.txt REACTION MECHANISM

 $P.D \iff P + D : K1$ dissoc $P.D.D \iff D + P.D : K2$ dissoc

Set	Parameter	Initial	Fitted	Error	%Error			
	K1	0.02466	0.03561	0.0022	6.1			
	K2	0.01	0.002874	0.00023	8			
	r:P.D	0	0	0.0011	0			
	r:P.D.D	28.15	31.05	0.032	0.1			
$K_1 = 1$	$K_1 = 1/K1 = 28.1 \text{ (mM}^{-1}) = 2.81 \times 10^4 \text{ (M}^{-1})$							
$K_2 = 1/K2 = 347.9 \text{ (mM}^{-1}) = 3.47 \times 10^5 \text{ (M}^{-1})$								
$\beta = K_1$	$\beta = K_1 \cdot K_2 = 9.75 \times 10^9 (M^{-2})$							

S6. CD studies

Figure S5. CD spectra of L $(1.5 \times 10^{-4} \text{ M})$ upon addition of H_2PO_4^- ions (as Bu_4N^+ salt) in CH₃CN-0.5% DMSO.

S7. Computational details

The DFT calculations on the free ligand was performed at B3LYP/6-311++G (d, p) level using the Gaussian 03 program.¹ Input parameters are built by Gauss View.

Figure S6. (a) Optimized geometry for the free ligand L; (b) Intramolecular hydrogen bonding and C–H··· π interactions in L (Cg1 represents the centroid of the *o*-phenylene ring, C33···Cg1 = 3.711 Å, \angle Cg1···H34–C33 = 164.7°, N12···O5 = 3.099 Å, \angle O5···H13–N12 = 168.6°).

Cartesian coordinates (Å) for the optimized geometry of L.

E = -2465.40122921 hartree

0	10.0116	2.3171	31.8133
0	8.8644	3.9686	31.0121
0	12.7444	0.0235	26.0528
0	12.2247	0.6803	19.1206
0	12.7134	5.0676	19.0626
0	10.9681	7.9269	25.0713
0	5.7399	6.5501	29.9712
0	7.331	7.7564	30.7466
N	9.6701	3.0415	30.8702
Ν	11.561	1.9674	25.7693
Н	11.3642	2.583	25.1717
Ν	12.3642	0.8404	23.9665
Н	11.9555	1.4899	23.5328
Ν	11.644	0.5348	21.3301
Н	11.0625	0.8302	21.9218
Ν	10.1717	1.3473	19.7935
Н	9.5555	1.2107	20.4069

N	10.7442	4.1214	19.5549
Н	10.0718	4.0832	20.1219
Ν	11.634	5.5995	21.0178
Н	10.9238	5.4085	21.5005
N	11.4656	6.1711	23.7023
Н	11.3025	5.3218	23.5421
N	9.7481	6.0462	25.2197
Н	9.5421	5.2983	24.803
N	6.8475	7.0717	29.8786
С	10.2055	2.7814	29.5672
С	11.1911	1.8587	29.4334
Н	11.5476	1.4267	30.1998
С	11.6699	1.5501	28.1818
Н	12.3572	0.9022	28.0839
С	11.1486	2.1863	27.0553
С	10.1585	3.1414	27.2049
Н	9.7991	3.5836	26.445

С	9.6904	3.4514	28.4943	Н	9.3835	4.4975	17.3398
Н	9.0245	4.117	28.6167	Н	10.9116	4.8193	16.9804
С	12.2674	0.8522	25.3241	С	10.7206	3.2912	18.3659
С	13.0507	-0.1058	23.193	Н	11.6466	2.9562	18.1949
С	14.0477	-0.8992	23.7212	С	11.7537	4.931	19.8068
Η	14.2632	-0.8419	24.645	С	12.4896	6.5134	21.5398
С	14.719	-1.7617	22.9163	С	13.4301	7.1937	20.7681
Η	15.3892	-2.3259	23.285	Н	13.4973	7.0086	19.8399
С	14.4391	-1.8278	21.5717	С	14.2577	8.1238	21.3363
Н	14.9402	-2.4097	21.011	Н	14.8979	8.5704	20.7941
С	13.4553	-1.0711	21.042	С	14.1823	8.4264	22.6747
Η	13.2651	-1.1358	20.1126	Н	14.7487	9.0891	23.0526
С	12.7259	-0.2116	21.8196	С	13.2742	7.7535	23.4634
С	11.4039	0.8507	19.9976	Н	13.2325	7.9342	24.3941
С	9.8168	2.1011	18.6085	С	12.4397	6.8367	22.9154
Н	8.9025	2.4728	18.7773	С	10.7688	6.7911	24.6964
С	9.7034	1.2386	17.3534	С	9.0092	6.3679	26.3542
Н	10.5857	0.839	17.1477	С	9.5509	7.1335	27.397
Н	9.0623	0.5025	17.5164	Н	10.4204	7.5067	27.3124
С	9.2405	2.057	16.1827	С	8.8293	7.3362	28.525
Н	8.3277	2.3964	16.3608	Н	9.2116	7.8211	29.2487
Н	9.2042	1.484	15.3756	С	7.5683	6.8543	28.6328
С	10.1623	3.2178	15.9299	С	7.0258	6.1152	27.6374
Н	9.8205	3.7526	15.1712	Н	6.1402	5.7802	27.7214
Н	11.061	2.8798	15.6885	С	7.7627	5.8463	26.4967
С	10.2658	4.0891	17.1518	Н	7.3957	5.2983	25.813

References:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, J. A., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. C. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.