Self-assembling properties of all γ-Cyclic Peptides containing sugar amino acids residues

Arcadio Guerra, Roberto Brea, Manuel Amorín,* Luis Castedo and Juan R. Granja*^a

[*] Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain <u>juanr.granja@usc.es</u>

SUPPORTING INFORMATION

Figure 1SI: ¹H NMR spectra of γ -**CP2** in DMSO/CDCl₃ (3:7) at 298K that adopt the flat conformation, in the inset the spectra of amide region (8.90-7.70 ppm) at different temperatures (253-303K) are showed.

Figure 2SI: top ¹H NMR spectrum of γ -**CP2** in DMSO/CDCl₃ (3:7) at 298K. **Bottom** NOESY spectrum showing the nOe cross-peaks between H_{Acp1} with NH_{Ach}, H_{Acp2} with NH_{Aga}, H_{Aga} with NH_{Ach} and one cyclohexyl proton of Ach, and H_{Aga} with other cyclohexyl proton of Ach; all this cross-peaks suggest the formation of dimer **D2**_A. Protons in green and with wedged lines are those oriented towards peptide interface, while those in blue (hashed lines) are the solvent oriented protons.

Figure 3SI: ¹H NMR spectrum of γ -**CP2** in H₂O (top) and DMSO (bottom) at 298K in which the peptide adopts several conformations. In the inset, the spectra of the amide region (9.60-7.80 ppm) at two temperatures (278-298K) are showed, confirming the existence of at least four different conformations.¹

$$\delta = 5.060 - 0.0122T + (2.11 \times 10^{-5})T^{2}$$

For further information, see reference Gottlieb, H. E.; Kotlyar, V.; Nudelman, A.; J. Org. Chem., 1997, 62, 7512–7515.

¹ The chemical shift of water (HOD) at different temperatures was calculated using the equation:

1. Materials and Methods.

General:

1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo-[4,5-b]pyridinium hexafluorophosphate 3-oxide (HATU), 1-[bis(dimethylamino)methylene]-1H-benzotriazolium hexafluorophosphate 3-oxide (HBTU), 1-[bis(dimethylamino)methylene]-1H-benzotriazolium tetrafluoroborate 3-oxide (TBTU),² N,N'-Disopropylcarbodiimide (DIC), N,N'-diciclohexilcarbodiimida (DCC), and 4-Dimethylaminopyridine (DMAP), alpha-aminoacids were purchased from Novabiochem, Applied Biosystems, Aldrich or from Global Sales Manager, GL Biochem (Shanghai) Ltd, China. All reagents and solvents were used as received unless otherwise noted. CH₂Cl₂ and DIEA to be used as reaction solvents were distilled from CaH₂ over argon immediately prior to use. Tetrahydrofurane (THF) was dried and distilled over sodium/benzophenone.³ Analytical thin-layer chromatography was performed on E. Merck silica gel 60 F₂₅₄ plates. Compounds, which were not UV active, were visualized by dipping the plates in a nynhidrin solution and heating. Silica gel flash chromatography was performed using E. Merck silica gel (type 60SDS, 230-400 mesh). Solvent mixtures for chromatography are re-ported as v/v ratios. HPLC purification was carried out on phenomenex Luna 5u Silica 100 Angstroms column with CH₂Cl₂/MeOH gradients between 100 and 85:15 or on phenomenex Luna 5u C-18 100 Angstroms with H_2O (0.1% TFA)/CH₃CN (0.1% TFA) gradients between 5:95 and 75:25. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AMX 500 MHz, Varian Mercury 300 MHz or Bruker WM 250 MHz spectrometers. Chemical shifts (d) were reported in parts per million (ppm) relative to tetramethylsilane (d=0.00 ppm) or by the deuterium solvent. ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), or quartet (q). All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). ¹H NMR Assignments of Cyclic Peptides (CPs). The signals of the 1 H NMR spectra of the peptides in CDCl₃ were identified from the corresponding double-quantum-filled 2D COSY, TOCSY and/or NOESY and ROESY spectra acquired at concentration and temperature indicated (Mixing times for NOESY and/or ROESY -between 250 and 1000 ms- were not optimized). Carbon resonances were assigned using distortionless enhancement by polarization transfer (DEPT) spectra obtained with phase angles of 135. Fast Atom Bombardement (FAB) mass spectra were recorded on a Micromass Autospec mass spectrometer. Electrospray (ESI) mass spectra were recorded on a Bruker BIOTOF II mass spectrometer. Mass Spectrometry of Laser Desorption/Ionization-Time of Flight (MALDI-TOF) was obtained on a Bruker Autoflex mass

² L. A. Carpino, et all., *Angew. Chem. Int. Ed.*, 2002, **41**, 441–445.

³ (a) H.C. Brown, "Organic Synthesis via Boranes", Ed. John Wiley & Sons, 1975. (b) Perrin, D. D.; Armarego, W. I. F.

[&]quot;Purification of Laboratory Chemicals", Ed. Pergamon Press, 1988.

spectrometer. FTIR measurements were made on a JASCO FT/IR-400 spectrophotometer placing the sample on a CaF₂ pellet.

Peptide Synthesis:

Synthesis of amino acids and lineal-dipeptides, linear-tetrapeptides and linear-hexapeptides were prepared following the synthetic strategy previously described.⁴

Boc-*D*-γ-^{*Me*}*N*-Acp-OAII. A solution of Boc-*D*-γ-^{*Me*}*N*-Acp-OH (1.00 g, 4.12 mmol) in dry 2-propen-1-ol (24.0 mL) was treated with DCC (1.70 g, 8.24 mmol) and DMAP (100.0 mg, 0.82 mmol). After stirring for 4 h at rt, the reaction mixture was evaporated to dryness. The resulting residue was dissolved in CH₂Cl₂ (50 mL), and washed with aqueous HCl (5%, 3 x 15 mL) and aqueous saturated NaHCO₃ (3 x 15 mL). The organic layer was dried with Na₂SO₄, filtered, concentrated under reduced pressure, and the resulting crude material was purified by flash chromatography (10-30% AcOEt/Hexane) to give 986 mg of the title compound. [Yellow oil, 84%, *R_f*=0.85 (50% AcOEt/Hexanes)]. ¹H NMR (CDCl₃, 300 MHz, δ): 5.86 (ddt, *J* = 17.2, 10.4 and 5.7 Hz, 1H), 5.25 (dq, *J* = 17.2 and 1.5 Hz, 1H), 5.18 (dq, *J* = 10.4 and 1.3 Hz, 1H), 4.52 (brd, *J* = 5.4 Hz, 3H), 2.76 (s, 3H), 1.41 (s, 9H). ¹³C NMR (CDCl₃, 62.9 MHz, δ): 179.9 (CO), 156.2 (CO), 132.6 (CH), 118.4 (CH₂), 79.7 (C), 65.5 (CH₂), 56.0 (CH), 42.6 (CH₂), 41.6 (CH), 32.2 (CH₃), 29.2 (CH₂), 28.7 (CH₃), 27.6 (CH₂). MS (ESI) [m/z(%)]: 306.1 ([MNa]⁺, 20). HRMS (ESI) [MNa]⁺ calculated for C₁₅H₂₅NO₄Na: 306.1676, found: 306.1664.

1,2,3,4-Tetra-*O***-acetyl**-*β***-D-glucuronic Acid Methyl Ester.**⁵ Glucuronic acid (4.0 g, 20.6 mmol) was suspended in acetic anhydride (50 mL) and stirred at 0 °C and then iodine (28 mg, 1.1 mmol) was slowly added. After stirring for 2 h at 0 °C and 1 h at rt, and the cooled down to 0 °C and then treated (drop wise) with dry MeOH (20 mL). The resulting mixture was stirred at rt for 18 h and concentrated to dryness. The residue was dissolved in CH₂Cl₂ (70 mL), washed with aqueous Na₂S₂O₃ (1 M, 3 x 50 mL) and brine (50 mL). The organic layer was dried with Na₂SO₄, filtered, concentrated under reduced pressure to give a white solid. The solid was extracted with a mixture of Et₂O/CHCl₃/hexanes (1:1:1, 50 mL) and the solution was concentrated under vacuum. The resulting foam was dissolved in Et₂O (100 mL), filtered and the resulting crude material was crystallized from EtOAc/hexanes (1:1) to give 6.4 g of the tetraacetylated glucuronic acid. [White solid, 85%, $R_f = 0.64$ (MeOH)]. ¹H NMR

 ⁴ (a) M. Amorín, L. Castedo, J. R. Granja, J. Am. Chem. Soc., 2003, 125, 2844–2845. (b) M. Amorín, V. Villaverde, L. Castedo, J. R. Granja, J. Drug Del. Sci. Tech., 2005, 15, 87–92. (c) R. J. Brea, M. Amorín, L. Castedo, J. R. Granja, Angew. Chem. Int. Ed., 2005, 44, 5710–5713.

⁵ J. P. Malkinson, R. A. Falconer and I. Toth, *J. Org. Chem.* 2000, **65**, 5249–5252.

(CDCl₃, 250 MHz, δ): 6.33 (brs, 1H), 5.71 (d, *J* = 7.7 Hz, 1H), 5.30-5.20 (m, 2H), 5.13 (m, 1H), 4.16 (m, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H). **MS (ESI)** [m/z(%)]: 385.07 ([MNa]⁺, 100).

2,3,4-Tri-*O***-acetyl-1-azido-1-deoxy**-*β***-D-glucopyranuronic Acid.**⁵ To a solution of 1,2,3,4-Tetra-*O*-acetyl-*β*-D-glucuronic Acid Methyl Ester (1.0 g, 2.8 mmol) in CH₂Cl₂ (20 mL) was successively treated with trimethylsilyl azide (960 µL, 6.9 mmol) and tin tetrachloride in heptane (1 M, 1.40 mL, 1.4 mmol). The reaction was stirred for 18 h at rt under Ar. The solution was diluted with CH₂Cl₂ (15 mL) and washed with aqueous Na₂S₂O₃ (1 M, 3 x 15 mL), dried (Na₂SO₄), filtered, and concentrated to yield 780 mg of the title compound. [White foam, 82%, *R_f* = 0.59 (10% MeOH/CH₂Cl₂ with 1% AcOH)]. ¹H NMR (CDCl₃, 300 MHz, δ): 9.07 (brs, 1H), 5.32-5.12 (m, 2H), 4.92 (t, *J* = 8.8 Hz, 1H), 4.75 (t, *J* = 8.7 Hz, 1H), 4.13 (t, *J* = 9.3 Hz, 1H), 2.03 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H). MS (ESI) [m/z(%)]: 368.06 ([MNa]⁺, 100), 385.07 ([MK]⁺, 42).

Boc-L-γ-Ach-D-γ-^{Me}N-Acp-OFm (1). A solution of Boc-D-γ-^{Me}N-Acp-OFm^{3c} (250.0 mg, 0.59 mmol) in a TFA/CH₂Cl₂ mixture (1:1, 6.0 mL) was stirred at rt for 30 min. After removal of the solvent under vacuum, the residue was dried under high vacuum for 3 h. The resulting TFA salt was dissolved under Argon in dry CH₂Cl₂ (6.0 mL) and Boc-L-γ-Ach-OH (158.0 mg, 0.65 mmol), HATU (270.0 mg, 0.71 mmol), and DIEA (610 µL, 3.54 mmol) were successively added. After 1 h stirring at rt, the solution was washed with aqueous HCl (5%, 3 x 5 mL) and aqueous saturated NaHCO₃ (3 x 5 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure, providing a yellow oil that was purified by flash chromatography (20-40% EtAcO/hexanes) to give 267.0 mg of the dipeptide **1**. [White foam, 83%, $R_f = 0.55$ (5% MeOH/CH₂Cl₂)]. ¹H NMR (CDCl₃, 400 MHz, δ): 7.80 (d, J = 7.5 Hz, 2H), 7.62 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 5.03 (m, 1H), 4.63-4.47 (m, 4H), 4.24 (t, J = 6.2 Hz, 2H), 3.53 (m, 1H), 2.85 (s, 3H), 1.47 (s, 9H). ¹³C NMR (CDCl₃, 62.9 MHz, δ): 175.9 (CO), 175.2 (CO), 155.3 (CO), 143.8 (C), 141.5 (C), 127.9 (CH), 127.2 (CH), 125.0 (CH), 120.1 (CH), 79.3 (C), 66.1 (CH₂), 57.5 (CH), 53.7 (CH), 49.2 (CH), 47.1 (CH), 41.7 (CH), 40.4 (CH), 39.9 (CH) 35.9 (CH₂) 33.0 (CH₂) 31.4 (CH₂), 29.3 (CH₃), 29.0 (CH₂), 28.5 (CH₃), 28.5 (CH₂), 28.3 (CH₂), 27.7 (CH₂), 27.2 (CH₂). **MS (FAB⁺)** [m/z(%)]: 569.3 ([MNa]⁺, 5), 547.3 ([MH]⁺, 39), 447.2 ([MH-Boc]⁺, 100). **HRMS (ESI) calculated** for C₃₃H₄₃N₂O₅: 547.3172, **found**: 547.3165.

N₃-*D*-γ-(**Ac**)₃**Aga**-*D*-γ-^{*Me*}**N**-**Acp**-**OAll** (**3**). The mentioned compound was prepared in the same way as **1** starting from Boc-*D*-γ-^{*Me*}**N**-Acp-OFm^{3c} (300.0 mg, 0.71 mmol) and 2,3,4-Tri-*O*-acetyl-1-azido-1-deoxyβ-D-glucopyranuronic acid (287.0 mg, 0.78 mmol) to yield 290 mg of dipeptide **3**. [White foam, 80%, $R_f = 0.46$ (2% MeOH in CH₂Cl₂)]. ¹**H NMR** (CDCl₃, 250 MHz, δ): 5.85 (m, 1H), 5.45 (t, *J* = 9.5Hz, 1H), 5.32-5.05 (m, 3H), 4.92 (td, *J* = 9.1 and 4.0 Hz, 1H), 4.67 (dd, *J*= 8.6 and 6.7 Hz, 1H), 4.53 (t, *J* = 5.0 Hz, 2H), 4.41-4.21 (m, 2H), 2.92-2,79 (2s, 3H), 2.01 (s, 3H), 1.95 (s, 3H), 1.90 (s, 3H). ¹³C NMR (CDCl₃, 62.9 MHz, δ): 175.8 (CO), 170.5 (CO), 169.3 (CO), 169.0 (CO), 164.8 (CO), 132.3 (CH), 118.5 (CH₂), 74.1 (CH), 73.7 (CH), 70.5 (CH), 69.2 (CH), 65.5 (CH₂), 55.0 (CH), 41.6 (CH), 32.7 (CH₂), 31.4 (CH₂), 29.3 (CH₃), 27.2 (CH₂), 20.8 (3xCH₃). **MS (ESI)** [m/z(%)]: 511.2 ([M]⁺, 100)]. **HRMS (FAB+) calculated** for C₂₂H₃₁N₄O₁₀: 511.2040, **found**: 511.2053.

Boc-L-γ-Ach-D-γ-^{Me}N-Acp-D-γ-(Ac)₃Aga-D-γ-^{Me}N-Acp-OAII (4). A solution of the dipeptide Boc-L-γ-Ach-D- γ -^{Me}N-Acp-OFm (1) (250.0 mg, 0.46 mmol) in a mixture of piperidine and CH₂Cl₂ (1:4, 4.5 mL) was stirred at rt for 30 minutes, then the solvent was removed under vacuum and the residue was dissolved in CH₂Cl₂ (10 mL). This solution was washed with aqueous HCl (5%, 3 x 10 mL), dried over Na₂SO₄, filtered and concentrated, to give Boc-L- γ -Ach-D- γ -^{Me}N-Acp-OH (**2**), which was used without further purification. Dipeptide N_3 -D- γ -(Ac)₃Aga-D- γ -^{Me}N-Acp-OAll (**3**) (256.5 mg, 0.50 mmol) was dissolved in dry THF (5 mL) and stirred at -55°C. Tri-*n*-butylphosphine (140 µL, 0.55 mmol) was added and the solution was stirred during 30 min at the same temperature. A solution of Boc-L-y-Ach-*D*-γ-^{*Me*}*N*-Acp-OH (**2**), DIC (140 μL, 0.91 mmol), and HOBt (123.5 mg, 0.91 mmol) in THF (5 mL) was added and the reaction mixture was stirred while allowed to reach room temperature overnight. The reaction mixture was concentrated under reduced pressure, dissolved in CH_2CI_2 (5.0 mL) and washed with aqueous HCl (5%, 3 x 10 mL) and aqueous saturated NaHCO₃ (3 x 10 mL). The organic layer was dried over Na_2SO_4 , filtered and concentrated. The residue was purified by flash chromatography (1-3% MeOH/CH₂Cl₂) to produce 230.0 mg of **4**. [Pale yellow foam, 60%, $R_f = 0.33$ (5% MeOH/CH₂Cl₂)]. MS (FAB⁺) [m/z(%)]: 835.5 ([MH]⁺, 1), 735.5 ([MH-Boc]⁺, 6). HRMS (FAB+) **calculated** for C₄₁H₆₃N₄O₁₄: 835.4341, **found**: 835.4327.

Boc-[*L*- γ -**Ach**-*D*- γ -^{*Me*}*N*-**Acp**-*D*- γ -(**Ac**)₃**Aga**-*D*- γ -^{*Me*}*N*-**Acp**-]₂**OAII** (5). A solution of the tetrapeptide 4 (240.0 mg, 0.240 mmol) in CH₂Cl₂ (20 mL) was successively treated with Pd(OAc)₂ (9.7 mg, 44 µmol), N-methylmorpholine (320 µL, 2.90 mmol), PhSiH₃ (360 µL, 2.90 mmol), and PPh₃ (34.0 mg, 0.13 mmol). After stirring for 1 h at rt, the mixture was washed with aqueous HCI (5%, 3 x 10 mL), dried over Na₂SO₃, filtered and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (3-8% MeOH/CH₂Cl₂) to obtain 175.0 mg of the peptide Boc-*L*- γ -Ach-*D*- γ -^{*Me*}*N*-Acp-*D*- γ -(Ac)₃Aga-*D*- γ -^{*Me*}*N*-Acp-OH [76%, *Rf* = 0.22 (5% MeOH/CH₂Cl₂)].

A solution of Boc-*L*- γ -Ach-*D*- γ -^{*Me*}*N*-Acp-*D*- γ -Aga-*D*- γ -^{*Me*}*N*-Acp-OAll (175.0 mg, 0.21 mmol) in a mixture of TFA in CH₂Cl₂ (1:4, 2.5 mL) was stirred at rt for 60 min. After removal of the solvent, the residue was dried under high vacuum for 3 h. The resulting residue was dissolved in dry CH₂Cl₂ (2.5 mL) and treated with previously prepared Boc-*L*- γ -Ach-*D*- γ -^{*Me*}*N*-Acp-*D*- γ -(Ac)₃Aga-*D*- γ -^{*Me*}*N*-Acp-OH (175.0 mg, 0.21 mmol), HATU (96.0 mg, 0.25 mmol) and DIEA (210 µL, 1.20 mmol). After 90 min stirring at rt, the

mixture was washed with aqueous HCl (5%, 3 x 5 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The residue was purified by flash chromatography (1-7% of MeOH/CH₂Cl₂) to give 175.0 mg of the peptide **5**. [Pale yellow foam, 70%, $R_f = 0.30$ (5% MeOH/CH₂Cl₂)]. **MS (FAB⁺)** [m/z (%)]: 1512.8 ([MH]⁺, 1), 756.9 ([MH]²⁺, 15), 756.4 ([MH]²⁺, 18), 706.9 ([MH-Boc]²⁺, 25). **HRMS (ESI)** calculated for C₇₄H₁₁₂N₈O₂₅ ([MH]²⁺): 756.3864, found: 756.3861.

 $c-\{[L-\gamma-Ach-D-\gamma-M^eN-Acp-D-\gamma-(Ac)_3Aga-D-\gamma-M^eN-Acp-]_2\}$ (γ -CP1). The octapeptide 5 (90.0 mg, 59.4 μ mol) was dissolved in dry THF (1.0 mL) and then treated with Pd(PPh₃)₄ (7.0 mg, 6.0 μ mol) and 4methylmorpholine (50 μ L, 0.600 mmol). After 2 h, the solvent was evaporated, and the residue was dissolved in CH₂Cl₂ (5 mL), washed with aqueous HCl (5%, 3 x 5 mL), dried over Na₂SO₄, filtered and concentrated to dryness. The resulting residue was purified by flash chromatography (2-6% MeOH/CH₂Cl₂) to obtain 74.0 mg of Boc-[L- γ -Ach-D- γ -^{Me}N-Acp-<math>D- γ -(Ac)₃Aga-D- γ -^{Me}N-Acp-]₂OH [85%,</sup></sup> Rf = 0.20 (5% MeOH/CH₂Cl₂)]. The resulting C-unprotected octapeptide (70.0 mg, 47.5 μ mol) was dissolved in a mixture of TFA and CH₂Cl₂ (1:4, 2.0 mL) and stirred for 1 h at rt. After removal of the solvent under reduced pressure, the residue was dried under high vacuum for 3 h and used without further purification. The resulting unprotected linear peptide was dissolved in CH₂Cl₂ (56 mL) and treated with TBTU (22.0 mg, 68.5 μ mol), followed by dropwise addition of DIEA (60 μ L, 0.336 mmol). After 12 h, the solvent was removed under reduced pressure, and the residue was dissolved in CH_2CI_2 (15 mL), washed with aqueous HCl (5%, 3 x 5 mL), dried over Na_2SO_4 , filtered and concentrated to dryness. The crude was purified by HPLC (Phenomenex Luna 5μ silica, 5-10% MeOH/CH₂Cl₂), to afford 16.0 mg of γ -CP1 as a white solid (25%). ¹H NMR (CDCl₃, 500 MHz, δ): 9.01 (d, J = 9.8 Hz, 2H, NH_{Aga}), 7.47 (d, J = 7.5 Hz, 2H, NH_{Ach}), 5.45 (m, 4H, H_{YAga} and H_{QAga}), 5.32 (t, J = 9.4 Hz, 2H, H_{EAga}), 5.21 (t, J = 9.4 Hz, 2Hz) Hz, 2H, H_{δAga}), 4.76 (m, 4H, H_{γAcp}), 4.48 (d, J = 9.7 Hz, 2H, H_{αAga}), 3.95 (m, 2H, H_{γAch}), 3.01 (s, 6H, NMe), 2.94 (s, 6H, NMe), 2.82 (m, 2H, H_{aAch}), 2.69 (m, 4H, H_{aAcp}), 1.98 (s, 6H, AcO), 1.97 (s, 6H, AcO), and 1.95 (s, 6H, AcO). ¹³C NMR (CDCl₃, 126.0 MHz, δ): 175.9 (CO), 175.5 (CO), 173.9 (CO), 170.2 (CO), 169.3 (CO), 168.7 (CO), 165.9 (CO), 78.3 (CH), 73.5 (CH), 72.0 (CH), 70.7 (CH), 70.6 (C), 55.1 (CH), 54.4 (CH), 46.7 (CH), 43.1 (CH), 42.7 (CH), 40.4 (CH), 36.0 (CH₂), 32.3 (CH₂), 31.1 (CH₂), 29.7 (CH₂), 29.4 (CH₃), 29.3 (CH₃), 28.2 (CH₂), 28.1 (CH₂), 27.9 (CH₂), 27.6 (CH₂), 26.3 (CH₂), 24.8 (CH₂), 20.6 and 20.5 (3xCH₃). **EM (ESI)** [m/z (%)]: 677.5 ([MH]²⁺, 100), 1354.8 ([MH]⁺, 5), 1375.6 ([MH+Na]⁺, 4). **HRMS (ESI)** calculated for C₆₈H₉₇N₈O₂₂: 1353.6717, found: 1353.6713. FTIR (293 K, CHCl₃): 3321 and 3276 (amide A), 2943, 2886, 1757, 1639 and 1626 (amide I), 1534 cm⁻¹ (amide II_{II}).

c-[(*L*-γ-Ach-*D*-γ-^{*Me*}*N*-Acp-*D*-γ-^{*Me*}*N*-Acp-)₂] (γ-CP2). The cyclic peptide γ-CP1 (3.0 mg, 2.2 μ mol) was dissolved in MeOH (400 μ L) and commercial solution of aqueous NH₃ (100 μ L) was added.

After 1 h stirring, the solvent was removed under reduced pressure and the residue was purified by RP-HPLC [Phenomenex Luna 5 μ C18, 5-40% ACN/H₂O (0.1%TFA)] to afford 2.2 mg of wished cyclic peptide as a white solid (90%). ¹H NMR (CDCl₃/(CD₃)₂SO (7:3), 500 MHz, δ): 8.53 (m, 2H, NH_{Aga}), 7.90 (m, 2H, NH_{Ach}), 5.05 (m, 2H, H₇Aga), 4.81 (brs, 6H, H₇Acp₂ and OH_{Aga}), 4.73 (brs, 2H, H₇Acp₁), 4.61 (brs, 2H, OH_{Aga}), 4.21 (d, *J*=8.9 Hz, 2H H_{αAga}), 3.82 (s, 2H (H₇Ach)), 3.62 (brs, 2H, H_{eAga}), 3.46 (brs, 2H, H_{eAga}), 3.40 (s, 2H, H, H_δAga), 2.95 (s, 6H, NMe), 2.88 (s, 6H, NMe), 2.86 (s, 2H, H_αAcp₁), 2.75 (s, 2H, H_αAcp₂), 2.65(s, 2H, H_{αAch}). **EM (ESI)** [m/z (%)]: 551.4 ([MH]²⁺, 50), 1101.6 ([MH]⁺, 8), 1123.5 ([MNa]⁺, 4). **HRMS (ESI) calculated** for C₅₄H₈₅N₈O₁₆ [MH]⁺: 1101.6084, **found**: 1101.6069. **FTIR** (293 K, CHCl₃): 3433 and 3311 (amide A), 2927, 2858, 1676, 1620 (amide I), 1545 cm⁻¹ (amide II₁).

X-Ray Crystallographic Determination of D1_A

Preparation of single crystals for X-ray analysis: In a typical experiment, 3.0 mg of HPLC-purified γ -*D1*_A was dissolved in 1.0 mL of a mixture CH₂Cl₂/MeOH (95:5), and equilibrated by vapour-phase diffusion against 4.0 mL of hexanes. The corresponding dimer crystallized spontaneously within 2 days.

X-ray crystallographic analysis: data were collected at 100 K, using Bruker X8 Kappa APEXII CCD diffractometer using Mo $K\alpha$ radiation and a graphite monocromator. All calculations were performed on a PC compatible computer using the programs: *SIR97* (Altomare *et al.*, 1999), *SHELXL 97* (Sheldrick, 2008), *ORTEP-3* (Farrugia, 1997), Win-GX (Farrugia, 1999), *PLATON (SQUEEZE)* (Spek, 2001). Supplementary crystallographic data for γ -*D*1_A (CIF format) can be obtained free of charge from the journal.

NMR SPECTRA

Boc-*L*-γ-Ach-*D*-γ-^{*Me*}*N*-Acp-OFm (2)

c-[(*L*-γ-Ach-*D*-γ-^{*Me*}*N*-Acp-*D*-γ-(Ac)₃Aga-*D*-γ-^{*Me*}*N*-Acp)₂-] (γ-CP1).

¹H NMR [2.8 mM, CDCl₃, 298K, 500.13 MHz].

COSY [2.8 mM, CDCl₃, 298K, 500.13 MHz]

NOESY [2.8 mM, CDCl₃, 298K, 500.13 MHz]

ROESY [2.8 mM, CDCl₃, 298K, 500.13 MHz]

TOCSY [2.8 mM, CDCl₃, 298K, 500.13 MHz]

HSQC [2.8 mM, CDCl₃, 298K, 500.13 MHz]

 ^{13}C NMR and DEPT [2.8 mM, CDCl_3, 298K, 500.13 MHz]

FT-IR [CHCl₃, 298K]

c-[(L- γ -Ach-D- γ - Me N-Acp-D- γ -Aga-D- γ - Me N-Acp)₂-] (γ -CP2).

¹H NMR [9.0 mM, CDCl₃/(CD₃)₂SO (7:3), 298K, 500.13 MHz].

9.0 8.5 7.5 2.5 2.0 1.5 0.0 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 1.0 0.5

COSY [9.0 mM, CDCl₃/(CD₃)₂SO (7:3), 298K, 500.13 MHz]

NOESY [9.0 mM, CDCl₃/(CD₃)₂SO (7:3), 298K, 500.13 MHz]

ROESY [9.0 mM, CDCl₃/(CD₃)₂SO (7:3), 298K, 500.13 MHz]

TOCSY [9.0 mM, CDCl₃/(CD₃)₂SO (7:3), 298K, 500.13 MHz]

FT-IR [MeOH, 298K]

