Metal-Free Intramolecular Aminofluorination of Alkenes Mediated by PhI(OPiv)₂/ Hydrogen Fluoride-Pyridine System

Qing Wang, Wenhe Zhong, Xiong Wei, Maoheng Ning, Xiangbao Meng*, Zhongjun Li* The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China

General Considerations	1
General Procedure for Aminofluorination of Unactivated Alkenes	1
Characterization of compound 2d	4
Product Characterization:	8
The Spectrum of Products	17

General Considerations

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. The chemical shifts (δ) are given in parts per million relative to the internal standard TMS (0 ppm for ¹H) and CDCl₃ (77.0 ppm for ¹³C). Flash column chromatography was performed on silica gel (40-63 µm) and eluted with petroleum ether/ethyl acetate. Dichloromethane was dried by refluxing over P₂O₅ for 4h followed by fractional distillation. Compounds **1a-1t**^{S1} were synthesized according to the reported procedure.

General Procedure for Aminofluorination of Unactivated Alkenes

To a solution of alkene (0.25 mmol) and PIDP (122 mg, 0.30 mmol) in DCM (2 mL) and HF/Py (65 μ L, 2.5 mmol) was added BF₃·OEt₂ (3.5 μ L, 0.025mmol). The reaction mixture was stirred at room temperature for 4 hours. Then the solvent was removed under vacuum, and the residue was purified by flash chromatography to afford the product.

⁽S1) Michael, F. E.; Cochran, B. M.; J. Am. Chem. Soc., 2006, 128, 4246-4247.

		NHR	Hypervalent Iodine F Source BF ₃ ·OEt ₂	_R	
	-	$\wedge \sim$	Solvent	∽∕_ _F	
		1a		2a	
entry	[F] source	solvent	hypervalent iodine(III)	R	yield(%)
1	AgF(2.5 eq)	DCM	PIDA	Ts	18
2	AgF(2.5 eq)	DCM	PIDP	Ts	29
3	AgF(2.5 eq)	DCM	PIDP	Ts	n.r. ^a
4	$HF/H_2O(2.5 \text{ eq})$	DCM	PIDP	Ts	0
5	$KF \cdot 2H_2O(2.5 eq)$	DCM	PIDP	Ts	0
6	$CaF_2(2.5 eq)$	DCM	PIDP	Ts	0
7	LiF(2.5 eq)	DCM	PIDP	Ts	0
8	MgF ₂ (2.5 eq)	DCM	PIDP	Ts	0
9	KF·HF(2.5 eq)	DCM	PIDP	Ts	0
10	$NH_4HF_2(2.5 eq)$	DCM	PIDP	Ts	0
11	NEt ₃ ·3HF(2.5 eq)	DCM	PIDP	Ts	0
12	TBAF(2.5 eq)	DCM	PIDP	Ts	n.r.
13	HF/Py(2 eq)	DCM	PIDP	Ts	35
14	HF/Py(3 eq)	DCM	PIDP	Ts	70
15	HF/Py(4 eq)	DCM	PIDP	Ts	76
16	HF/Py(5 eq)	DCM	PIDP	Ts	81
17	HF/Py(10 eq)	DCM	PIDP	Ts	85
18	HF/Py(15 eq)	DCM	PIDP	Ts	85
19	HF/Py(10 eq)	DCM	PIDA	Ts	39
20	HF/Py(10 eq)	DCM	PIFA	Ts	59
21	HF/Py(10 eq)	DMSO	PIDP	Ts	n.r.
22	HF/Py(10 eq)	THF	PIDP	Ts	n.r.
23	HF/Py(10 eq)	MeCN	PIDP	Ts	n.r.
24	HF/Py(10 eq)	DCM	PIDP	Cbz	complex
25	HF/Py(10 eq)	DCM	PIDP	Bz	complex
26	HF/Py(10 eq)	DCM	PIDP	Ac	complex
27	HF/Py(10 eq)	DCM	PIDP	Boc	complex

 Table 1S. Hypervalent Iodine(III) Mediated Intramolecular Aminofluorination of Alkenes

entry	alkene	product	yield (%)
1	1a NHTs 1a	Ts N 2a	85
2 3 4	NHTs R R' 1b R = R' = H 1c R = R' = Ph 1d R = Ph B' = H	Ts R R' 2b R = R' = H 2c R = R' = Ph	90 81 81 (<i>cis:trans</i> > 99:1)
5 6 7	NHTs R = $ortho$ -CH ₃ 1f R = $para$ -CH ₃ 1g R = $para$ -CH ₃	2d R = Ph R' = H Ts R 2e R = ortho-CH ₃ 2f R = meta-CH ₃ 2g R = para-CH ₃	78 (<i>cis:trans</i> > 99:1) 75 (<i>cis:trans</i> > 99:1) 64 (<i>cis:trans</i> > 99:1)
8	Ph CH ₃ 1h	Ph CH ₃ F 2h	89 (Z:E=1.6:1) ^b
9	NHTS 1i		63 (<i>cis:trans</i> > 99:1)
10	NHTs // 1j	2j F	80
11 12	NHTs R R' 1k R = R' = Ph 1l R = Ph R' = H	Ts $R \xrightarrow{V} CH_3$ 2k R = R' = Ph 2l R = Ph R = H	59 59 (<i>E</i> : <i>Z</i> > 99:1)
13 14	$P_{Ph} = P_{Ph} + P$	Ph Ph F 2m R = H, R' = CH ₃ 2n R = R' = CH ₃	complex mixture complex mixture
15	PtpH 10	Ph	33 (20:2p =9.3:1) ^c

Table 2S. Hypervalent Iodine(III) Mediated Intramolecular Aminofluorination of Alkenes^a

^a Reactions were conducted at 0.25 mmol scale. ^b Isolated yield (the ratio of diastereoselectivity was determined by ¹⁹F NMR). The *E* isomer can't be isolated. ^c Products **20** and **2p** cannot be separated by column chromato-graphy on silica gel.

Characterization of compound 2d

Ph

 $^{1}\text{H}\text{-}^{1}\text{H}$ COSY and NOESY-1D were used to identify the structures of **2d**.

Figure S1. The ¹H NMR Spectrum of Compound 2d

Figure S2. The ¹H-¹H COSY Spectrum of Compound 2d

Furthermore, the NOESY spectroscopy shows that there are stronger NOE between Hax1 and Heq1, Hax3 and Heq1, which means Hax1 Heq1 and Hax3 in one side of ring (Scheme S4 and Figure S5). This result supports that **2i** is in *cis*-configuration.

S6

Figure S5. The NOESY-1D Spectroscopy of Compound **2d**: top, ¹H NMR spectrum; bottom, NOSEY-1D spectroscopy

Product Characterization:

5-fluoro-3,3-dimethyl-1-tosylpiperidine (2a)

General procedure, compound **2a** was isolated in 85% yield (60.7mg, white amorphous solid). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.88 – 4.67 (m, 1H), 3.60 (td, *J* = 12.9, 4.3 Hz, 1H), 2.97 (d, *J* = 11.4 Hz, 1H), 2.62 (dt, *J* = 11.2, 7.8 Hz, 1H), 2.44 (s, 3H), 2.38 (d, *J* = 11.5 Hz, 1H), 1.78 – 1.65 (m, 1H), 1.35 (td, *J* = 12.9, 8.8 Hz, 1H), 1.09 – 0.97 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 133.5, 129.7, 127.5, 85.8 (d, *J* = 175.5 Hz), 56.7, 49.7 (d, *J* = 28.7 Hz), 42.7 (d, *J* = 17.5 Hz), 31.9 (d, *J* = 7.2 Hz), 27.8, 25.9, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -183.11.

3-fluoro-1-tosylpiperidine (2b)

General procedure, compound **2b** was isolated in 90% yield (57.9mg, white amorphous solid). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 4.67 (dtt, J = 47.4, 6.9, 3.5 Hz, 1H), 3.32 (ddd, J = 19.7, 11.9, 3.2 Hz, 1H), 3.12 – 2.98 (m, 2H), 2.97 – 2.88 (m, 1H), 2.44 (s, 3H), 1.94 – 1.71 (m, 2H), 1.71 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 133.2, 129.6, 127.5, 85.9 (d, J = 176.3 Hz), 49.5 (d, J = 26.5 Hz), 45.7, 29.1 (d, J = 20.0 Hz), 21.4, 21.0 (d, J = 6.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -182.77. 5-fluoro-3,3-diphenyl-1-tosylpiperidine (2c)

General procedure, compound **2c** was isolated in 81% yield (83.1mg, white amorphous solid). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 7.7 Hz, 2H), 7.36 – 7.12 (m, 10H), 4.64 – 4.42 (m, 2H), 4.07 – 3.97 (m, 1H), 3.01 – 2.90 (m, 1H), 2.47 – 2.35 (m, 4H), 2.29 (td, J = 10.0, 5.5 Hz, 1H), 2.16 (dd, J = 20.3, 11.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 144.1, 143.1, 132.1, 129.9, 128.6, 128.6, 127.7, 127.67, 126.8, 126.5, 126.4, 85.54 (d, J = 173.7 Hz), 53.8, 49.79 (d, J = 31.1 Hz), 46.40 (d, J = 11.0 Hz), 41.01 (d, J = 18.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -185.51.

3-fluoro-5-phenyl-1-tosylpiperidine (2d)

General procedure, compound **2d** was isolated in 81% yield (67.4mg, white amorphous solid) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.36 – 7.24 (m, 5H), 7.17 (d, *J* = 7.1 Hz, 2H), 4.89 – 4.66 (m, 1H), 4.23 – 4.16 (m, 1H), 3.87 (dd, *J* = 11.7, 1.6 Hz, 1H), 2.97 (t, *J* = 12.0 Hz, 1H), 2.49 – 2.35 (m, 4H), 2.25 (td, *J* = 10.5, 4.3 Hz, 1H), 2.16 (t, *J* = 11.6 Hz, 1H), 1.71 – 1.57 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 140.1, 133.1, 129.8, 128.8, 127.5, 127.4, 127.1, 86.90 (d, *J* = 176.4 Hz), 51.9, 49.45 (d, *J* = 31.4 Hz), 40.02 (d, *J* = 11.0 Hz), 36.95 (d, *J* = 18.3 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -181.19. 3-fluoro-5-(o-tolyl)-1-tosylpiperidine (2e)

General procedure, compound **2e** was isolated in 78% yield (67.9mg, white amorphous solid, mp 165.1 – 165.9 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.22 – 7.11 (m, 3H), 7.09 – 7.01 (m, 1H), 4.91 – 4.68 (m, 1H), 4.27 – 4.17 (m, 1H), 3.86 – 3.75 (m, 1H), 3.22 – 3.08 (m, 1H), 2.43 (s, 3H), 2.37 (s, 3H), 2.35 – 2.25 (m, 2H), 2.14 (t, *J* = 11.5 Hz, 1H), 1.74 – 1.61 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 138.2, 136.0, 133.3, 130.9, 129.8, 127.5, 127.1, 126.4, 125.3, 87.0 (d, *J* = 176.8 Hz), 51.1, 49.6 (d, *J* = 31.5 Hz), 36.7 (d, *J* = 18.2 Hz), 35.8 (d, *J* = 10.9 Hz), 21.5, 19.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -180.61. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14275.

3-fluoro-5-(m-tolyl)-1-tosylpiperidine (2f)

General procedure, compound **2f** was isolated in 75% yield (65.4mg, white amorphous solid, mp 125.1 – 125.9 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.01 – 6.93 (m, 2H), 4.87 – 4.65 (m, 1H), 4.23 – 4.14 (m, 1H), 3.86 (dd, *J* = 11.6, 1.5 Hz, 1H), 2.97 – 2.86 (m, 1H), 2.43 (s, 3H), 2.41 – 2.34 (m, 1H), 2.33 (s, 3H), 2.24 (td, J = 10.5, 4.3 Hz, 1H), 2.14 (t, J = 11.5 Hz, 1H), 1.70 – 1.56 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 140.1, 138.4, 133.1, 129.8, 128.6, 128.1, 127.9, 127.5, 124.0, 87.0 (d, J = 176.5 Hz), 52.0, 49.5 (d, J = 31.5 Hz), 40.0 (d, J = 10.7 Hz), 36.9 (d, J = 18.3 Hz), 21.5, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -181.05. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14279.

3-fluoro-5-(p-tolyl)-1-tosylpiperidine (2g)

General procedure, compound **2g** was isolated in 64% yield (55.3mg, white amorphous solid, mp 185.4 – 186.2 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 4.88 – 4.64 (m, 1H), 4.27 – 4.14 (m, 1H), 3.85 (dd, *J* = 11.6, 1.5 Hz, 1H), 2.93 (t, *J* = 12.0 Hz, 1H), 2.43 (s, 3H), 2.41 – 2.34 (m, 1H), 2.32 (s, 3H), 2.23 (td, *J* = 10.5, 4.3 Hz, 1H), 2.12 (t, *J* = 11.6 Hz, 1H), 1.67 – 1.54 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 137.1, 133.1, 129.8, 129.4, 127.6, 126.9, 87.0 (d, *J* = 176.5 Hz), 52.1, 49.5 (d, *J* = 31.3 Hz), 39.6 (d, *J* = 10.6 Hz), 37.0 (d, *J* = 18.2 Hz), 21.5, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -181.08. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14276.

5-fluoro-3-methyl-3-phenyl-1-tosylpiperidine (2h)

cis-Configuration

General procedure, compound **2h** was isolated in 89% yield (77.3mg, white amorphous solid) (*cis* : *trans* =1.6:1). *cis*-Configuration (white amorphous solid, mp 123.3 – 123.6 °C) ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.28 (m, 6H), 7.28 – 7.20 (m, 1H), 4.97 (dtt, *J* = 47.9, 9.9, 4.9 Hz, 1H), 4.06 (dt, *J* = 10.3, 5.0 Hz, 1H), 3.68 (dd, *J* = 11.6, 1.5 Hz, 1H), 2.48 (d, *J* = 11.6 Hz, 1H), 2.42 (s, 3H), 2.36 – 2.25 (m, 2H), 1.78 (dd, *J* = 23.1, 12.6 Hz, 1H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 143.8, 133.2, 129.8, 128.6, 127.4, 126.8, 125.0, 85.8 (d, *J* = 173.9 Hz), 55.4, 49.8 (d, *J* = 30.4 Hz), 41.3 (d, *J* = 17.8 Hz), 38.9 (d, *J* = 10.2 Hz), 25.3, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -184.87. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14230.

trans-configuration can't be separated.

3-benzyl-5-fluoro-1-tosylpiperidine (2i)

General procedure, compound **2i** was isolated in 63% yield (54.7mg, white amorphous solid, mp 110.3 – 111.0 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.19 (m, 5H), 7.10 (d, *J* = 7.1 Hz, 2H), 4.69 – 4.46 (m, 1H), 3.93 (dt, *J* = 10.9, 5.5 Hz, 1H), 3.62 (d, *J* = 10.0 Hz, 1H), 2.67 (dd, *J* = 13.5, 6.2 Hz, 1H), 2.53 – 2.41 (m, 4H), 2.36 – 2.27 (m, 1H), 2.13 – 1.91 (m, 3H), 1.19 – 1.04 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 138.4, 133.3, 129.8, 128.9, 128.6, 127.6, 126.5, 86.8 (d, J = 176.1 Hz), 50.7, 49.7 (d, J = 30.6 Hz), 39.6, 36.2 (d, J = 18.2 Hz), 35.8 (d, J = 8.9 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -180.58. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14279.

4-fluoro-2-tosyl-2-azaspiro[5.5]undecane (2j)

General procedure, compound **2j** was isolated in 80% yield (65.3mg, white amorphous solid). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 4.89 – 4.66 (m, 1H), 3.60 (td, *J* = 13.1, 4.3 Hz, 1H), 3.18 (d, *J* = 11.7 Hz, 1H), 2.67 (dt, *J* = 11.2, 7.9 Hz, 1H), 2.49 – 2.39 (m, 4H), 1.81 (ddd, *J* = 17.6, 13.4, 4.3 Hz, 1H), 1.56 – 1.25 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 133.7, 129.7, 127.5, 85.49 (d, *J* = 175.1 Hz), 54.0, 50.18 (d, *J* = 28.5 Hz), 40.97 (d, *J* = 17.8 Hz), 36.2, 34.52 (d, *J* = 7.1 Hz), 33.9, 26.1, 21.5, 21.4, 21.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -182.40.

3-fluoro-3-methyl-5,5-diphenyl-1-tosylpiperidine (2k)

General procedure, compound **2k** was isolated in 59% yield (62.5mg, white amorphous solid). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.30 (ddd, *J* = 20.4, 17.4, 7.7 Hz, 10H), 7.21 – 7.12 (m, 2H), 3.66 (d, *J* = 12.4 Hz, 1H), 3.37 (d, *J* = 12.4 Hz, 1H), 3.15 – 3.03 (m, 1H), 2.96 (t, *J* = 10.2 Hz, 1H), 2.65 (t, *J* = 12.7 Hz, 1H), 2.57 – 2.43 (m, 1H), 2.40 (s, 3H), 1.12 (d, J = 22.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 145.1, 143.9, 132.4, 129.8, 128.5, 128.3, 127.7, 127.2, 126.9, 126.4, 126.2, 91.5 (d, J = 174.1 Hz), 54.5 (d, J = 29.1 Hz), 53.8, 45.5 (d, J = 6.5 Hz), 44.9 (d, J = 20.6 Hz), 25.1 (d, J = 23.6 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.76.

3-fluoro-3-methyl-5-phenyl-1-tosylpiperidine (2l)

General procedure, compound **21** was isolated in 59% yield (40.7mg, white amorphous solid, mp 148.7 – 149.5 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.22 (m, 5H), 7.21 – 7.13 (m, 2H), 3.90 (dd, *J* = 11.5, 1.6 Hz, 1H), 3.83 (d, *J* = 10.7 Hz, 1H), 3.00 (t, *J* = 12.3 Hz, 1H), 2.43 (s, 3H), 2.35 (dd, *J* = 10.7, 6.7 Hz, 1H), 2.20 – 2.08 (m, 2H), 1.82 (q, *J* = 13.1 Hz, 1H), 1.65 (d, *J* = 23.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 140.4, 133.1, 129.8, 128.8, 127.6, 127.4, 127.1, 92.3 (d, *J* = 172.2 Hz), 54.2 (d, *J* = 34.8 Hz), 52.5, 42.3 (d, *J* = 20.7 Hz), 40.2 (d, *J* = 11.5 Hz), 23.4 (d, *J* = 24.0 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.50. HRMS: m/z (ESI) Calcd for C₁₉H₂₃FNO₂S 348.14280, found 348.14298.

2-(fluoromethyl)-5,5-diphenyl-1-tosylpiperidine (20)

6-fluoro-3,3-diphenyl-1-tosylazepane (2p)

General procedure, compound **20** and **2p** was isolated in 33% yield (28.8mg, colorless oil) (**20** : **2p** =9.3:1). Products **20** and **2p** can not be separated by column chromatography on silica gel.

Major product 20 : ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.3 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.36 – 7.15 (m, 10H), 4.94 – 4.73 (m, 1H), 4.20 (d, J = 13.8 Hz, 1H), 3.68 (td, J = 13.8, 5.7 Hz, 1H), 3.31 (d, J = 13.7 Hz, 1H), 3.08 (td, J = 14.6, 7.2 Hz, 1H), 2.61 (ddd, J = 12.1, 6.7, 3.5 Hz, 1H), 2.40 (s, 3H), 2.35 – 2.25 (m, 1H), 1.88 (ddd, J = 15.8, 10.0, 4.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 145.6, 143.8, 134.4, 129.9, 128.4, 128.1, 127.6, 127.5, 126.5, 126.4, 90.2 (d, J = 171.3 Hz), 61.5, 53.2 (d, J = 32.3 Hz), 50.7, 30.6 (d, J = 3.6 Hz), 27.8 (d, J = 21.3 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -174.44. **2p:** ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 143.5, 136.9, 129.7, 129.6, 128.5, 128.4, 127.9,

127.5, 127.0, 126.5, 126.1, 82.0 (d, *J* = 174.0 Hz), 51.2 (d, *J* = 21.7 Hz), 50.1, 45.8, 42.0, 29.7, 26.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -224.53.

20 and **2p** HRMS: m/z (ESI) Calcd for $C_{25}H_{27}FNO_2S$ 424.17410, found 424.17437.

5-phenyl-1-tosylpiperidin-3-yl pivalate (3)

 $BF_3 \cdot OEt_2$ (3.5 µL, 0.025mmol) was added to a solution of alkene **1d** (0.25 mmol) and PIDP (122 mg, 0.30 mmol) in DCM (2 mL). The reaction mixture was stirred at room temperature for 4 hours. Then the solvent was removed under vacuum, and the residue was purified by flash chromatography to afford the product. Compound **3** was isolated in 64% yield (67mg,

white amorphous solid, mp 150.1 – 150.3 °C) (*cis* : *trans* >99:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.38 – 7.20 (m, 5H), 7.16 (d, *J* = 7.1 Hz, 2H), 5.03 – 4.89 (m, 1H), 4.06 (d, *J* = 6.9 Hz, 1H), 3.89 (d, *J* = 10.9 Hz, 1H), 2.97 (t, *J* = 11.7 Hz, 1H), 2.44 (s, 3H), 2.27 (t, *J* = 10.6 Hz, 3H), 1.48 (q, *J* = 12.0 Hz, 1H), 1.17 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 143.7, 140.6, 133.5, 129.8, 128.7, 127.5, 127.2, 127.0, 68.0, 51.8, 48.7, 40.3, 38.6, 36.2, 27.0, 21.5. HRMS: m/z (ESI) Calcd for C₂₃H₃₀NO₄S 416.18901, found 416.18935.

The Spectrum of Products

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

3-fluoro-1-tosylpiperidine(2b) (400 MHz, CDCl₃)

67 33 26 26	59 60 59 59	5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
<u> </u>	444444444		ò
$\neg \neg \neg$			

5-fluoro-3,3-diphenyl-1-tosylpiperidine(2c) (400 MHz, CDCl₃)

 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-0.0

Ts Ph

		* F • • • • • • • • • • •		
000110000				000000000
~~~~~~	* * * * * * * * * * * * * * * * *	440000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00
handless handles		have been been been been been been been be		استرابي بالمسامسات والمسامسات المساد
I The Life of the		the second s		









		V V		1
******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.4.400.000	~~~~~	
	22222222222222	8887866	X 4 4 6 6 6 8 8 8 8 7 7 7 4	ŏ















10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)



3-benzyl-5-fluoro-1-tosylpiperidine(2i) (400 MHz, CDCl₃)















## 3-fluoro-3-methyl-5,5-diphenyl-1-tosylpiperidine(2k) (400 MHz, CDCl₃)

7.66 7.64 7.36 7.33 7.33 7.33 7.33 7.33 7.33 7.33	2,2,2,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	-1.15	0.00
		57	1









## 3-fluoro-3-methyl-5-phenyl-1-tosylpiperidine(2l) (400 MHz, CDCl₃)

16 11 12 22 23 25 25 25 23 33 33 33 33 36 25	668888	896	4686621111128688666	
~~~~~		50.00	0	
		\leq		

2-(fluoromethyl)-5,5-diphenyl-1-tosylpiperidine(20) 6-fluoro-3,3-diphenyl-1-tosylazepane(2p) (400 MHz, CDCl₃)

5-phenyl-1-tosylpiperidin-3-yl pivalate (3) (400 MHz, CDCl₃)

