## **Supplementary Information**

## Reply to "A further study of acetylacetone nitrosation" Luis García-Río,\* Mercedes Parajó and Moisés Pérez-Lorenzo\*

Kinetic traces in the absence of added-catalyst at increasing AcAc concentrations



**Figure S1.** Fit of the absorbance-time data at 230 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(6.852\pm0.031)\times10^{-4} \text{ s}^{-1}$ . [AcAc]=5.3×10<sup>-4</sup> M; [H<sup>+</sup>]=0.13 M; [NaNO<sub>2</sub>]=5.0×10<sup>-5</sup> M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C. KO



**Figure S2.** Fit of the absorbance-time data at 230 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(6.700\pm0.024)\times10^{-3} \text{ s}^{-1}$ . [AcAc]= $5.3\times10^{-3}$  M; [H<sup>+</sup>]=0.13 M; [NaNO<sub>2</sub>]= $5.0\times10^{-5}$  M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.

Kinetic traces in the absence of added-catalyst at increasing acid concentrations



**Figure S3.** Fit of the absorbance-time data at 230 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(2.870\pm0.013)\times10^{-4}$  s<sup>-1</sup>. [AcAc]= $5.3\times10^{-4}$  M; [H<sup>+</sup>]=0.055 M; [NaNO<sub>2</sub>]= $5.0\times10^{-5}$  M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.



**Figure S4.** Fit of the absorbance-time data at 230 nm to the integrated first-order rate law,  $A_t = A_{\infty} - (A_{\infty} - A_0) \exp(-k_{obs}t)$  where  $k_{obs} = (2.285 \pm 0.008) \times 10^{-3} \text{ s}^{-1}$ . [AcAc]= $5.3 \times 10^{-4}$  M; [H<sup>+</sup>]=0.50 M; [NaNO<sub>2</sub>]= $5.0 \times 10^{-5}$  M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.

Kinetic traces in the presence of nucleophiles



**Figure S3.** Fit of the absorbance-time data at 250 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(2.895\pm0.007)\times10^{-4}$  s<sup>-1</sup>. [AcAc]=5.3×10<sup>-4</sup> M; [Cl<sup>-</sup>]=0.10 M; [H<sup>+</sup>]=0.052 M; [NaNO\_2]=5.0×10<sup>-5</sup> M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.



**Figure S4.** Fit of the absorbance-time data at 230 nm to the integrated first-order rate law,  $A_t = A_{\infty} - (A_{\infty} - A_0) \exp(-k_{obs}t)$  where  $k_{obs} = (5.775 \pm 0.020) \times 10^{-4} \text{ s}^{-1}$ . [AcAc]= $5.3 \times 10^{-4}$  M; [Br]=0.05 M; [H<sup>+</sup>]=0.052 M; [NaNO<sub>2</sub>]= $5.0 \times 10^{-5}$  M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.

Kinetic traces in the presence of buffer solutions



**Figure S5.** Fit of the absorbance-time data at 250 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(2.898\pm0.040)\times10^{-5}$  s<sup>-1</sup>. [AcAc]=5.3×10<sup>-4</sup> M; [MCA]=0.10 M; pH=2.23; [NaNO\_2]=5.0×10^{-5} M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.



**Figure S6.** Fit of the absorbance-time data at 275 nm to the integrated first-order rate law,  $A_t=A_{\infty}-(A_{\infty}-A_0)\exp(-k_{obs}t)$  where  $k_{obs}=(1.560\pm0.029)\times10^{-4} \text{ s}^{-1}$ . [AcAc]=5.3×10<sup>-4</sup> M; [DCA]=0.50 M; pH=1.75; [NaNO\_2]=5.0×10^{-5} M; Ionic strength 1.0 M (NaClO<sub>4</sub>); T=25.0 °C.