Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Information

General considerations

Table of contents

General Procedure for the Synthesis of O-aryl-prop-2-ynyl)phenols (1): Synthesis of -methoxy-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1h). Characterization of 4-(2-hydroxyethyl)-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1a) Characterization of 4-(2-hydroxyethyl)-O-(3-phenylprop-2-ynyl)phenol (1b) Characterization of 4-(2-hydroxyethyl)-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1c) Characterization of of O-(3-phenylprop-2-ynyl)phenol (1d) Characterization of O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1e) Characterization of O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1f) Characterization of 4-methoxy-O-(3-phenylprop-2-ynyl)phenol (1g) Characterization of 4-methoxy-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1h) Characterization of 4-methoxy-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1i) Characterization of 4-acetyl-O-3-phenylprop-2-ynyl)phenol (1j) Characterization of 4-acetyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1k) Characterization of 4-acetyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (11) Characterization of 4-phenyl-O-(3-phenylprop-2-ynyl)phenol (1m) Characterization of 4-phenyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1n) Characterization of 4-phenyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (10) Characterization of 3,5-dimethyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1p) Characterization of 3-methyl-O-(3-phenylprop-2-ynyl)phenol (1q) Characterization of 3-methyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1r) Characterization of 3-methyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1s) Characterization of 3-carboxymethyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol Characterization of 4-bromo-3-(3-(4-methoxyphenyl)prop-2-ynyloxy)phenol (1t)

General methods: ¹H and ¹³C NMR spectra were recorded at 400 and 100.6 MHz, respectively. IR spectra were recorded in KBr pellets or neat in NaCl on a FT-IR spectrometer. Only the most significant IR absorptions are given. Melting points were determined on a microscopes apparatus and were uncorrected. All products were further characterized by mass spectra. Unless otherwise stated, all starting materials, catalysts, and solvents were commercially available and were used as purchased. Reaction products were purified by flash chromatography on silica gel by elution with *n*-hexane/EtOAc mixtures.

General Procedure for the Synthesis of *O*-aryl-prop-2-ynyl)phenols (1): Synthesis of -methoxy-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1h). A solution of 4-methoxy-*O*-prop-2-ynylphenol (810.9 mg, 5.0 mmol, 1 equiv.), $PdCl_2(PPh_3)_2$ (70.1 mg, 0.10 mmol, 0.02 equiv.) and CuI (38.1 mg, 0.4 mmol, 0.04 equiv.) in DMF (3 mL) /di-isopropylamine (6 mL) was treated with 4-iodoanisole (1.521 g, 6.5mmol, 1.3 equiv.). The resulting solution was stirred at room temperature for 1 h until determined to be complete by TLC. The crude reaction mixture was poured into NH_4Cl/H_2O and extracted with ether. The combined organic extracts were washed with $NaCl/H_2O$, dried over Na_2SO_4 and finally concentrated under reduced pressure. The product was subjected to flash column chromatography (SiO₂ 50 g), eluting with *n*-hexane/ethyl acetate 85:15 v/v to afford the product (1.139 g, 4.25 mmol, 85%) as a yellow solid.

Characterization of 4-(2-hydroxyethyl)-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1a):

(0.944 g,67%). Mp: 102-103 °C. Found C, 76.63; H, 6.42. Anal Calcd for $C_{18}H_{18}O_3$, C, 76.57; H, 6.43. IR (KBr): v_{max}/cm^{-1} 3425, 2939, 2229, 1604, 1581, 1510, 1444, 1242, 1028, 833. δ_H (400 MHz; CDCl₃; Me₄Si) 7.40 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.90 (s, 2H), 3.87 (t, J = 6.4 Hz, 2H), 3.82 (s, 3H), 2.84 (t, J = 6.4 Hz, 2H), 1.61 (bs, 1H). δ_C (100.6 MHz; CDCl₃; Me₄Si) 159.9, 156.6, 133.3, 131.2, 130.0, 115.2, 114.4, 113.9, 87.1, 82.7, 63.8, 56.9, 55.3, 38.3. MS (relative intensity): m/z 305 ([M+23]⁺, 100).

Characterization of 4-(2-hydroxyethyl)-O-(3-phenylprop-2-ynyl)phenol (1b):

 $(0.945 \text{ g}, 75\%). \text{ Mp: } 70\text{-}71 \ ^{\circ}\text{C}. \text{ Found C}, 80.84; \text{H}, 6.40. \text{ Anal Calcd for } C_{17}\text{H}_{16}\text{O}_2, \text{C}, 80.93; \text{H}, 6.39. \text{ IR (KBr): } v_{max}/\text{cm}^{-1} \ 3338, 2939, 2360, 1610, 1581, 1510, 1444, 1236, 1018, 823. \\ \delta_{H} (400 \text{ MHz; CDCl}_3; \text{Me}_4\text{Si}) \ 7.48\text{-}7.46 (m, 2\text{H}), 7.34\text{-}7.33 (m, 3\text{H}), 7.20 (d, \textit{J} = 8.8 \text{ Hz}, 2\text{H}), 7.01 (d, \textit{J} = 8.8 \text{ Hz}, 2\text{H}), 4.92 (s, 2\text{H}), 3.85 (t, \textit{J} = 6.4 \text{ Hz}, 2\text{H}), 2.85 (t, \textit{J} = 6.4 \text{ Hz}, 2\text{H}), 1.58 (bs, 1\text{H}). \\ \delta_{C} (100.6 \text{ MHz; CDCl}_3; \text{Me}_4\text{Si}) \ 156.6, 131.8, 131.3, 130.0, 128.7, 128.3, 122.3, 115.2, 87.1, 84.0, 63.8, 56.8, 38.3. \\ \text{MS (relative intensity): } m/z \ 275 ([M+23]^+, 100). \\ \end{array}$

Characterization of 4-(2-hydroxyethyl)-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1c):

 $(1.249 \text{ g}, 85\%). \text{ Mp: 95-97 °C. Found C, 77.60; H, 6.15. Anal Calcd for C_{19}H_{18}O_3, C, 77.53; H, 6.16. \text{ IR (KBr): } v_{max}/cm^{-1} 3356, 2927, 2359, 1687, 1601, 1578, 1514, 1454, 1244, 1020, 839. \\ \delta_H (400 \text{ MHz; CDCl}_3; \text{ Me}_4\text{Si}) 7.91 (d, J = 8.4 \text{ Hz}, 2H), 7.53 (d, J = 8.4 \text{ Hz}, 2H), 7.20 (d, J = 8.4 \text{ Hz}, 2H), 7.00 (d, J = 8.8 \text{ Hz}, 2H), 4.93 (s, 2H), 3.86 (t, J = 6.4 \text{ Hz}, 2H), 2.85 (t, J = 6.4 \text{ Hz}, 2H), 2.61 (s, 3H), 1.59 (bs, 1H). \\ \delta_C (100.6 \text{ MHz; CDCl}_3; \text{Me}_4\text{Si}) 197.3, 156.4, 136.6, 131.9, 131.6, 130.1, 128.2, 127.1, 115.1, 87.3, 86.3, 63.7, 56.7, 38.3, 26.6. MS (relative intensity): m/z 317 (([M+23]^+, 100). \text{ Mathematical matrix}) + 1.50 (Mathematical mathematical ma$

Characterization of O-(3-phenylprop-2-ynyl)phenol (1d):

 $(0.904 g, 87\%). Oil. Found C, 86.59; H, 5.79. Anal Calcd for C_{15}H_{12}O, C, 86.51; H, 5.81. IR (KBr): v_{max}/cm^{-1} 2918, 2858, 2359, 1597, 1491, 1456, 1263, 1036, 754, 690. \delta_{H} (400 MHz; CDCl_3; Me_4Si) 7.48-7.45 (m, 2H), 7.37-7.32 (m, 5H), 7.08-7.01 (m, 3H), 4.94 (s, 2H). \delta_{C} (100.6 MHz; CDCl_3; Me_4Si) 157.8, 131.8, 129.5, 128.7, 128.3, 121.4, 118.5, 111.0, 87.1, 84.1, 56.6. MS (relative intensity): m/z 208 (M^+, 11), 115 (100), 93 (4), 77 (4).$

Characterization of O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1e):

 $(0.881 g, 74\%). Oil. Found C, 80.57; H, 5.94. Anal Calcd for C_{16}H_{14}O_2, C, 80.65; H, 5.92. IR (KBr): v_{max}/cm^{-1} 2908, 2227, 1603, 1512, 1456, 1244, 1030, 831. \delta_H (400 MHz; CDCl_3; Me_4Si) 7.40-7.32 (m, 4H), 7.08-7.00 (m, 3H), 6.87-6.84 (m, 2H), 4.93 (m, 2H), 3.83 (s, 3H). \delta_C (100.6 MHz; CDCl_3; Me_4Si) 159.9, 157.9, 133.4, 129.5, 121.4, 115.4, 115.1, 114.4, 114.0, 87.2, 82.7, 56.8, 55.3. MS (relative intensity): m/z 239 (M^{+1}).$

Characterization of O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1f):

(1.062 g, 85%). Mp: 84-85 °C. Found C, 81.64; H, 5.63. Anal Calcd for C₁₇H₁₄O₂, C, 81.58; H, 5.64. IR (KBr): v_{max}/cm^{-1} 2854, 2364, 1684, 1597, 1554, 1487, 1448, 1263, 1034, 852, 841 (cm⁻¹); δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.91 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.37-7.33 (m, 2H), 7.07-7.02 (m, 3H), 4.96 (s, 2H), 2.61 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 197.2, 157.7, 136.6, 131.9, 129.5, 128.2, 127.1, 121.6, 115.0, 87.3, 86.3, 56.5, 26.6. MS (relative intensity): m/z 250 (M⁺, 12), 207 (11), 157 (100), 93 (11), 43 (79).

Characterization of 4-methoxy-O-(3-phenylprop-2-ynyl)phenol (1g):

(1.011 g, 85%). Mp: 80-82 °C. Found C, 80.71; H, 5.90. Anal Calcd for C₁₆H₁₄O₂, C, 80.65; H, 5.92. IR (KBr): ν_{max}/cm^{-1} 2960, 2222, 1510, 1439, 1230, 1034, 824. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.47-7.32 (m, 5H), 7.01 (d, *J* = 9.2 Hz, 2H), 6.89 (d, *J* = 9.2 Hz, 2H), 4.89 (s, 2H), 3.81 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 154.4, 152.0, 131.8, 128.6, 128.3, 122.4, 116.3, 114.6, 87.0, 84.3, 57.5, 55.7. MS (relative intensity): m/z 238 (M⁺, 27), 123 (31), 115 (100).

Characterization of 4-methoxy-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1h):

(1.072 g, 80%). Mp: 94-95 °C. Found C, 76.17; H, 6.03. Anal Calcd for C₁₇H₁₆O₃, C, 76.10; H, 6.01. IR (KBr): v_{max} /cm⁻¹ 2955, 2229, 1604, 1508, 1242, 1032, 847. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.41 (d, *J* = 8.9 Hz, 2H), 7.01 (d, *J* = 9.1 Hz, 2H), 6.88 (d, *J* = 9.1 Hz, 2H), 6.85 (d, *J* = 8.9 Hz, 2H), 4.87 (s, 2H), 3.82 (s, 3H), 3.81 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 159.9, 154.4, 152.0, 133.3, 116.2, 114.6, 114.4, 113.9, 87.0, 82.9, 57.6, 55.7, 55.3. MS (relative intensity): m/z 268 (M⁺, 19), 145 (100), 123 (8), 77 (7).

Characterization of 4-methoxy-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1i):

(1.162 g, 83%). Mp: 92-93 °C. Found C, 77.04; H, 5.76. Anal Calcd for $C_{18}H_{16}O_3$, C, 77.12; H, 5.75. IR (KBr): v_{max}/cm^{-1} 2835, 2351, 1682, 1601, 1556, 1506, 1444, 1221, 1032, 856, 831. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.91 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 9.1 Hz, 2H), 6.89 (d, J = 9.1 Hz, 2H), 4.90 (s, 2H), 3.80 (s, 3H), 2.61 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 197.2, 154.6, 151.9, 136.6, 131.9, 128.2, 127.2, 116.3, 114.7, 87.6, 86.2, 57.5, 55.7, 26.6. MS (relative intensity): m/z 280 (M⁺, 63), 237 (21), 123 (14), 161 (26), 43 (100).

Characterization of 4-acetyl-O-3-phenylprop-2-ynyl)phenol (1j):

(1.100 g, 85%). Mp: 88-90 °C. Found C, 81.65; H, 5.63. Anal Calcd for $C_{17}H_{14}O_2$, C, 81.58; H, 5.64. IR (KBr): v_{max}/cm^{-1} 2918, 2225, 1672, 1595, 1508, 1248, 1014, 837. δ_H (400 MHz; CDCl₃; Me₄Si) 7.99 (d, *J* = 8.9 Hz, 2H), 7.45 (dd, *J*₁ = 8.8 Hz, *J*₂ = 1.6 Hz, 2H), 7.35-7.32 (m, 3H), 7.10 (d, *J* = 8.9 Hz, 2H), 5.00 (s, 2H), 2.58 (s, 3H). δ_C (100.6 MHz; CDCl₃; Me₄Si) 196.7, 161.6, 131.8, 130.9, 130.5, 128.9, 128.4, 122.0, 114.7, 87.8, 83.0, 56.7, 26.4. MS (relative intensity): m/z 251 ([M+1]⁺ 100).

Characterization of 4-acetyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1k):

(1.064 g, 76%). Mp: 87-88 °C. Found C, 77.19; H, 5.76. Anal Calcd for C₁₈H₁₆O₃, C, 77.12; H, 5.75. IR (KBr): v_{max} /cm⁻¹ 2914, 2225, 1680, 1597, 1564, 1508, 1248, 1028, 831. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.98 (d, J = 9.0 Hz, 2H), 7.39 (d, J = 8.9 Hz, 2H), 7.08 (d, J = 9.0 Hz, 2H), 6.84 ((d, J = 8.9 Hz, 2H), 3.82 (3H), 2.58 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 196.7, 161.7, 160.1, 133.4, 130.9, 130.5, 114.7, 114.00, 113.99, 87.8, 81.7, 56.9, 55.3, 26.4. MS (relative intensity): m/z 280 (M⁺, 11), 145 (100), 77 (6), 43 (27).

Characterization of 4-acetyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (11):

(1.314 g, 85%). Mp: 92-93 °C. Found C, 78.12; H, 5.51. Anal Calcd for $C_{19}H_{16}O_3$, C, 78.06; H, 5.52. IR (KBr): v_{max}/cm^{-1} 2916, 2362, 1685, 1668, 1601, 1577, 1508, 1236, 1030, 843, 818. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.98 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 5.02 (s, 2H), 2.60 (s, 3H), 2.58 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 197.2, 196.7, 161.4, 136.8, 132.0, 131.0, 130.6, 128.2, 126.7, 114.6, 86.9, 86.2, 56.6, 26.4. MS (relative intensity): m/z 293 ([M+1]⁺ 100).

Characterization of 4-phenyl-O-(3-phenylprop-2-ynyl)phenol (1m):

(1.150 g, 81%). Mp: 112-113 °C. Found C, 88.77; H, 5.65. Anal Calcd for C₂₁H₁₆O, C, 88.70; H, 5.67. IR (KBr): v_{max}/cm^{-1} 2900, 2360, 1608, 1583, 1522, 1489, 1452, 1248, 1024, 831. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.62-7.59 (m, 4H), 7.51-7.44 (m, 4H), 7.37-7.34 (m, 4H), 7.16 (d, *J* = 8.8 Hz, 2H), 5.00 (s, 2H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 157.4, 140.7, 134.6, 131.9, 128.8, 128.7, 128.3, 128.2, 126.8, 126.7, 122.3, 115.3, 87.3, 83.9, 56.8. MS (relative intensity): m/z 284 (M⁺, 35), 207 (72), 115 (100), 77 (17).

Characterization of 4-phenyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1n):

(1.224 g, 78%). Mp: 134-135 °C. Found C, 84.12; H, 5.76. Anal Calcd for $C_{22}H_{18}O_2$, C, 84.05; H, 5.75. IR (KBr): ν_{max}/cm^{-1} 2918, 2227, 1605, 1512, 1489, 1244, 1028, 833. δ_H (400 MHz; CDCl₃; Me₄Si) 7.60-7.57 (m, 4H), 7.45-7.41 (m, 4H), 7.34 (s, 1H), 7.13 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.97 (s, 2H), 3.83 (s, 3H). δ_C (100.6 MHz; CDCl₃; Me₄Si) 159.9, 157.4, 140.8, 134.5, 133.4, 128.7, 128.2, 126.8, 126.7, 115.3, 114.3, 113.9, 87.3, 82.5, 56.9, 55.3. MS (relative intensity): m/z 315 ([M+1]⁺ 100).

Characterization of 4-phenyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (10):

 $(1.336 \text{ g}, 82\%). \text{ Mp: } 141-143 \ ^{\circ}\text{C}. \text{ Found C}, 84.52; \text{ H}, 5.54. \text{ Anal Calcd for } C_{23}\text{H}_{18}\text{O2}, \text{ C}, 84.64; \text{ H}, 5.56. \text{ IR (KBr): } \nu_{\text{max}}/\text{cm}^{-1} \ 2916, 2362, 1680, 1601, 1520, 1489, 1456, 1246, 1028, 835. \\ \delta_{\text{H}} (400 \text{ MHz; CDCl}_3; \text{ Me}_4\text{Si}) \ 7.92 \ (\text{d}, J = 8.4 \text{ Hz}, 2\text{H}), 7.60-7.55 \ (\text{m}, 6\text{H}), 7.45 \ (\text{t}, J = 7.2 \text{ Hz}, 2\text{H}), 7.34 \ (\text{t}, J = 7.2 \text{ Hz}, 1\text{H}), 7.13 \ (\text{d}, J = 8.4 \text{ Hz}, 2\text{H}), 5.00 \ (\text{s}, 2\text{H}), 2.62 \ (\text{s}, 3\text{H}). \\ \delta_{\text{C}} (100.6 \text{ MHz; CDCl}_3; \text{Me}_4\text{Si}) \ 197.2, 157.3, 140.6, 136.7, 134.7, 132.0, 128.8, 128.3, 128.2, 127.1, 126.9, 126.8, 115.3, 87.2, 86.4, 56.7, 26.6. \text{ MS (relative intensity): } m/z \ 327 \ ([\text{M}+1]^+ 100).$

Characterization of 3,5-dimethyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1p):

 $(1.130 \text{ g}, 85\%). \text{ Mp: } 55-56 \ ^\circ\text{C. Found C}, 81.24; \text{ H}, 6.80. \text{ Anal Calcd for } C_{18}H_{18}O_2, \text{ C}, 81.17; \text{ H}, 6.81. \text{ IR (KBr): } \nu_{max}/\text{cm}^{-1} \ 2916, 2225, 1597, 1510, 1446, 1246, 1034, 881, 827. \\ \delta_H \ (400 \text{ MHz; } \text{CDCl}_3; \text{ Me}_4\text{Si}) \ 7.42 \ (d, \textit{J} = 8.8 \text{ Hz}, 2H), 6.86 \ (d, \textit{J} = 8.8 \text{ Hz}, 2H), 6.69-6.68 \ (m, 3H), 4.89 \ (s, 2H), 3.83 \ (s, 3H), 2.33 \ (s, 6H). \\ \delta_C \ (100.6 \text{ MHz; } \text{CDCl}_3; \text{ Me}_4\text{Si}) \ 159.9, 158.0, 139.2, 133.3, 123.2, 114.6, 113.9, 112.8, 86.9, 82.9, 56.7, 55.3, 21.5. \\ \text{MS (relative intensity): } m/z \ 266 \ (M^+, 12), 145 \ (100), 77 \ (9). \\ \end{array}$

Characterization of 3-methyl-O-(3-phenylprop-2-ynyl)phenol (1q):

(1.010 g, 91%). Oil. Found C, 86.53; H, 6.37. Anal Calcd for $C_{16}H_{14}O$, C, 86.45; H, 6.35. IR (KBr): v_{max}/cm^{-1} 2927, 2360, 1607, 1585, 1489, 1443, 1259, 1041. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.7.66 (d, J = 7.9 Hz, 2H), 7.38-7.34 (m, 3H), 7.26 (t, J = 8.4 Hz, 1H), 6.92-6.87 (m, 3H), 4.95 (s, 2H), 2.41 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 157.9, 139.6, 137.5, 131.9, 129.2, 128.7, 128.3, 122.3, 115.9, 111.8, 87.1, 84.2, 56.6, 21.6. MS (relative intensity): m/z 222 (M⁺, 13), 115 (100), 89 (9), 77 (21).

Characterization of 3-methyl-O-(3-(4-methoxyphenyl)prop-2-ynyl)phenol (1r):

(1.159 g, 92%). Oil. Found C, 80.85; H, 6.37. Anal Calcd for $C_{17}H_{16}O_2$, C, 80.93; H, 6.39. IR (KBr): v_{max}/cm^{-1} 2916, 2360, 1606, 1585, 1510, 1458, 1250, 1036, 833. δ_H (400 MHz; CDCl₃; Me₄Si) 7.40 (d, *J* = 8.8 Hz, 2H), 7.24-7.20 (m, 1H), 6.87-6.83 (m, 5H), 4.90 (s, 2H), 3.83 (s, 3H), 2.37 (s, 3H). δ_C (100.6 MHz; CDCl₃; Me₄Si) 159.9, 157.9, 139.5, 133.3, 129.2, 122.2, 115.9, 114.5, 113.9, 111.8, 87.0, 82.7, 56.7, 55.3, 21.5. MS (relative intensity): m/z 252 (M⁺, 6), 145 (100), 77 (14).

Characterization of 3-methyl-O-(3-(4-acetylphenyl)prop-2-ynyl)phenol (1s):

 $(1.082 \text{ g}, 82\%). \text{ Mp: } 76-79 \ ^\circ\text{C}. \text{ Found C}, 81.84; \text{ H}, 6.11. \text{ Anal Calcd for } C_{18}\text{H}_{16}\text{O}_2, \text{ C}, 81.79; \text{ H}, 6.10. \text{ IR (KBr): } \nu_{max}/\text{cm}^{-1} 2925, 2335, 1674, 1599, 1493, 1259, 1028, 845, 825. \\ \delta_{H} (400 \text{ MHz; CDCl}_3; \text{ Me}_4\text{Si}) 7.92 (\text{d}, J = 8.4 \text{ Hz}, 2\text{H}), 7.54 (\text{d}, J = 8.4 \text{ Hz}, 2\text{H}), 7.23 (\text{td}, J_i = 7.3 \text{ Hz}, J_2 = 2.1 \text{ Hz}, 1\text{H}), 6.87-6.85 (\text{m}, 3\text{H}), 4.94 (\text{s}, 2\text{H}), 2.61 (\text{s}, 3\text{H}), 2.38 (\text{s}, 3\text{H}). \\ \delta_{C} (100.6 \text{ MHz; CDCl}_3; \text{Me}_4\text{Si}) 197.2, 157.8, 139.6, 136.6, 131.9, 129.2, 128.2, 127.2, 122.5, 115.9, 111.7, 87.4, 86.2, 56.5, 26.6, 21.5. \\ \text{MS} (\text{relative intensity}): \text{m/z } 264 (\text{M}^+, 35), 157 (100), 77 (37), 43 (68). \\ \text{MS} (100.6 \text{ MS}) = 2.33 \text{ MS} (100.6 \text{ MS}) = 2.33 \text{$

Characterization of 4-bromo-3-(3-(4-methoxyphenyl)prop-2-ynyloxy)phenol (1t):

_____о

(1.49 g, 63%). Mp 124-125 °C. Found C, 57.73; H, 3.92, Br, 23.92. Anal Calcd for $C_{16}H_{13}BrO_3$, C, 57.68; H, 3.93, Br, 23.98. IR (KBr): v_{max}/cm^{-1} 3431, 2925, 2360, 1604, 1587, 1510, 1454, 1244, 1024, 831, 532. δ_{H} (400 MHz; CDCl₃; Me₄Si) 7.44-7.35 (m, 3H), 6.85 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 2.6 Hz, 1H), 6.40 (dd, $J_I = 8.6$ Hz, $J_2 = 2.6$ Hz, 1H), 5.03 (s, 1H), 4.97 (s, 2H), 3.83 (s, 3H). δ_{C} (100.6 MHz; CDCl₃; Me₄Si) 160.0, 155.9, 155.2, 133.5, 133.4, 114.2, 114.0, 109.6, 103.1, 102.8, 88.0, 81.8, 58.0, 55.3. MS (relative intensity): m/z 334 ([M+2]⁺, 97), 332 (M⁺, 100).

Table of Spectra:

¹H NMR and ¹³C NMR spectra of compound (1a) ¹H NMR and ¹³C NMR spectra of compound (1b) ¹H NMR and ¹³C NMR spectra of compound (1c) ¹H NMR and ¹³C NMR spectra of compound (1d) ¹H NMR and ¹³C NMR spectra of compound (1e) ¹H NMR and ¹³C NMR spectra of compound (1f) ¹H NMR and ¹³C NMR spectra of compound (1f) ¹H NMR and ¹³C NMR spectra of compound (**1b**) ¹H NMR and ¹³C NMR spectra of compound (1i) ¹H NMR and ¹³C NMR spectra of compound (1j) ¹H NMR and ¹³C NMR spectra of compound (1k) ¹H NMR and ¹³C NMR spectra of compound (**1**) ¹H NMR and ¹³C NMR spectra of compound (**1**) ¹H NMR and ¹³C NMR spectra of compound (**1n**) ¹H NMR and ¹³C NMR spectra of compound (10) ¹H NMR and ¹³C NMR spectra of compound (**1p**) ¹H NMR and ¹³C NMR spectra of compound (**1q**) ¹H NMR and ¹³C NMR spectra of compound (1r) ¹H NMR and ¹³C NMR spectra of compound (1s) ¹H NMR and ¹³C NMR spectra of compound (1s) ¹H NMR and ¹³C NMR spectra of compound (2a) ¹H NMR and ¹³C NMR spectra of compound (**2b**) ¹H NMR and ¹³C NMR spectra of compound (2c) $_{1}$ H NMR and 13 C NMR spectra of compound (2d) ¹H NMR and ¹³C NMR spectra of compound (2e) ¹H NMR and ¹³C NMR spectra of compound (2f) ¹H NMR and ¹³C NMR spectra of compound (2g) ¹H NMR and ¹³C NMR spectra of compound (2h) ¹H NMR and ¹³C NMR spectra of compound (2i) ¹H NMR and ¹³C NMR spectra of compound (2j) ¹H NMR and ¹³C NMR spectra of compound (**2**) ¹H NMR and ¹³C NMR spectra of compound (**2**) ¹H NMR and ¹³C NMR spectra of compound (**2**) ¹H NMR and ¹³C NMR spectra of compound (2n) ¹H NMR and ¹³C NMR spectra of compound (20) ¹H NMR and ¹³C NMR spectra of compound (2p) ¹H NMR and ¹C NMR spectra of compound (**2p**) ¹H NMR and ¹³C NMR spectra of compound (**2q**) ¹H NMR and ¹³C NMR spectra of compound (**2r**) ¹H NMR and ¹³C NMR spectra of compound (**2s**) ¹H NMR and ¹³C NMR spectra of compound (**2t**) ¹H NMR and ¹³C NMR spectra of compound (**2u**)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

