Supporting Information

A Novel Ratiometric Emission probe for Ca²⁺ in living cells

Qiaoling Liu,^{a,b} Wei Bian,^a Heping Shi,^a Li Fan,^a Shaomin Shuang,^a Chun Dong,^{*a} Martin M. F. Choi^{*c}

^aResearch Center of Environmental Science and Engineering, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China. Fax: +86- 0351-7018613; Tel: +86- 0351-7018613; E-mail: dc@sxu.edu.cn

^bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, P. R. China

^cDepartment of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, P. R. China. Fax: +852-34117348; Tel: +852-34117839; E-mail: mfchoi@hkbu.edu.hk

Content

- 1. Calculation of dissociation constants
- 2. Determination of fluorescence quantum yield
- 3. Supplementary figures
- 4. NMR spectra and MALDI-TOF mass spectrum
- 5. References

1. Calculation of dissociation constants

1.1. Dissociation constant based on ratiometric probe with stoichiometric ratio 1:1

$$ML \longrightarrow M + L$$

$$K_{d} = \frac{[L] \times [M]}{[ML]} \implies \frac{K_{d}}{[M]} = \frac{[L]}{[ML]}$$
(1)

The fluorescence intensities (F_1 and F_2) measured at two emission wavelengths and an excitation wavelength can be determined by the following equations:

$$F_{1} = S_{f1}[L] + S_{b1}[ML]$$
$$F_{2} = S_{f2}[L] + S_{b2}[ML]$$

where S_f and S_b are the fluorescence intensity coefficients of Ca²⁺-free and Ca²⁺-bound probe, respectively. Then,

$$R = \frac{F_1}{F_2} = \frac{S_{f1}[L] + S_{b1}[ML]}{S_{f2}[L] + S_{b2}[ML]}$$

For the free ligand and full complexation, R is as follows:

$$R_{\min} = \frac{S_{f1}}{S_{f2}}$$
$$R_{\max} = \frac{S_{b1}}{S_{b2}}$$

Thus, $\frac{R-R_{\min}}{R_{\max}-R} = \frac{[ML]}{[L]} \times \frac{S_{b2}}{S_{f}}$

Substitution of Eq.1 into 2,

$$\frac{R - R_{\min}}{R_{\max} - R} \times \frac{S_{f2}}{S_{b2}} = \frac{[M]}{[K_d]}$$

$$\log(\frac{R - R_{\min}}{R_{\max} - R} \times \frac{S_{f2}}{S_{b2}}) = \log M - \log K_d$$
(3)

In this work, free $[Ca^{2+}]$ levels were controlled by $Ca^{2+}/EGTA$ buffer and calculated according to the previous reports.^{1,2}

1.2. Dissociation constant based on intensity-probe

$$M_nL \longrightarrow nM + L$$

(2)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

$$K_{d} = \frac{([L]_{0} - [M_{n}L]) \times [M]^{n}}{[M_{n}L]}$$
(4)

$$\frac{[M_n L]}{[L]_0 - [M_n L]} = \frac{[M]^n}{K_d}$$
(5)

where, $F_0 = F_{\text{max}} = S_f[L]_0$, $F_{\text{min}} = S_b[M_n L] = S_b[L]_0$

$$F = S_f([L]_0 - [M_n L]) + S_b[M_n L]$$
(6)

Thus,

$$\frac{F - F_{\min}}{F_{\max} - F} = \frac{(S_f - S_b)([L]_0 - [M_n L])}{(S_f - S_b)[M_n L]} = \frac{([L]_0 - [M_n L])}{[M_n L]} = \frac{K_d}{[M]^n}$$
(7)

Combining Eq. 5, 6 and 7, k_d can be obtained:

$$\log \frac{F_{\max} - F}{F - F_{\min}} = n \log M - \log K_d \tag{8}$$

where F_{max} is the fluorescence intensity of free probe, F_{min} is the fluorescence intensity of OXD-BAPTA with saturated Mg²⁺, and *F* is the fluorescence intensity of OXD-BAPTA at various concentrations of Mg²⁺. In this work, free [Mg²⁺] levels were controlled by Mg²⁺/EGTA buffer and calculated according to the previous reports.^{1,2}

2. Determination of fluorescence quantum yield

Fluorescence quantum yield was measured by a standard method in air-equilibrated sample at room temperature. The fluorescence quantum yield was determined by using quinine bisulfate in 0.050 M H₂SO₄ ($\Phi = 0.546$) as reference.^{3,4}

$$\Phi_{\text{sam}} = \Phi_{\text{ref}} \frac{I_{sam}}{I_{ref}} \frac{A_{ref}}{A_{sam}} \left(\frac{n_{sam}}{n_{ref}}\right)^2$$

where Φ is the fluorescence quantum yield, *I* is the integrated emission intensity, *A* is the absorbance, and *n* is the refractive index. The subscripts _{sam} and _{ref} stand for sample and reference, respectively.

3. Supplementary figures

Fig. S1 Job plot for determination of the stoichiometry of OXD-BAPTA-Ca²⁺ complex. The total concentration of OXD-BAPTA and Ca²⁺ was maintained as 10.0 μ M in 50 mM HEPES containing 100 mM KCl and 10 mM EGTA at pH 7.2. The plot of $(A_o - A)/A_o$ against the mole fraction of Ca²⁺, where A_o and A are the absorbances of OXD-BAPTA in the absence and presence of Ca²⁺.

Fig. S2 Hill plot for the complexation of 1.0 μ M OXD-BAPTA with free Ca²⁺(0.0–11.1 μ M) in 50 mM HEPES containing 100 mM KCl and 10 mM EGTA at pH 7.2. The excitation wavelength is 380 nm.

Fig. S3 (a) Fluorescence emission spectra of 1.0 μ M OXD-BAPTA upon the addition of various concentrations of Mg²⁺(1–10: 0.0, 2.17, 4.63, 6.57, 8.80, 11.0, 15.6, 24.7, 79.4, and 125.0 mM) in 50 mM HEPES buffer solution containing 10 mM EGTA and 100 mM KCl at pH 7.2. (b) Hill plot for the complexation of OXD-BAPTA with free Mg²⁺ (0.0–125 mM). The excitation wavelength is 380 nm.

Fig. S4 Effect of pH on the absorption spectra of 10 μ M OXD-BAPTA in 50 mM HEPES containing 100 mM KCl. The absorbance increases with pH from 5.5 to 7.5 and then decreases from 8.0 to 9.0.

4. NMR spectra and MALDI-TOF MS

4.1. ¹H NMR spectrum of 2-(4-ethoxyphenyl)-5-(4-methyl phenyl)-1,3,4-oxadiazole in CDCl₃.

4.2. ¹H NMR spectrum of 2-[(4-bromomethyl)phenyl]-5-(4-ethoxy phenyl)-1,3,4-oxadiazole in CDCl₃.

4.3. ¹H NMR spectrum of 5-formyl-BAPTA-tetraethyl ester in CDCl₃.

4.4. ¹H NMR spectrum of OXD-BAPTA-ester in CDCl₃.

4.5. ¹³C NMR spectrum of OXD-BAPTA-ester in CDCl₃.

4.6. MALDI-TOF MS of OXD-BAPTA-ester

5. References

- 1 (a) R. Y. Tsien, *Biochemistry* **1980**, *19*, 2396. (b) G. Grynkiewicz, M. Poenie, R. Y. Tsien, J. Biol. Chem., 1985, **260**, 3440.
- 2 H. M. Kim, B. R. Kim, J. H. Hong, J. S. Park, K. J. Lee, B. R. Cho, Angew. Chem. Int. Ed., 2007, 46, 7445.
- 3 P. S. Sherin, J. Grilj, L. V. Kopylova, V. V. Yanshole, Y. P. Tsentalovich, E. Vauthey, J. Phys. Chem. B, 2010, 114, 11909.
- 4 G. Tian, N. M. Edelstein, L. Rao, J. Phys. Chem. A, 2011, 115, 1933.