Supplementary Information

Design of synthetic oligoribonucleotide-based agonists of Toll-like receptor 3 and their immune response profiles *in vitro* and *in vivo*

Tao Lan, Daqing Wang, Lakshmi Bhagat, Victoria J. Philbin, Dong Yu, Jimmy X. Tang, Mallikarjuna R. Putta, Tim Sullivan, Nicola La Monica, Ekambar R. Kandimalla and Sudhir Agrawal*

Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, MA 02139, USA.

Notes

^{*} Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, MA 02139, USA. Fax: 617-679-5572; Tel: 617-679-5500; E-mail: <u>sagrawal@iderapharma.com</u>

† Electronic Supporting Information (ESI) available

Supplementary Information

SI Table 1. Sequences, analytical data and Tms of different lengths of dsORNs

dsORN	Sequence ^a	Length	Length of	Purity	/ (%) ^c	MALDI-TOF		Duplex	Hyper-
Compound		of ORN	alignment	HPLC	CGE	M	ass ^d	stability	chromicity
Number		strands	& oligo I/C			Calc.	Found	$Tm (^{o}C)^{e}$	(%)
			segments ^b						
5'-GCAGUUC	$GACA(C)_{30}$ -3'	40-mer	10-30	95	91	12340	12328	57.9/48.6	27.0
5'-UGUCAAC	CUGC(I) ₃₀ -3'	40-mer	10-30	97	90	13027	13014		
5'-CACUGGC	CAGUUGACA(C)35-3'	50-mer	15-35	96	97	15456	15468	71.9/50.8	26.9
5'-UGUCAAC	CUGCCAGUG(I)35-3'	50-mer	15-35	98	94	16309	16307		
5'-CACUGGC	CAGUUGACACAGGU(C)40-3'	60-mer	20-40	96	90	18613	18633	77.3/51.2	22.7
5'-ACCUGUC	SUCAACUGCCAGUG(I) ₄₀ -3'	60-mer	20-40	95	91	19551	19562		

^a: All ORNs are synthesized with phosphodiester backbone; ^b: first and second numbers indicate nucleotide length of alignment and oligo I/oligo C segments, respectively; ^c: purity is expressed as % full-length product with the rest being one or two nucleotides short as determined by anion-exchange HPLC and CGE (capillary gel electrophoresis); ^d: Mass was determined by MALDI-TOF mass spectral analysis, Calc. and Found indicate calculated and experimentally determined values, respectively; ^e: thermal melting stability of duplexes was determined by UV thermal denaturation curves at 1 µM concentration of duplex in 150 mM sodium chloride, 10 mM sodium hydrogen phsophate buffer, pH 7.2; data are representative of two independent experiments; the two Tm values correspond to duplex of alignment segments and duplex of oligo I/oligo C segments, respectively.

dsORN Sequence ^a	Length of	Purity (%) ^c		MALDI-TOF		Duplex	Hyper-
Compound	alignment	HPLC	CGE	Mass ^d		stability	chromicity
Number	&oligo I/C			Calc.	Found	$Tm (^{\circ}C)^{e}$	(%)
	segments ^b						
1 5'-(C) ₅₀ -3'	0-50	97	93	15197	15188	-/54.1	18.4
5'-(I) ₅₀ -3'	0-50	96	90	16448	16461		
2 5'-CACUG(C) ₄₅ -3'	5-45	95	92	15262	15272	25.0/52.0	17.3
5'-CAGUG(I) ₄₅ -3'	5-45	95	90	16428	16432		
3 5'-CACUGGCAGU(C) ₄₀ -3'	10-40	95	90	15367	15368	51.0/51.0	18.1
5'-ACUGCCAGUG(I) ₄₀ -3'	10-40	98	91	16368	16358		
4 5'-CACUGGCAGUUGACA(C) ₃₅ -3'	15-35	96	97	15456	15468	71.9/50.8	26.9
5'-UGUCAACUGCCAGUG(I) ₃₅ -3'	15-35	98	94	16309	16307		
5 5'-CACUGAGACUGAUGCCA(C) ₃₃ -3'	17-33	95	90	15480	15479	73.9/50.0	24.2
5'-UGGCAUCAGUCUCAGUG(I)33-3'	17-33	95	92	16300	16301		
6 5'-CACUGGCAGUUGACACAGGU(C) ₃₀ -3'	20-30	95	90	15561	15567	78.6/50.1	19.4
5'-ACCUGUGUCAACUGCCAGUG(I) ₃₀ -3'	20-30	97	93	16249	16252		
7 5'-CACUGGCAGUUGACACAGGUUCCUCACUUC(C) ₂₀ -3'	30-20	96	93	15589	15584	86.1/44.2	24.7
5'-GAAGUGAGGAACCUGUGUCAACUGCCAGUG(I)20-3'	30-20	96	94	16296	16301		
8 5'-CACUGGCAGUUGACACAGGUUCCUCACUUCACAAAUCGUU(C) ₁₀ -3'	40-10	96	91	15728	15732	84.6/24.0	29.9
5'-AACGAUUUGUGAAGUGAGGAACCUGUGUCAACUGCCAGUG(I)10-3'	40-10	98	93	16201	15199		
9 5'-CACUGGCAGUUGACACAGGUUCCUCACUUCACAAAUCGUUCAUCG(C) ₅ -3'	45-5	97	92	15794	15801	86.9/<10	31.2
5'-CGAUGAACGAUUUGUGAAGUGAGGAACCUGUGUCAACUGCCAGUG(I)5-3'	45-5	95	90	16182	16187		
10 5'-CACUGGCAGUUGACACAGGUUCCUCACUUCACAAAUCGUUCAUCGUUCAC-3'	50-0	95	91	15820	15827	85.0/-	29.0
5'-GUGAACGAUGAACGAUUUGUGAAGUGAGGAACCUGUGUCAACUGCCAGUG-3'	50-0	95	91	16186	16200		

SI Table 2. Sequences, analytical data and Tms of 50-mer dsORNs with different lengths of alignment segments

^a: All ORNs are synthesized with phosphodiester backbone; ^b: first and second numbers indicate nucleotide length of alignment and oligo I/oligo C segments, respectively; ^c: purity is expressed as % full-length product with the rest being one or two nucleotides short as determined by anion-exchange HPLC and CGE (capillary gel electrophoresis); ^d: mass was determined by MALDI-TOF mass spectral analysis, Calc. and Found indicate calculated and experimentally determined values, respectively; ^e: thermal melting stability of duplexes was determined by UV thermal denaturation curves at 1 µM concentration of duplex in 150 mM sodium chloride, 10 mM sodium hydrogen phosphate buffer, pH 7.2; data are representative of two independent experiments; the two Tm values correspond to duplex of alignment segments and duplex of oligo I/oligo C segments, respectively.

ds(DRN Sequence ^a	Length of	Purin HPL C	ty (%) ^c	MALD-TOF Mass ^d		Duplex stability	Hyper-	
Number		& oligo I/C	III LC	COL	Calc.	Found	Tm (°C) ^e	(%)	
		segments ^b							
11	5'-CACUGAGACUGAUGC(C)35-3'	15-35	96	92	15456	15457	69.0/52.0	26.1	
	5'-GCAUCAGUCUCAGUG(I) ₃₅ -3'	15-35	96	93	16309	16304			
12	5'-CAAGGCAAGCAUUCG(C) ₃₅ -3'	15-35	95	91	15479	15477	69.0/53.0	26.1	
	5'-CGAAUGCUUGCCUUG(I)35-3'	15-35	95	95	16286	16278			
13	5'-CAAUGGCACUUAACA(C)35-3'	15-35	94	93	15448	15430	32.0/52.0	21.0	
	5'-UGUCAACUGCCAGUG(I) ₃₅ -3'	15-35	98	97	16309	16307			
14	5'-CACUGGCAGUUGACA(C)35	15-35	96	97	15456	15468	71.0/56.3	19.0	
	5'-UGUCAACUGCCAGUG(I) $_{10}$ G*(I) $_{9}$ G*(I) $_{9}$ G*(I) $_{4}$	15-35	98	93	16351	16362			
15	5'-CACUGGCAGUUGACA(C) ₄ $C^*(C)_9C^*(C)_9C^*(C)_{10}$	15-35	93	90	15498	15488	70.2/51.1	21.8	
	5'-UGUCAACUGCCAGUG(I) ₃₅	15-35	98	94	16307	16307			

SI Table 3. Sequences, analytical data and Tms of 50-mer dsORNs with different sequence compositions of alignment segments and chemical modifications in oligo I/oligo C segments

^a: All ORNs are synthesized with phosphodiester backbone ; Underlined nucleotides indicate mismatches, **G*** and **C*** indicate 7-deazaguanosine and 5methylcytidine, respectively; ^b: first and second numbers indicate nucleotide length of alignment and oligo I/oligo C segments, respectively; ^c: purity is expressed as % full-length product with the rest being one or two nucleotides short as determined by anion-exchange HPLC and CGE (capillary gel electrophoresis); ^d: mass was determined by MALDI-ToF mass spectral analysis, Calc. and Found indicate calculated and experimentally determined values, respectively; ^e: thermal melting stability of duplexes was determined by UV thermal denaturation curves at 1 μ M concentration of duplex in 150 mM sodium chloride, 10 mM sodium hydrogen phsophate buffer, pH 7.2; data are representative of two independent experiments; the two Tm values correspond to duplex of alignment segments and duplex of oligo I/oligo C segments, respectively. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is o The Royal Society of Chemistry 2013

SI Figure 1

SI Figure 1. Agarose gel electrophoresis of dsORNs **1-4**, **6-10** and **13**. Please see Table 1 for dsORN sequences. M stands for double-stranded RNA length markers. Numbers on the top of lanes correspond to dsORN numbers shown in Table 1. s Stands for oligo C strand of dsORN **4**.

Agarose gel (1%) containing 0.05% (v/v) ethidium bromide was loaded with about 1 OD of dsORNs and carried out electrophoresis using 1 X Tris borate EDTA buffer, pH 9.0 at a constant voltage of 90v for 3.5 hours in cold room. After the electrophoresis gel was placed on UV transilluminator and a photograph was taken.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is o The Royal Society of Chemistry 2013

SI Figure 2

SI Figure 2. Agarose gel electrophoresis of dsORNs **4**, **14** and **15**. Please see Table 1 for dsORN sequences. M stands for doublestranded RNA length markers. Numbers on the top of lanes correspond to dsORN numbers in Table 1. L, H, and s stand for low molecular weight poly I:C (Invivogen), high molecular weight poly I:C (Invivogen) and oligo C strand of dsORN **4**. Agarose gel (1%) containing 0.05% (v/v) ethidium bromide was loaded with about 1 OD of dsORNs, low and high molecular weight poly I:C and carried out electrophoresis using 1 X Tris borate EDTA buffer, pH 9.0 at a constant voltage of 90v for 3.5 hours in cold room. After the electrophoresis gel was placed on UV transilluminator and a photograph was taken. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

SI Figure 3

SI Figure 3. dsORN 4 does not induce cytokine responses in human pDCs. Human pDCs were cultured in the presence or absence of dsORN 4 at 500 μ g/ml concentration for 24 hr. Cell culture supernatants were analyzed by multiplex assay. PBS was used as control. Data shown are representative of two independent experiments.

Human pDCs (10^6 /ml) were plated into 96-well plates. dsORN **4** dissolved in PBS was added at 500 µg/ml concentration. The cells were then incubated at 37°C for 24 hours. The levels of cytokines and chemokines in the culture supernatants were measured using a human multiplex kit on the Applied Cytometry Systems Luminex 100/200 instruments, and the data were analyzed using StarStation software, version 2.0. The required reagents were purchased from Invitrogen (Carlsbad, CA).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is o The Royal Society of Chemistry 2013

SI Figure 4. Serum IL-12 induction by dsORNs **4**, **14** and **15** in wild-type (black bars) and TLR3^{-/-} (grey bars) C57BL/6 mice. dsORNs were administered subcutaneously at a dose of 10 mg/kg. Blood was collected 2 hr post dsORN administration and serum IL-12 levels were measured by ELISA. Naïve wild-type and knock-out mice serum was used as control. Data shown are mean of three mice \pm SD and are representative of two independent experiments.