Synthesis of Enantioenriched Azo Compounds: Organocatalytic Michael Addition of Formaldehyde N-tert-butyl Hydrazone to Nitroalkenes

David Monge,^{*} Silvia Daza, Pablo Bernal, Rosario Fernández,^{*} and José M. Lassaletta^{*}

Instituto de Investigaciones Químicas (CSIC-US), C/ Américo Vespucio 49, 41092 and Departamento de Química Orgánica, Universidad de Sevilla, C/ Prof. García González, 1, 41012, Sevilla (Spain) dmonge@us.es; ffernan@us.es; jmlassa@iiq.csic.es

Contents

General methods	2
Synthesis and characterization of organocatalysts 4g-j	2
General procedure for reaction monitoring	4
Reaction rates monitoring of non-catalyzed reactions in different solvents	4
General procedure for the racemic 1,4-addition of formaldehyde <i>tert</i> -butyl hydrazone 1a to nitroalkenes 2	4
Comparative reaction rates of non-catalyzed vs organocatalytic reactions	5
General procedure for the enantioselective 1,4-addition of formaldehyde <i>tert</i> -butyl hydrazone 1a to nitroalkenes 2	7
NMR spectra and HPLC traces for compounds 3, 5 and 6	8
Absolute configuration determination	43
NMR data collection and processing	44
¹ H NMR and ¹ H, ¹⁵ N HMBC of the <i>bis</i> -thiourea 4 k	45
¹ H NMR of the binary bifunctional thiourea 4k / hydrazone 1a complex	46

General methods

¹H NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz; ¹³C NMR spectra were recorded at 75 MHz, 100 MHz or 125 MHz, with the solvent peak used as the internal standard. The following abbreviations are used to indicate the multiplicity in ¹H NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; m, multiplet; bs, broad signal. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60-F plates and visualized by ultraviolet irradiation and KMnO₄, anisaldehyde or phosphomolibdic acid stains. Optical rotations were measured on a Perkin-Elmer 341 MC polarimeter. The enantiomeric ratios (er) of the products were determined by HPLC on chiral stationary phases (Daicel Chiralpak AD-H, OD columns).

Materials. Unless otherwise noted, analytical grade solvents and commercially available reagents or catalysts were used without further purification. For flash chromatography (FC) silica gel (0.040-0.063 mm) was used. Formaldehyde monosubstituted hydrazones $\mathbf{1}^{1}$, not commercially available nitroalkenes 2^{2} , and catalysts $4d.e.f.k-p^{3}$ were synthesized according to literature procedures.

General procedure for the synthesis of catalysts 4g-i

A solution of 1,3-bis(isothiocyanatomethyl)benzene⁴ (1 mmol) in THF (5 mL) was added dropwise to a stirred solution of the corresponding chiral amine (2.5 mmol) in THF (10 mL). The reaction was stirred at room temperature for 24-48 h, the solvent was evaporated under reduced pressure and the residue was purified by FC on silica gel (hexane/AcOEt). Yields and characterization data for 4g-i are as follows:

1,1'-[1,3-Phenylenebis(methylene)]bis{3-[(S)-1-phenylethyl]thiourea} (4g)

White solid (91% yield); M.p.: 85-87 °C; $[\alpha]_D^{20}$ -43.2 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.23 (m, 10H), 7.08 (t, *J* = 7.6, 1H), 6.85 (d, *J* = 7.6 Hz, 2H), 6.61 (s, 1H), 6.41 (s, 2H), 5.80 (s, 2H), 4.85 (bs, 2H), 4.55 (dd, J = 14.0 Hz, J =3.9 Hz, 2H), 4.45 (dd, J = 14.0 Hz, J = 3.9 Hz, 2H), 1.46 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz,

CDCl₃) & 181.2, 142.2, 137.8, 129.1, 129.0, 127.9, 126.6, 126.0, 125.9, 54.00, 48.6, 23.3; HRMS (FAB): calculated for $[C_{26}H_{30}N_4S_2Na]^+$ 485.1810; found: 485.1794.

¹ (a) J-S. M. Lehn, S. Javed and D. M. Hoffman, Inorg. Chem. 2007, 46, 993; (b) Y. Kamitori, M. Hojo, R. Masuda, T. Yoshida, S. Ohara, K. Yamada and N. Yoshikawa, J. Org. Chem. 1988, 53, 129; (c) M. Barbero, S. Cadamuro, S. Dughera and G. Ghigo, Eur. J. Org. Chem. 2008, 862.

² (a) R. A. Kunetsky and A. D. Dilman, Tetrahedron Lett. 2005, 46, 5203; (b) D. Lucet, S. Sabelle, Eur. J. Org. Chem. 1999, 2583; (c) E. Hata, T. Yamada and T. Mukaiyama, Bull. Chem. Soc. Jpn. 1995, 68, 3629.

³ For catalyst 4d: (a) R.P. Herrera, V. Sgarzani, L. Bernardi and A. Ricci, Angew. Chem. Int. Ed. 2005, 44, 6576; For Catalyst 4e: (b) H. Jiang, M. W. Paixão, D. Monge and K.A. Jørgensen, J. Am. Chem. Soc. 2010, 132, 2775. For catalyst 4f: (c) Y. Sohtome, A. Tanatani, Y. Hashimoto and K. Nagasawa, Tetrahedron Lett. 2004, 45, 5589; For catalyst 4k-p: (d) X. G. Liu, J. J. Jiang and M. Shi, Tetrahedron Lett. 2007, 18, 2773.

⁴ J. M. Benito, M. Gómez-.García, J. L. Jiménez, C. Ortiz, J. M. García, J. Org. Chem. 2001, 66, 1366.

1,1'-[1,3-Phenylenebis(methylene)]bis{3-[(S)-1-(naphthalen-1-yl)ethyl]thiourea} (4h)

White solid (84% yield); MP: 93-95 °C; $[\alpha]_D^{20}$ -43.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.18 (m, 14H), 6.71-6.56 (m, 4H), 6.44 (s, 2H), 6.00 (s, 2H), 5.01 (bs, 2H), 4.15-4.25 (m, 4H), 1.40 (d, *J*

= 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 181.0, 139.6, 137.5, 133.2, 132.8, 128.9, 128.7, 127.8, 127.6, 126.4 (2C), 126.1, 125.7, 124.5, 123.9, 53.9, 48.2, 23.0; HRMS (FAB): calculated for $[C_{34}H_{34}N_4S_2Na]^+$ 585.2123; found: 585.2125.

1,1'-[1,3-Phenylenebis(methylene)]bis{3-[(1*S*,2*R*)-2-hydroxy-2,3-dihydro-1H-inden-1yl]thiourea} (4i)

White solid (73% yield); MP: 96-97 °C; $[\alpha]_D^{20}$ -86.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.48-6.93 (m, 12H), 6.44 (s, 2H), 5.82 (s, 2H), 4.65 (s, 2H), 4.45-4.23 (m, 2H), 3.03 (dd, *J* = 16.8, 4.7 Hz, 2H),

2.68 (d, J = 16.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 140.1, 139.9, 129.1, 128.3 (2C), 127.1, 126.6, 125.1 (2C), 124.5, 72.9, 62.4, 60.3, 39.5; HRMS (FAB): calculated for $[C_{28}H_{30}N_4O_2S_2Na]^+$ 541.1708; found: 541.1701.

N-{2'-[3-(3,5-Bis(trifluoromethyl)phenyl]thioureido}-(1,1'-binaphthalen)-2-yl-4methylbenzenesulfonamide (4j)

To a stirred solution of 1-[2'-amino-(1,1'-binaphthalen)-2-yl]-3-[3,5bis(trifluoromethyl)phenyl]thiourea⁵ (120.3 mg, 0.22 mmol) in dry pyridine (3 mL) under Argon, *p*-toluenesulfonyl chloride (61.9 mg, 0.32 mmol) was added. The reaction was stirred at room temperature for 3 hours and purified by FC on silica gel (Hexane/Et₂O, 3:1) affording **4j** (82.4 mg, 53%) as a white solid; MP: 148-150 °C; $[\alpha]_D^{20}$ -173.2 (*c* 0.6, CHCl₃); ¹H NMR (300 MHz,

CDCl₃) δ 8.40 (s, 2H), 8.05-7.94 (m, 2H), 7.88 (d, J = 8.2 Hz, 1H), 7.76-7.63 (m, 2H), 7.49-7.02 (m, 9H), 6.93 (d, J = 8.6 Hz, 1H), 6.35 (d, J = 8.1 Hz, 2H), 1.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 143.3, 142.9, 140.7, 138.7, 136.3, 133.6, 132.4, 132.0, 131.5, 131.1, 130.6, 130.5, 129.3, 128.8, 128.4, 128.1, 127.8 (2C), 126.9, 126.3, 125.8, 125.6, 125.4, 124.7, 123.4, 123.3 (q, $J_{C-F} = 272.5$ Hz),

⁵ P. Galzerano; G. Bencibenni; F. Pesciaioli; A. Mazzanti; B. Giannichi; L. Sambri; G. Bartoli, P. Melchiorre. *Chem. Eur. J.* 2009, **15**, 7846.

118.7 (2C), 116.2, 21.4; HRMS (FAB): calculated for $[C_{36}H_{25}F_6N_3O_2S_2Na]^+$ 732.2568; found: 732.1957.

General procedure for reaction monitoring

Hydrazone **1a** (17.7 μ L, 0.15 mmol) was added to a solution of nitroalkene **2a** (0.1 mmol) and mesytilene (0.1 mmol, as standard patron) in solvent (1 mL) at room temperature. The mixture was stirred and monitorized by GC [GC condition: TEKNOKROMA TRB-1, injector temp.= 300 °C, detector temp.= 280 °C, column temp.= 60 °C (3 min), 80 °C/min (until 270 °C), 270 °C (1 min), t_{2a} = 6.9 min, t_{3a} = 15.1 min, t_{dodecane} = 7.8 min].

Reaction rates monitoring of non-catalyzed reactions in different solvents

General procedure for the racemic 1,4-addition of formaldehyde *tert*-butyl hydrazone 1a to nitroalkenes 2

Hydrazone **1a** (35.4 μ L, 0.3 mmol) was added to a solution of nitroalkene **2** (0.2 mmol) in CH₃CN (0.1 mL) and the mixture was stirred for ~24 h at room temperature. The racemic products **3** were isolated by FC on silica gel (pentane/CH₂Cl₂).

Comparative reaction rates of non-catalyzed vs organocatalytic reactions

Yield vs time in dichloromethane

— "Cat." —● - "Non-Cat."

General procedure for the enantioselective 1,4-addition of formaldehyde *tert*-butyl hydrazone 1a to nitroalkenes 2

Hydrazone **1a** (17.7 μ L, 0.15 mmol) was added to a solution of nitroalkene **2** (0.1 mmol) and catalyst **4k** (0.015 mmol) in (Cyclohexane/Toluene, 9:1, 1 mL) at 0 °C. The mixture was stirred for ~48 h. The enantioenriched products **3** were isolated by FC (Pentane/CH₂Cl₂). Enantiomeric ratios were determined by HPLC analysis.

NMR spectra and HPLC traces for compounds 3, 5 and 6:

¹H NMR (CDCl₃, 300 MHz) of **3a**:

¹³C NMR (CDCl₃, 125 MHz) of **3a**:

HPLC conditions for 3a: Chiralpak AD-H column [heptane/i-PrOH (99.5:0.5) 0.5 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	9.639	8503173	80.93	803404
2	PDA 209.7 nm	9.981	2003188	19.07	179999

¹H NMR (CDCl₃, 300 MHz) of **3b**:

¹³C NMR (CDCl₃, 125 MHz) of **3b**:

HPLC conditions for 3b: Chiralpak OD column [hexane/i-PrOH (95:5) 1 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	7.278	1614564	16.33	138133
2	PDA 209.7 nm	9.103	8274784	83.67	557547

¹H NMR (CDCl₃, 300 MHz) of **3c**:

 ^{13}C NMR (CDCl₃, 75 MHz) of **3c**:

HPLC conditions for 3c: Chiralpak AD-H column [hexane/i-PrOH (98:2) 0.5 mL/min]

	Processed Channel: PDA 209.7 nm								
	Processed Channel	Retention Time (min)	Area	% Area	Height				
1	PDA 209.7 nm	9.667	18583189	77.79	1254053				
2	PDA 209.7 nm	15.476	5306359	22.21	233254				

¹H NMR (CDCl₃, 300 MHz) of **3d**:

¹³C NMR (CDCl₃, 75 MHz) of **3d**:

HPLC conditions for 3d: Chiralpak OD column [hexane/i-PrOH (99.5:0.5) 0.25 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	29.130	8541885	18.62	235749
2	2 PDA 209.7 nm	30.977	37343278	81.38	924847

¹H NMR (CDCl₃, 400 MHz) of **3e**:

 $^{\rm 13}{\rm C}$ NMR (CDCl₃, 100 MHz) of **3e**:

HPLC conditions for **3e**: Chiralpak AD-H column [hexane/*i*-PrOH (97:3) 1 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	4.648	11325055	62.66	1827345
2	PDA 209.7 nm	5.164	6749155	37.34	1009255

¹H NMR (CDCl₃, 300 MHz) of **3f**:

¹³C NMR (CDCl₃, 75 MHz) of **3f**:

HPLC conditions for 3f: Chiralpak OD column [hexane/i-PrOH (99.5:0.5) 0.25 mL/min]

Processed Channel: PDA 209.7 nm

		Processed Channel	Retention Time (min)	Area	% Area	Height
ſ	1	PDA 209.7 nm	23.563	20257401	33.70	660031
ſ	2	PDA 209.7 nm	25.034	39845545	66.30	1187207

¹H NMR (CDCl₃, 400 MHz) of **3g**:

 $^{\rm 13}{\rm C}$ NMR (CDCl₃, 125 MHz) of **3g**:

HPLC conditions for 3g: Chiralpak OD column [hexane/i-PrOH (95:5) 1 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	6.033	3115719	16.18	312295
2	PDA 209.7 nm	9.013	16146701	83.82	1017905

21

¹H NMR (CDCl₃, 300 MHz) of **3h**:

¹³C NMR (CDCl₃, 75 MHz) of **3h**:

HPLC conditions for 3h: Chiralpak AD-H column [hexane/i-PrOH (98:2) 0.5 mL/min]

Processed Channel: PDA 209.7 nm

		Processed Channel	Retention Time (min)	Area	% Area	Height
•	1	PDA 209.7 nm	13.873	5950811	23.00	375710
:	2	PDA 209.7 nm	19.456	19925543	77.00	808920

¹H NMR (CDCl₃, 300 MHz) of **3i**:

¹³C NMR (CDCl₃, 100 MHz) of **3i**:

HPLC conditions for 3i: Chiralpak AD-H column [hexane/i-PrOH (98:2) 1 mL/min]

Processed Channel: PDA 209.7 nm

		Processed Channel	Retention Time (min)	Area	% Area	Height
	1	PDA 209.7 nm	6.420	12353519	71.81	1315259
	2	PDA 209.7 nm	7.136	4849023	28.19	531931

¹H NMR (CDCl₃, 300 MHz) of **3j**:

¹³C NMR (CDCl₃, 75 MHz) of **3j**:

HPLC conditions for **3j**: Chiralpak OD column [hexane/*i*-PrOH (95:5) 1 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	6.807	9621858	28.29	853901
2	PDA 209.7 nm	9.050	24395011	71.71	1557039

¹H NMR (CDCl₃, 300 MHz) of **3k**:

 ^{13}C NMR (CDCl₃, 100 MHz) of **3k**:

HPLC conditions for 3k: Chiralpak AD-H column [hexane/i-PrOH (98:2) 0.5 mL/min]

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	13.873	5950811	23.00	375710
2	PDA 209.7 nm	19.456	19925543	77.00	808920

¹H NMR (CDCl₃, 300 MHz) of **5a**:

¹³C NMR [(CD₃)₂CO, 75 MHz] of **5a**:

HPLC conditions for 5a: Chiralpak AD-H column [hexane/i-PrOH (98:2) 1 mL/min]

Processed	Channel:	PDA	245.0	nm
-----------	----------	-----	-------	----

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 245.0 nm	6.763	317275	79.50	42882
2	PDA 245.0 nm	7.173	81814	20.50	10841

¹H NMR (CDCl₃, 300 MHz) of **5a-TFA**:

 $^{\rm 13}{\rm C}$ NMR (CDCl₃, 100 MHz) of **5a-TFA**:

¹H NMR (CDCl₃, 300 MHz) of **5b**:

¹³C NMR (CDCl₃, 75 MHz) of **5b**:

HPLC conditions for 5b: Chiralpak AD-H column [hexane/i-PrOH (98:2) 1 mL/min]

Processed	Channel:	PDA	246.2	nm
-----------	----------	-----	-------	----

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 246.2 nm	11.530	8881432	78.54	570873
2	PDA 246.2 nm	12.610	2427436	21.46	156422

¹H NMR (C₆D₆, 300 MHz) of **5c**:

 ^{13}C NMR (C₆D₆, 75 MHz) of **5c**:

HPLC conditions for 5c: Chiralpak AD-H column [hexane/i-PrOH (98:2) 1 mL/min]

Processed	Channel:	PDA 245.	0 nm
-----------	----------	----------	------

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 245.0 nm	8.390	1055962	80.18	101840
2	PDA 245.0 nm	10.865	260992	19.82	19290

¹H NMR (CDCl₃, 300 MHz) of **5d**:

¹³C NMR (CDCl₃, 75 MHz) of **5d**:

HPLC conditions for 5d: Chiralpak AD-H column [hexane/i-PrOH (98:2) 1 mL/min]

Non Racemic

Processed Channel: PDA 245.0 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 245.0 nm	10.722	5974289	76.85	430776
2	PDA 245.0 nm	11.650	1799245	23.15	113563

¹H NMR [(CD₃)₂CO, 500 MHz] of **5e**:

¹³C NMR (CDCl₃, 75 MHz) of **5e**:

HPLC conditions for **5e**: Chiralpak AD-H column [hexane/*i*-PrOH (98:2) 1 mL/min]

Processed	Channel: F	DA 246.2 nm
-----------	------------	-------------

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 246.2 nm	10.378	899709	77.99	69330
2	PDA 246.2 nm	11.964	253878	22.01	19119

¹H NMR (CDCl₃, 300 MHz) of **6a**:

¹³C NMR (CDCl₃, 75 MHz) of **6a**:

¹H NMR (CDCl₃, 300 MHz) of **6b**:

¹³C NMR (CDCl₃, 75 MHz) of **6b**:

Absolute configuration determination

The absolute configurations of **7a,b** were assigned to be S by comparison of their HPLC retention times with those of *ent*-**7a,b** previously described in our group.⁶

(S)-3-Methyl-2-(nitromethyl)butanenitrile (7a)

HPLC using a Chiralpak AD-H column [hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min

Previously reported

Processed Channel: PDA 209.7 nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA 209.7 nm	20.373	1999199	21.62	76049
2	PDA 209.7 nm	23.890	7246211	78.38	234075

⁶ P. Bernal, R. Fernández, J. M. Lassaletta, Chem. Eur. J. 2010, 16, 7714.

(S)-2-Cyclohexyl-3-nitropropanenitrile (7b)

HPLC using a Chiralpak AD-H column [hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min

NMR data collection and processing

64.705

911355

19.82

12395

2

PDA 209.7 nm

The NMR spectra were recorded on a 500 MHz spectrometer equipped with a 5 mm broadband Z-gradient probe (maximum gradient strength 53.5 G/cm). The 1 H, 15 N HMBC spectra were acquired with pulsed field gradients (ppm from external liquid NH₃).

All diffusion experiments were performed with a convection-suppressing double STE pulse sequence (dstegp3s)*4 in pseudo-2D mode. The temperature was set and controlled at 303 K with an air flow of 535 1 h⁻¹. For each experiment, 16 acquisition scans and 24 scans were used, with a relaxation delay of 2 s and a diffusion delay of 100 ms. The shape of the gradients was sinusoidal, with a length of 1 ms, and the strength was varied in 32 increments (2-95%) in a linear ramp.

¹H NMR and ¹H, ¹⁵N HMBC of the *bis*-thiourea 4k

Section of the ¹H NMR (500 MHz, CD₂Cl₂, 0.03M) spectra for *bis*-thiourea catalyst 4k

Section of the ¹H, ¹⁵N HMBC (500 MHz, CD₂Cl₂, 0.03M) spectra for *bis*-thiourea catalyst **4k**

¹H NMR of the binary bifunctional thiourea 4k/ hydrazone 1a complex

Section of the ¹H NMR (500 MHz, CD_2Cl_2 , 0.03M) spectra for *bis*-thiourea catalyst **4k** (up) (0.02 mmol), mixture (1:1 at 0.02 mmol) of **4k** and **1a** (middle) and hydrazone **1a** (down) (0.02 mmol).