Supplementary data for

Spiralisones A–D: Acylphloroglucinol hemiketals from an Australian marine brown alga, *Zonaria spiralis*

Hua Zhang[‡], Xue Xiao[‡], Melissa M. Conte, Zeinab Khalil and Robert J. Capon^{*}

Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia

Synthetic Procedures (p3 to p8) Bioassays (p9 to p12)

Full tabulated NMR data for all compounds (p13 to p20)

Table S1. NMR data (CDCl₃, 600 MHz) for spiralisone A (1).
Table S2. NMR data (CDCl₃, 600 MHz) for spiralisone B (2).
Table S3. NMR data (CDCl₃, 600 MHz) for spiralisone C (3).
Table S4. NMR data (CDCl₃, 600 MHz) for spiralisone D (4).
Table S5. NMR data (CDCl₃ with 2% CD₃OD, 600 MHz) for 5.
Table S6. NMR data (CDCl₃) comparison with literature data for 6.
Table S7. NMR data (CD₃OD) comparison with literature data for 7.
Table S8. Kinase inhibitory and antimicrobial assay results (IC₅₀ in μM).

NMR spectra of natural and synthetic compounds (p21 to p47)

Figure S1 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone A (1).
Figure S2 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone B (2).
Figure S3 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone C (3).
Figure S4 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone D (4).
Figure S5 ¹H NMR (CDCl₃ (2% CD₃OD), 600 MHz) for 5.
Figure S6 ¹H NMR (CDCl₃, 600 MHz) spectrum for 6.
Figure S7 ¹H NMR (CD₃OD, 600 MHz) spectrum for 7.

[‡] These authors contribute equally to this paper.

^{*} Corresponding author. Tel.: +61 7 3346 2979, Fax: +61 7 3346 2090, E-mail: <u>r.capon@uq.edu.au</u>

Figure S8 ¹H NMR (CDCl₃, 600 MHz) spectrum for 8. Figure S9¹³C NMR (CDCl₃, 150 MHz) spectrum for 8. Figure S10 ¹H NMR (DMSO- d_6 , 600 MHz) spectrum for 9. Figure S11 13 C NMR (DMSO- d_6 , 150 MHz) spectrum for 9. Figure S12 ¹H NMR (CDCl₃, 600 MHz) spectrum for tetradecanal. Figure S13 ¹H NMR (CDCl₃, 600 MHz) spectrum for arachidonal. Figure S14 ¹H NMR (CDCl₃, 600 MHz) spectrum for 11a. Figure S15¹³C NMR (CDCl₃, 150 MHz) spectrum for 11a. Figure S16¹H NMR (CDCl₃, 600 MHz) spectrum for keto-enol (12a, 12a'). Figure S17¹³C NMR (CDCl₃, 150 MHz) spectrum for keto-enol (12a, 12a'). Figure S18 ¹H NMR (CDCl₃, 600 MHz) spectrum for 11b. Figure S19¹³C NMR (CDCl₃, 150MHz) spectrum for 11b. Figure S20¹H NMR (CD₃OD, 600 MHz) spectrum for 11c. Figure S21¹³C NMR (CD₃OD, 150 MHz) spectrum for 11c. Figure S22 ¹H NMR (CDCl₃, 600 MHz) spectrum for keto-enol (12b, 12b'). Figure S23 ¹H NMR (CDCl₃, 600 MHz) spectrum for keto-enol (12c, 12c'). Figure S24 ¹³C NMR (CDCl₃, 150 MHz) spectrum for (12c, 12c'). Figure S25 ¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 4 with natural 4. Figure S26 ¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 5 with natural 5. Figure S27¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 1 with natural 1.

Representative bioassay figures (p48 to p54)

Figure S28 BACE1 inhibitory assay results for 1–7.

Figure S29 CDK5/p25 inhibitory assay results for 1–7.

Figure S30 CK18 inhibitory assay results for 1, 2 and 6.

Figure S31 GSK3 β inhibitory assay results for 1, 2 and 6.

Figure S32 Antimicrobial assays results for 1–7.

Synthetic Procedures

tetradecanal^{1a}: LAH (1.05 g, 30 mmol) was added to dry THF (100 mL) at 0 °C, and then myristic acid (2.28 g, 10 mmol) was added to the suspension slowly. After stirring for 3 h at 0 °C, the reaction was quenched by addition of Na₂SO₄•10H₂O. The suspension was filtered and the filter cake was washed with THF and was evaporated to afford an alcohol residue without further purification. Dess–Martin periodinane (DMP) (4.24 g, 10 mmol) was added to a solution of the residue in DCM (100 mL) at 0 °C, and then the reaction was quenched by addition of sat. Na₂SO₃ and sat. NaHCO₃ successively. The mixture was extracted with DCM (3×50 mL). The combined organic phases were dried over anhydrous MgSO₄ and concentrated. Then the resulting residue was purified by silica gel chromatography (EtOAc/hexane = 1:8) to afford tetradecanal (1.28 g, 64%) as colourless oil with spectral data in accord with published data. ¹H NMR (600 MHz, CDCl₃): δ = 9.76 (s, 1H), 2.41 (t, *J* = 3.8 Hz, 2H), 1.62 (t, *J* = 7.2 Hz, 2H), 1.25-1.29 (m, 22H), 0.87 (t, *J* = 6.6 Hz, 3H).

$$HO \xrightarrow{0} 4 \xrightarrow{1) LAH, THF} 0 \xrightarrow{4} 0$$

arachidonal: LAH (19 mg, 0.49 mmol) was added to dry THF (15 mL) at 0 °C, and then arachidonic acid (50 mg, 0.16 mmol) was added to the suspension slowly. After stirring for 3 h at 0 °C, the reaction was quenched by addition of Na₂SO₄•10H₂O. The suspension was filtered and the filter cake was washed with THF and was evaporated to afford an alcohol residue without further purification. DMP (139 mg, 0.33 mmol) was added to a solution of the residue in DCM (15 mL) at 0 °C, and then the reaction was quenched by addition of sat. Na₂SO₃ and sat. NaHCO₃ successively. The mixture

¹ a) Milite, C.; Castellano, S.; Benedetti, R.; Tosco, A.; Ciliberti, C.; Vicidomini, C.; Boully, L.; Franci, G.; Altucci, L.; Mai, A.; Sbardella, G. *Bioorg. Med. Chem.* **2011**, *19*, 3690–3701. b) Maharvi, G. M.; Edward, A. O.; Fauq, A.H. *Tetrahedron Letters* **2010**, *51*, 6426–6428.

was extracted with DCM (3×10 mL). The combined organic phases were dried over anhydrous MgSO₄ and concentrated. Then the resulting residue was purified by silica gel chromatography (EtOAc/hexane = 1:8) to afford arachidonal (40 mg, 83%) as colourless oil.^{1b} ¹H NMR (600 MHz, CDCl₃): δ = 9.78 (s, 1H), 5.35-5.42 (m, 8H), 2.80-2.84 (m, 6H), 2.10-2.14 (q, *J* = 7.1 Hz, 2H), 2.04-2.07 (q, *J* = 7.3 Hz, 2H), 1.69-1.74 (m, 2H), 1.25-1.37 (m, 8H), 0.89 (t, *J* = 7.1 Hz, 3H).

11a: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.10$ (s, 1H), 4.11-4.15 (m, 1H), 3.82 (s, 3H), 3.78 (s, 6H), 2.96-3.00 (dd, J = 17.4, 2.4 Hz, 1H), 2.77-2.81 (dd, J = 17.4, 9.6 Hz, 1 H), 1.43-1.44 (m, 2H), 1.27-1.42 (m, 22H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} = 205.5$, 162.6, 158.3, 113.2, 90.6, 68.2, 55.8, 55.4, 51.5, 36.4, 31.9, 29.7, 29.7, 29.65, 29.64, 29.63, 29.58, 29.56, 29.4, 25.5, 22.7, 14.1; UV (MeOH) $\lambda_{\rm max}$ (log ε) 213 (4.28) and 265 (3.95) nm; HR-ESI(+)MS *m/z* 423.3107 [M + H]⁺ (calcd for C₂₅H₄₃O₅, 423.3107).

12a: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.09$ (s, 2H), 3.85 (s, 2H), 3.83 (s, 3H), 3.79 (s, 6H), 2.54 (t, J = 7.5, 2 H), 1.56-1.60 (m, 2H), 1.25-1.35 (m, 20H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} = 204.6$, 196.0, 163.2, 159.0, 112.5, 90.6, 59.7, 55.8, 55.4, 43.0, 31.9, 29.14-29.67 (C×8), 23.5, 22.7, 14.1; HR-ESI(+)MS *m/z* 421.2948 [M + H]⁺ (calcd for C₂₅H₄₁O₅, 421.2949).

12a': ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ = 6.12 (s, 2H), 5.70 (s, 1H), 3.83 (s, 3H), 3.79 (s, 6H), 2.32 (t, *J* = 7.5, 2 H), 1.60-1.66 (m, 2H), 1.25-1.35 (m, 20H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ = 192.6, 186.1, 162.5, 159.1, 109.7, 103.6,

4

90.7, 56.0, 55.4, 38.2, 31.9, 29.14-29.67 (C×8), 25.8, 22.7, 14.1; HR-ESI(+)MS *m/z* 421.2948 [M + H]⁺ (calcd for C₂₅H₄₁O₅, 421.2949).

8: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ = 11.94 (s, 1H), 6.06 (s, 1H), 5.97 (s, 1H), 3.81 (s, 3H), 2.91 (d, *J* = 16.8, 1H), 2.77 (d, *J* = 16.8, 1H), 1.88-1.91 (m 2H), 1.49-1.53 (m, 2H), 1.25-1.37 (m, 20H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ = 194.9, 167.9, 163.8, 159.6, 102.6, 102.3, 95.0, 94.9, 55.7, 44.9, 41.2, 31.9, 29.69, 29.67, 29.64, 29.61, 29.50, 29.47, 29.45, 25.4, 23.2, 22.7, 14.1; UV (MeOH) $\lambda_{\rm max}$ (log ε) 201 (4.29), 218 (4.14) and 278 (4.17) nm; HR-ESI(+)MS *m/z* 393.2636 [M + H]⁺ (calcd for C₂₃H₃₇O₅, 393.2636).

Following the general procedure 11b and 11c were prepared from 10a and 10b, respectively.

11b: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ = 6.10 (s, 2H), 5.32-5.42 (m, 8H), 4.11-4.17 (m, 1H), 3.82 (s, 3H), 3.78 (s, 6H), 2.98 (dd, *J* = 17.2, 2.4 1H), 2.78-2.84 (m, 7H), 2.09 (q, *J* = 7.0, 2H), 2.05 (q, *J* = 7.2, 2H), 1.52-1.56 (m, 2H), 1.42-1.48 (m, 2H), 1.33-1.36 (m, 2H), 1.25-1.30 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ = 205.4, 162.6, 158.3, 130.5, 130.0, 128.5, 128.4, 128.1, 128.0, 127.9, 127.6, 113.1, 90.6, 68.1, 55.9, 55.5, 51.5, 36.0, 31.5, 29.7, 29.3, 27.2, 27.15, 25.64, 25.62, 25.5, 22.6, 14.1; UV (MeOH) $\lambda_{\rm max}$ (log ε) 215 (4.02) and 266 (3.68) nm; HR-ESI(+)MS *m/z* 521.3245 [M + Na]⁺ (calcd for C₃₁H₄₆O₅Na, 521.3245).

11c: ¹H NMR (600 MHz, CD₃OD): δ_{H} = 6.51 (s, 2H), 5.30-5.37 (m, 8H), 5.14 (s, 2H), 5.12 (s, 4H), 4.06-4.09 (m, 1H), 3.43 (s, 3H), 3.42 (s, 6H), 2.93 (d, *J* = 6.24 2H), 2.78-2.83 (m, 6H), 2.03-2.09 (m, 4H), 1.51-1.56 (m, 2H), 1.40-1.48 (m, 2H), 1.33-1.35 (m, 2H), 1.25-1.31 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD): δ_{C} = 203.3, 159.8, 155.3, 129.8, 129.5, 128.0, 127.9, 127.7, 127.6, 127.5, 127.3, 115.8, 96.6, 94.5, 94.1, 67.2, 55.3, 55.0, 52.3, 36.4, 31.2, 29.0, 26.8, 26.7, 25.6, 25.2, 25.17, 25.15, 22.2, 13.0; UV (MeOH) λ_{max} (log ε) 215 (3.86) and 253 (3.42) nm; HR-ESI(+)MS *m/z* 611.3563 [M + Na]⁺ (calcd for C₃₄H₅₂O₈Na, 611.3554).

12b: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.09$ (s, 2H), 5.34-5.40 (m, 8H), 3.85 (s, 2H), 3.83 (s, 3H), 3.79 (s, 6H), 2.79-2.83 (m, 6H), 2.57 (t, J = 7.8 Hz, 2H), 2.06-2.09 (m 2H), 2.04-2.06 (m, 2H), 1.64-1.70 (m, 2H), 1.24-1.37(m, 6H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} = 204.3$, 196.0, 163.1, 159.1, 130.5, 129.3, 128.7, 128.6, 128.21, 128.19, 127.9, 127.6, 112.4, 90.6, 59.7, 55.8, 55.4, 42.3, 31.5, 29.7, 27.2, 26.5, 25.6 (C×3), 23.3, 22.6, 14.2; HR-ESI(+)MS *m*/*z* 519.3090 [M + Na]⁺ (calcd for C₃₁H₄₄O₅Na, 519.3081).

12b': ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.11$ (s, 2H), 5.71 (s, 1H), 5.34-5.40 (m, 8H), 3.83 (s, 3H), 3.79 (s, 6H), 2.79-2.83 (m, 6H), 2.35 (t, J = 7.8 Hz, 2H), 2.13-2.16 (m 2H), 2.04-2.06 (m, 2H), 1.71-1.75 (m, 2H), 1.24-1.37(m, 6H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} = 192.2$, 186.1, 162.6, 159.0, 130.5, 129.2, 128.7, 128.6, 128.21, 128.19, 127.9, 127.5, 109.7, 103.7, 90.7, 56.0, 55.4, 37.6, 31.5, 29.3, 27.2, 26.7, 25.62 (C×4), 22.6, 14.2; HR-ESI(+)MS *m/z* 519.3090 [M + Na]⁺ (calcd for C₃₁H₄₄O₅Na, 519.3081). **12c**: ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.51$ (s, 2H), 5.34-5.40 (m, 8H), 5.15 (s, 2H), 5.13 (s, 4H), 3.89 (s, 2H), 3.47 (s, 3H), 3.46 (s, 6H), 2.79-2.84 (m, 6H), 2.60 (t, J = 7.4 Hz, 2H), 2.05-2.09 (m 2H), 2.04-2.07 (m, 2H), 1.65-1.70 (m, 2H), 1.33-1.37 (m, 2H), 1.25-1.30 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} = 203.8$, 196.2, 159.8, 156.0, 130.5, 129.1, 128.8, 128.6, 128.3, 128.1, 127.8, 127.5, 115.5, 96.9, 94.8, 94.4, 59.6, 56.5, 56.3, 42.5, 31.5, 29.7, 27.2, 26.5, 25.63 (C×3), 23.4, 22.6, 14.1; HR-ESI(+)MS *m/z* 609.3408 [M + Na]⁺ (calcd for C₃₄H₅₀O₈Na, 609.3398).

12c': ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H} = 6.53$ (s, 2H), 5.71 (s, 1H), 5.30-5.37 (m, 8H), 5.15 (s, 2H), 5.13 (s, 4H), 3.47 (s, 3H), 3.45 (s, 6H), 2.79-2.84 (m, 6H), 2.36 (t, J =7.7 Hz, 2H), 2.12-2.15 (m, 2H), 2.04-2.07 (m, 2H), 1.70-1.75 (m, 2H), 1.33-1.37 (m, 2H), 1.25-1.30 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C} =$ 192.8, 185.6, 159.8, 156.0, 130.5, 129.1, 128.8, 128.6, 128.3, 128.1, 127.8, 127.5, 113.2, 103.6, 97.5, 95.0, 94.4, 56.3, 56.2, 37.8, 31.5, 29.3, 27.2, 26.7, 25.63 (C×4), 22.6, 14.1; HR-ESI(+)MS *m*/*z* 609.3408 [M + Na]⁺ (calcd for C₃₄H₅₀O₈Na, 609.3398).

9: ¹H NMR (600 MHz, DMSO-*d*₆): δ_H = 12.77 (s, 1H), 10.77 (br, 1H), 6.28 (d, *J* = 2.0 Hz 1H), 6.13 (d, *J* = 2.0 Hz 1H), 6.11 (s, 1H), 5.31-5.38 (m, 2H), 5.23-5.30 (m, 6H), 2.70-2.75 (m, 6H), 2.57 (t, *J* = 7.6 Hz 2H), 2.08 (q, *J* = 6.9 Hz 2H), 1.95 (q, J = 6.9 Hz 2H

7

7.2 Hz 2H), 1.65-1.70 (m, 2H), 1.22-1.27 (m, 2H), 1.16-1.21 (m, 4H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6): $\delta_C = 182.2$, 170.8, 164.6, 162.0, 158.2, 130.4, 129.3, 128.9, 128.5, 128.31, 128.27, 128.1, 127.9, 107.9, 104.0, 99.2, 94.1, 33.2, 31.3, 29.14, 29.14, 27.0, 26.5, 26.3, 25.7, 25.6, 22.4, 14.3; UV (MeOH) λ_{max} (log ε) 215 (3.76), 218 (3.76), 239 (3.78), 246 (3.77) and 285 (3.38) nm; HR-ESI(+)MS m/z 437.2689 [M + H]⁺ (calcd for C₂₈H₃₇O₄, 437.2686).

Bioassays

BACE1 inhibitory assay

The TruPoint Beta-Secretase Assay was conducted according to manufacturer's instructions (Perkin Elmer, AD0258). Briefly, compounds of interest were dispensed in duplicate into a 384 well plate at the desired concentrations (7% DMSO). BACE (0.3 mU/ μ L; Invitrogen, P2947) was added before incubating the plate at room temperature for 30 minutes. The reaction was started by the addition of substrate (200 nmol/L) to a final assay volume of 30 μ L. The assay plate was incubated for 24 hours at room temperature, protected from light and covered with parafilm to prevent evaporation. The assay was read at 340/615nm using an Envision plate reader. Concentrations given are for final assay conditions.

CDK5 (Cyclin-dependent kinase 5)/p25 inhibitory assay

Assay buffer: 6.25 mM MOPS, pH 7.2, 6.25 mM MgCl₂, 1.25 mM EGTA, 1.25 mM EDTA, 0.25% glycerol. Assay components were sourced as follows: CDK5/p25 (Sigma Aldrich, C0745), ATP (Sigma Aldrich, A7699), Histone (Sigma Aldrich, H4524), Kinase-Glo (Promega, V6712), 384 well plates (Perkin Elmer, 6007290).

CDK5/p25 (0.8 ng/µL) was added to a 384 well plate containing compounds of interest (1% DMSO) that had been dispensed in duplicate. Following a 10 minutes' incubation at room temperature, ATP (4 µM) and Histone (300 µg/mL) were added to a final assay volume of 25 µL. The assay plate was covered with parafilm to prevent evaporation and incubated at 27 °C for 60 minutes. The plate was equilibrated at room temperature for 10 minutes before the addition of Kinase-Glo reagent (20 µL). After a further 10 minutes luminescence was measured with a Polarstar plate reader. Concentrations given are for final assay conditions. Controls included a 'No Kinase' control (ATP, Histone only), 'Kinase' control (Kinase, ATP and Histone) and a 'Vehicle' control (Kinase, ATP, Histone and DMSO). Percent inhibition was calculated as follows: Percent inhibition = ((Test sample – Kinase control) / (No Kinase control – Kinase control)) × 100. IC₅₀ values were calculated using Prism.

GSK3β (Glycogen synthase kinase 3β) inhibitory assay

Assay buffer: 50 mM HEPES, pH 7.5, 1 mM EDTA, 1 mM EGTA, 15 mM Mg(CH₃CO₂)₂. Assay components were sourced as follows: GSK3β (Millipore, 14-306), GSK3β substrate C-terminal fragment of GS-2 peptide [His-Ser-Ser-Pro-His-Gln-Ser(PO₃H₂)-Glu-Asp-Glu-Glu-Glu] (Auspep), ATP (Sigma Aldrich, A7699), Kinase-Glo (Promega, V6712), 384 well plates (Perkin Elmer, 6007290).

GSK3β (0.4 ng/μL) was added to a 384 well plate containing compounds of interest (1% DMSO) that had been dispensed in duplicate. Following a 10 minutes' incubation at room temperature, ATP (0.4 μM) and GSK3β substrate (15 μM) were added to a final assay volume of 25 μL. The assay plate was covered with parafilm to prevent evaporation and incubated at room temperature for 60 minutes. Kinase-Glo reagent (20 μL) was added and incubated for a further 10 minutes before measuring luminescence with a Polarstar plate reader. Concentrations given are for final assay conditions. Controls included a 'No Kinase' control (ATP, GSK3β substrate only), 'Kinase' control (Kinase, ATP and GSK3β substrate) and a 'Vehicle' control (Kinase, ATP, GSK3β substrate and DMSO). Percent inhibition was calculated as follows Percent inhibition = ((Test sample – Kinase control) / (No Kinase control – Kinase control)) × 100. IC₅₀ values were calculated using Prism.

CK1 δ (Casein kinase 1 δ) inhibitory assay

Assay buffer: 7.5 mM MOPS, pH 7.0, 0.25 mM EDTA, 0.003% Brij-35, 1% Glycerol, 0.03% BME, 0.5 mg/mL BSA, 12.5 mM Mg(CH₃CO₂)₂. Assay components were sourced as follows: CK1 delta (Millipore, 14-520), CK1tide (Millipore, 12-529), ATP (Sigma Aldrich, A7699), Kinase-Glo (Promega, V6712), 384 well plates (Perkin Elmer, 6007290).

CK18 (0.4 ng/ μ L) was added to a 384 well plate containing compounds of interest (1% DMSO) that had been dispensed in duplicate. Following a 10 minutes' incubation at room temperature, ATP (6 μ M) and CK1tide (125 μ M) were added to a final assay volume of 25 μ L. The assay plate was covered with parafilm to prevent evaporation, and incubated at 27 °C for 60 minutes. The plate was then equilibrated at room temperature for 10 minutes before the addition of Kinase-Glo reagent (20 μ L). After a further 10 minutes luminescence was measured with a Polarstar plate reader.

Concentrations given are for final assay conditions. Controls included a 'No Kinase' control (ATP, CK1tide only), 'Kinase' control (Kinase, ATP and CK1tide) and a 'Vehicle' control (Kinase, ATP, CK1tide and DMSO). Percent inhibition was calculated as follows: Percent inhibition = ((Test sample – Kinase control) / (No Kinase control – Kinase control)) × 100. IC₅₀ values were calculated using Prism.

Antibacterial Assay

The bacterium to be tested was streaked onto a tryptic soy agar plate and was incubated at 37 °C for 24 h. One colony was then transferred to fresh tryptic soy broth (15 mL) and the cell density was adjusted to 10^4 – 10^5 cfu/mL. Test compounds were dissolved in DMSO and diluted with H₂O to give a 300 µM stock solution (10% DMSO). The stock solution was then serially diluted with 10% DMSO to give final concentrations of 30 µM to 0.01 µM in 1% DMSO. An aliquot (20 µL) of each dilution was transferred to a 96-well microtitre plate and freshly prepared microbial broth (180 µL) was added to each well. The plates were incubated at 37 °C for 24 h and the optical density of each well was measured spectrophotometrically at 600 nm. Each test compound was screened against the Gram-negative bacterium *Escherichia coli* (ATCC 11775), and the Gram-positive bacteria *Staphylococcus aureus* (ATCC 9144 and ATCC 25923) and *Bacillus subtilis* (ATCC 6633 and ATCC 6051).

Antifungal Assay

The fungus to be tested was streaked onto a Sabouraud agar plate and was incubated at 26.5 °C for 48 h. One colony was then transferred to fresh Sabouraud broth (15 mL) and the cell density was adjusted to 10^4 – 10^5 cfu/mL. Test compounds were dissolved in DMSO and diluted with H₂O to give a 300 μ M stock solution (10% DMSO). The stock solution was then serially diluted with 10% DMSO to give final concentrations of 30 μ M to 0.01 μ M in 1% DMSO. An aliquot (20 μ L) of each dilution was transferred to a 96-well microtitre plate and freshly prepared microbial broth (180 μ L) was added to each well. The plates were incubated at 26.5 °C for 48 h and the optical density of each well was measured spectrophotometrically at 600 nm. Each test compound was screened against the fungus *Candida albicans* (ATCC 90028). Assay buffer: 6.25 mM MOPS, pH 7.2, 6.25 mM MgCl₂, 1.25 mM EGTA, 1.25 mM EDTA, 0.25% glycerol. Assay components were sourced as follows: CDK5/p25 (Sigma Aldrich, C0745), ATP (Sigma Aldrich, A7699), Histone (Sigma Aldrich, H4524), Kinase-Glo (Promega, V6712), 384 well plates (Perkin Elmer, 6007290).

Table S1. NMR data (CDCl ₃ , 600 MHz) for spiralisone A (1)								
No.	$\delta_{C}{}^{A}$	$\delta_{\rm H}$ (multi., J (Hz))	COSY	HMBC (1 H to 13 C)				
2	102.5							
3	45.1	a 2.88 (d, 16.9)	H-3′b	C-2', C-4'				
		b 2.74 (d, 16.9)	H-3'a	C-2', C-4'				
4	195.0							
5	164.2							
6	97.0	5.96 (br s)		C-5', C-8', C-9'				
7	164.7							
8	96.2	5.89 (br s)		C-6', C-7', C-9', C-10'				
9	102.9							
10	160.2							
1'	40.8	1.89 (br t, 8.1)	H-2	C-2, C-3, C-2', C-3'				
2'	23.4	1.58 (m)	H-1, H-3					
3'	27.0	2.15 (m)	H-2, H-4	C-1, C-2, C-4, C-5				
4′	129.2	5.30–5.43 (m)						
5'	129.2 ^B	5.30-5.43 (m)						
6'	25.9	2.77-2.85 (m)						
7'	128.9 ^B	5.30-5.43 (m)						
8'	128.5 ^B	5.30-5.43 (m)						
9′	25.9	2.77-2.85 (m)						
10'	128.3 ^B	5.30-5.43 (m)						
11'	128.1 ^B	5.30-5.43 (m)						
12'	25.9	2.77-2.85 (m)						
13'	127.7	5.31 (m)		C-15				
14'	130.8	5.38 (m)	H-15	C-12				
15'	27.5	2.03 (m)	H-14, H-16	C-13, C-14, C-16, C-17				
16'	29.5	1.34 (m)	H-15, H-17	C-14, C-15, C-17, C-18				
17'	31.7	1.26 (m)	H-16	C-18				
18'	22.8	1.29 (m)	H-19	C-17				
19′	14.3	0.87 (t, 7.0)	H-18	C-17, C-18				
5'-OH		11.92 (s)		C-5', C-6', C-9'				
7'-OH		5.70 (br s)						

^A ¹³C NMR assignments were supported by HSQC experiment; ^B Interchangeable signals within the column.

Table S2. NMR data (CDCl ₃ , 600 MHz) for spiralisone B (2)								
No.	$\delta_C{}^A$	δ_{H} (multi., J (Hz))	COSY	HMBC (1 H to 13 C)				
2	102.5							
3	45.1	a 2.88 (d, 17.2)	H-3′b	C-1, C-2', C-4'				
		b 2.74 (d, 17.2)	H-3'a	C-2', C-4'				
4	195.1							
5	164.1							
6	97.0	5.95 (d, 1.7)		C-5', C-7', C-8', C-9'				
7	164.9							
8	96.3	5.89 (d, 1.7)		C-6', C-7', C-9', C-10'				
9	102.8							
10	160.2							
1'	40.8	1.89 (br t, 8.2)	H-2	C-2, C-3, C-2', C-3'				
2'	23.4	1.58 (m)	H-1, H-3	C-1, C-3, C-4				
3'	27.0	2.14 (m)	H-2, H-4	C-1, C-2, C-4, C-5				
4'	129.2	5.32–5.44 (m)						
5'	129.2 ^B	5.32–5.44 (m)						
6'	25.9 ^C	2.77-2.85 (m)						
7'	128.8^{B}	5.32–5.44 (m)						
8'	128.5 ^B	5.32–5.44 (m)						
9′	25.9 ^C	2.77-2.85 (m)						
10'	128.4 ^B	5.32-5.44 (m)						
11'	128.3 ^B	5.32–5.44 (m)						
12'	25.9 ^C	2.77-2.85 (m)						
13'	128.3 ^B	5.32–5.44 (m)						
14'	128.1 ^B	5.32–5.44 (m)						
15'	25.8 ^C	2.77-2.85 (m)						
16'	127.2	5.30 (m)		C-15, C-18				
17'	132.3	5.38 (m)	H-18	C-18, C-19				
18'	20.8	2.05 (m)	H-17, H-19	C-16, C-17, C-19				
19′	14.5	0.95 (t, 7.5)	H-18	C-17, C-18				
5'-OH		11.91 (s)		C-5', C-6', C-9'				
7'-OH		5.99 (br s)						

^{A 13}C NMR assignments were supported by HSQC experiment; ^{B,C} Interchangeable signals within the column.

Table	Table S3. NMR data (CDCl ₃ , 600 MHz) for spiralisone C (3)									
No.	$\delta_C{}^A$	$\delta_{\rm H}$ (multi., J (Hz))	COSY	HMBC (1 H to 13 C)						
2	102.6			, , , , , , , , , , , , , , , , , , ,						
3	45.1	2.88 (d, 16.9)	H-3′b	C-2', C-4'						
		2.75 (d, 16.9)	H-3'a	C-2', C-4'						
4	195.1									
5	164.2									
6	96.9	5.96 (d, 1.6)		C-5', C-8', C-9'						
7	164.7									
8	96.1	5.89 (d, 1.6)		C-6', C-7', C-9', C-10'						
9	103.0									
10	160.2									
1'	41.4	1.87 (br t, 7.6)	H-2	C-2, C-3, C-2', C-3'						
2'	23.4	1.48 (m)	H-1, H-3	C-1, C-3						
3'	29.7	1.34 (m)	H-2, H-4							
4′	29.9 ^B	1.20-1.30								
5'	29.9 ^B	1.20-1.30								
6'	29.9 ^B	1.20-1.30								
7′	29.9 ^B	1.20-1.30								
8'	29.9 ^B	1.20-1.30								
9′	29.8 ^B	1.20-1.30								
10'	29.7 ^B	1.20-1.30								
11'	29.7^{B}	1.20-1.30								
12'	29.6 ^B	1.20-1.30								
13'	32.2	1.24 (m)		C-15						
14′	22.9	1.27 (m)	H-15	C-13						
15'	14.3	0.86 (t, 7.0)	H-14	C-13, C-14						
5'-OH		11.93 (s)		C-5', C-6', C-9'						
7'-OH		5.52 (br s)		2 - 2						

^{A 13}C NMR assignments were supported by HSQC experiment; ^B Interchangeable signals within the column.

Table S4. NMR data (CDCl ₃ , 600 MHz) for spiralisone D (4)								
No.	$\delta_{C}{}^{A}$	$\delta_{\rm H}$ (multi., J (Hz))	COSY	HMBC (1 H to 13 C)				
2	102.6							
3	45.1	a 2.88 (d, 16.9)	H-3′b	C-1, C-2', C-4'				
		b 2.74 (d, 16.9)	H-3'a	C-2', C-4'				
4	195.1							
5	164.2							
6	96.9	5.96 (br s)		C-5', C-8', C-9'				
7	164.6							
8	96.2	5.89 (br s)		C-6', C-7', C-9', C-10'				
9	102.9							
10	160.3							
1'	41.4	1.87 (br t, 7.6)	H-2	C-2, C-3, C-2', C-3'				
2'	23.4	1.48 (m)	H-1, H-3	C-1, C-3				
3'	29.7	1.34 (m)	H-2, H-4	C-1, C-2				
4′	29.9 ^B	1.21-1.30 (m)						
5'	29.9 ^B	1.21-1.30 (m)						
6'	29.9 ^B	1.21-1.30 (m)						
7'	29.8^{B}	1.21-1.30 (m)						
8'	29.7 ^B	1.21-1.30 (m)						
9′	29.7 ^B	1.21-1.30 (m)						
10'	29.6 ^B	1.21–1.30 (m)						
11'	32.1	1.24 (m)						
12'	22.9	1.28 (m)	H-13	C-11, C-13				
13'	14.3	0.86 (t, 7.0)	H-12	C-11, C-12				
5'-OH		11.93 (s)		C-5', C-6', C-9'				
7'-OH		5.63 (br s)						

^{A 13}C NMR assignments were supported by HSQC experiment; ^B Interchangeable signals within the column.

Table S5. NMR data (CDCl₃ with 2% CD₃OD, 600 MHz) for 5,7-Dihydroxy-2-tridecanyl chromone (5)

No.	$\delta_{C}{}^{A}$	$\delta_{\rm H}$ (multi., J (Hz))	COSY	HMBC (1 H to 13 C)
2	170.7			
3	107.9	5.96 (s)		C-1, C-2', C-9'
4	182.8			
5	158.8			
6	94.3	6.27 (d, 2.0)		C-8′, C-9′
7	163.8			
8	99.2	6.20 (d, 2.0)		C-6', C-7', C-9', C-10'
9	104.9			
10	161.9			
1′	34.4	2.52 (br t, 7.6),	H-2	C-2, C-3, C-2', C-3'
2'	26.9	1.65 (m)	H-1, H-3	C-1, C-3, C-2'
3'	29.2	1.33 (m)	H-2, H-4	
4′	29.8^{B}	1.19–1.29 (m)		
5'	29.8^{B}	1.19–1.29 (m)		
6'	29.8^{B}	1.19–1.29 (m)		
7′	29.8^{B}	1.19–1.29 (m)		
8'	29.6 ^B	1.19–1.29 (m)		
9′	29.5^{B}	1.19–1.29 (m)		
10'	29.4 ^B	1.19–1.29 (m)		
11'	32.1	1.22 (m)		
12'	22.9	1.25 (m)	H-13	C-13, C-11
13'	14.3	0.84 (t, 7.0)	H-12	C-11, C-12

^{A 13}C NMR assignments were supported by HSQC experiment; ^B Interchangeable signals within the column.

Table S6. NMR data (CDCl₃) comparison with literature data for 5,7-dihydroxy-2-(4Z,7Z,10Z,13Z,16Z-nonadecapentaenyl) chromone (6)

	1		Literature data*				
No.	$\delta_{\rm C}^{\rm A}$ (150 MHz)	$\delta_{\rm H}^{\rm A}$ (600 MHz)	$\delta_{\rm C}^{\rm A}$ (20 MHz)	$\delta_{\rm H}^{B}$ (270 MHz)			
2	170.5		171.4				
3	108.2	6.02 (s)	107.7	6.21 (s)			
4	182.8		183.2				
5	158.5		158.9				
6	94.3	6.31 (br s)	94.7	6.74 (d, 2)			
7	162.6		163.9				
8	99.6	6.25 (br s)	100.0	6.68 (d, 2)			
9	105.5		105.1				
10	162.6		162.5				
1'	33.9	2.56 (t, 7.7)	33.8				
2'	26.9	1.77 (m)	26.8				
3'	26.7	2.16 (m)	26.5				
4′	128.7	5.36 (m)	128.9				
5'	129.5	5.42 (m)	129.7				
6'	25.9 ^C	2.77–2.84 (m)	25.7^{E}				
7'	128.8 ^D	5.32–5.39 (m)	$128.7^{\rm F}$				
8'	128.5 ^D	5.32-5.39 (m)	128.6 ^F				
9′	25.9 [°]	2.77–2.84 (m)	25.7^{E}				
10'	128.5 ^D	5.32–5.39 (m)	128.6 ^F				
11'	128.2 ^D	5.32–5.39 (m)	128.3 ^F				
12'	25.9 ^C	2.77–2.84 (m)	25.7 ^E				
13'	128.2 ^D	5.32–5.39 (m)	128.3 ^F				
14'	128.1 ^D	5.32–5.39 (m)	128.3 ^F	5.45			
15'	25.8 ^C	2.77–2.84 (m)	25.6 ^E	2.94			
16'	127.2	5.29 (m)	127.3				
17'	132.3	5.37 (m)	132.3				
18′	20.8	2.05 (m)	20.6				
19′	14.5	0.95 (t, 7.5)	14.3				
5'-OH		6.40 (br s)					
7'-OH		12.68 (br s)					
		-=.00 (01 0)					

^A measure in CDCl₃, ^B measured in pyridine-*d*₅; ^{C-F} Interchangeable signals within the column. * *Tetrahedron Lett.* **1982**, *23*, 1509–1512. *Org. Lett.* **2009**, *11*, 587–588.

Table S7. NMR data comparison with literature data for apo-9'-fucoxanthinone (7) in CD₃OD

		7	Literature data*			
No.	δ _C (150 MHz)	$\delta_{\rm H}$ (600 MHz)	$\delta_{\rm C}$	δ_{H}		
1	37.1		37.2			
2	46.3	a. 1.48 (dd, 12.4, 11.5)	46.4	a 1.60 (dd, 12.7, 11.5)		
		b. 2.00 (ddd, 12.4, 4.2, 2.2)		b. 2.04 (ddd, 12.7, 4.1, 2.2)		
3	69.1	5.38 (tt, 11.5, 4.2)	69.2	5.42 (tt, 11.5, 4.1)		
4	46.2	a. 1.56 (dd, 12.9, 11.5)	46.3	a. 1.49 (dd, 12.7, 11.5)		
		b. 2.23 (ddd, 12.9, 4.2, 2.2)		b. 2.27 (ddd, 12.7, 4.1, 2.2)		
5	72.4		72.4			
6	119.8		119.9			
7	211.6		211.6			
8	101.4	5.86 (s)	101.5	5.90 (s)		
9	200.9		200.9			
10	26.8	2.20 (s)	26.9	2.24 (s)		
11	29.4	1.43 (s)	29.5	1.46 (s)		
12	32.2	1.17 (s)	32.3	1.20 (s)		
13	30.7	1.39 (s)	30.8	1.43 (s)		
<u>Me</u> CO	172.4		172.5			
Me <u>C</u> O	21.3	2.03 (s)	21.4	2.07 (s)		

* J. Nat. Prod., 1995, 58, 1097–1099.

	1	2	3	4	5	6	7
CDK5/p25	10	3.0	>30	>30	>30	10	>30
CK1ð	<10	5.0	NT	NT	NT	<10	NT
GSK3β	<10	5.4	NT	NT	NT	<10	NT
B. subtilis ^a	6.4	NA	8.7	2.5	NA	10	NA
B. subtilis ^b	8.1	NA	5.0	3.3	NA	5.3	NA
S. aureus ^c	NA						
S. aureus ^d	NA						
E. $coli^e$	NA						
P. aeruginosa ^f	NA						
C. albicans ^g	NA						

Table S8. Kinase inhibitory and antimicrobial assay results (IC₅₀ in μ M)

Microbial strains are: ^a ATCC 6051, ^b ATCC 6633, ^c ATCC 9144, ^d ATCC 25923, ^e ATCC 11775, ^f ATCC 10145, ^g ATCC 90028. NT: Not tested; NA: Not active.

Figure S1¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone A (1)

Figure S2 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone B (2)

Figure S3 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone C (**3**)

Figure S4 ¹H NMR (CDCl₃, 600 MHz) spectrum for spiralisone D (4)

Figure S5 ¹H NMR (CDCl₃ with 2% CD₃OD, 600 MHz) for 5,7-Dihydroxy-2-tridecanyl chromone (5)

Figure S6¹H NMR (CDCl₃, 600 MHz) spectrum for 5,7-dihydroxy-2-(4Z,7Z,10Z,13Z,16Z-nonadecapentaenyl) chromone (6)

Figure S8¹H NMR (CDCl₃, 600 MHz) spectrum for 8 11.939 -6.061 -6.058 -5.971 -5.967 3.806 3.806 3.806 3.807 3.806 3.807 3.806 1.909 3.81 1.5288 1.528 1.528 OH 0 _ OH MeO 8 -----12 11 10 5 2 ppm 9 8 7 6 3 0 4 1 0.74 0.59 3.00 1.16 2.25 4.45 9.76 6

Figure S10 ¹H NMR (DMSO- d_6 , 600 MHz) spectrum for 9

Figure S11 ¹³C NMR (DMSO-*d*₆, 150 MHz) spectrum for 9

Figure S12 ¹H NMR (CDCl₃, 600 MHz) spectrum for compound tetradecanal

Figure S13 ¹H NMR (CDCl₃, 600 MHz) spectrum for compound arachidonal

Figure S14 ¹H NMR (CDCl₃, 600 MHz) spectrum for 11a

35

Figure S16¹H NMR (CDCl₃, 600 MHz) spectrum for keto-enol (12a, 12a')

Figure S17¹³C NMR (CDCl₃, 150 MHz) spectrum for keto-enol (12a, 12a')

Figure S18¹H NMR (CDCl₃, 600 MHz) spectrum for 11b

Figure S19¹³C NMR (CDCl₃, 150MHz) spectrum for 11b

Figure S20 ¹H NMR (CD₃OD, 600 MHz) spectrum for 11c

Figure S22 ¹H NMR (CDCl₃, 600 MHz) spectrum for keto-enol (12b, 12b')

43

Figure S25 ¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 4 with natural 4

Figure S26 ¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 5 with natural 5

Figure S27 ¹H NMR (CDCl₃, 600 MHz) comparison of synthetic 1 with natural 1

Figure S28 BACE1 inhibitory assay results for 1-7

Figure S29 CDK5/p25 inhibitory assay results for 1–7

Figure S31 GSK3 β inhibitory assay results for 1, 2 and 6

Figure S32 Antimicrobial assays results for 1–7

Bacillus subtilis ATCC 6051

Staphylococcus aureus ATCC 9144

Bacillus subtilis ATCC 6633

Staphylococcus aureus ATCC 25923

Concentrations (µM)

Candida albicans ATCC 90028

Escherichia coli ATCC 11775

Pseudomonas aeruginosa ATCC 10145

Concentrations (µM)

Horizontal conditions of the second second

Concentrations (μM)

Antimicrobial assays results for 1–7

	Escherichia ATCC 117	a coli 75	Pseudomona ATCC 10145	s aeruginosa	Staphylococ ATCC 2592	cus aureus 3	Staphylococ ATCC 9144	ccus aureus I	Bacillus sub ATCC 6051	btilis	Bacillus su ATCC 663	btilis 3	Candida al ATCC 900	bicans 28
No.	MIC/µM	IC ₅₀ /μΜ	MIC/µM	IC ₅₀ /μM	MIC/µM	IC ₅₀ /μΜ	MIC/µM	IC ₅₀ /μΜ	MIC/µM	IC ₅₀ /μΜ	MIC/µM	IC ₅₀ /μΜ	MIC/µM	IC ₅₀ /µM
1									15	6.4	15	8.1		
2														
3									15	8.7	15	5.0		
4									15	2.5	7.5	3.3		
5														
6									30	10.2	15	5.3		
7														