Supporting information

Ortho-phenylenediamine-based open and macrocyclic receptors in selective sensing of $H_2PO_4^-$, ATP and ADP under different conditions

Kumaresh Ghosh^{*}and Indrajit Saha

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750.

- 1. Change in fluorescence intensity of receptor 1 in CH₃CN.
- 2. Change in fluorescence intensity of receptor 2 in CH₃CN.
- 3. Change in absorbance of receptor 1 in CH₃CN.
- 4. Change in absorbance of receptor 2 in CH₃CN.
- 5. Fluorescence ratio of 1 in CH₃CN.
- 6. Plot of ratio of excimer to monomer emissions with guest concentrations.
- 7. Fluorescence titration curve for **1** with anions.
- 8. Fluorescence Job plots of receptor $1 \text{ H}_2\text{PO}_4$, F⁻, Fumarate and ClO₄⁻ in CH₃CN.
- 9. Fluorescence decay curves for 1 with $H_2PO_4^-$ anion.
- 10. Fluorescence decay curves for 1 with $H_2PO_4^-$ and ClO_4^- anions.
- 11. Partial ¹H NMR of **1** with AcO⁻ and F⁻ in CD₃CN.
- 12. Partial ¹H NMR of **1** with AcO⁻ and F⁻ in d_6 -DMSO.
- 13. Fluorescence titration curves ([Guest]/[Host] vs change in emission) of 2.
- 14. Fluorescence ratio of receptor 2 upon addition of 4.0 equiv of a particular anion in CH_3CN .
- 15. Fluorescence Job plots of receptor 2 with (a) $H_2PO_4^-$ and (b) fumarate in CH₃CN.
- 16. Fluorescence decays of (a) 2 and (b) in the presence of equiv. amount of $H_2PO_4^-$ ions in CH_3CN .
- 17. Selectivity study.
- 18. 1 NMR of **2** with F⁻.
- 19. Change in emission of 1 upon addition of various anions in CH_3CN : H_2O (1:1, v/v).
- 20. Change in emission of 2 upon addition of various anions in CH_3CN : H_2O (1:1, v/v).
- 21. PF6 structure of 1 with ADP.
- 22. Fluorescence job plots of 1 with ADP and ATP.
- 23. Change in emission of 2 with ADP and ATP.
- 24. ¹H NMR of **2** in d_6 -DMSO with ATP and ADP.
- 25. Spectral data for 1 and 2.

Figure S1. Change in fluorescence intensity of receptor **1** ($c = 3.75 \times 10^{-5}$ M) upon addition anions ($c = 1.5 \times 10^{-3}$ M) in CH₃CN ($\lambda_{ex} = 300$ nm).

Figure S2. Change in fluorescence intensity of receptor **2** ($c = 3.43 \times 10^{-5}$ M) upon addition anions ($c = 1.5 \times 10^{-3}$ M) in CH₃CN ($\lambda_{ex} = 300$ nm).

Figure S3. Change in absorbance of receptor **1** ($c = 3.75 \times 10^{-5}$ M) upon addition anions ($c = 1.5 \times 10^{-3}$ M) in CH₃CN ($\lambda_{ex} = 300$ nm).

Figure S4. Change in absorbance of receptor **2** ($c = 3.43 \times 10^{-5}$ M) upon addition anions ($c = 1.5 \times 10^{-3}$ M) in CH₃CN ($\lambda_{ex} = 300$ nm).

Figure S5. Fluorescence ratio $(I - I_0/I_0)$ of receptor **1** ($c = 3.75 \times 10^{-5}$ M) at 422 nm upon addition of 10.0 equiv. amounts of a particular anion in CH₃CN.

Figure S6. Ratio of excimer to monomer emissions of $1 (c = 3.75 \times 10^{-5} \text{ M})$ with increase in concentration of anions in CH₃CN.

Figure S7. Fluorescence titration curves ([Guest]/[Host] vs change in emission) of $\mathbf{1}$ ($c = 3.75 \times 10^{-5}$ M) measured at 345 nm in CH₃CN.

Figure S8. Fluorescence Job plots of receptor **1** (3.97 x 10^{-5} M) with a) H₂PO₄, b) F, c) Fumarate and d) ClO₄ in CH₃CN.

Figure S9. Fluorescence decays of (a) **1** ($c = 4.24 \times 10^{-5}$ M) in CH₃CN measured at 345 nm. ($\lambda_{ex} = 300$ nm); (b) **1** ($c = 4.24 \times 10^{-5}$ M) in the presence of equivalent amount of H₂PO₄⁻ ions in CH₃CN measured at 345 nm ($\lambda_{ex} = 300$ nm).

Figure S10. Fluorescence decays of (a) **1** ($c = 4.24 \times 10^{-5}$ M) in the presence of equivalent amount of H₂PO₄⁻ ions in CH₃CN measured at 420 nm ($\lambda_{ex} = 300$ nm); (b) **1** ($c = 4.24 \times 10^{-5}$ M) in the presence of equivalent amount of ClO₄⁻ ions in CH₃CN measured at 345 nm ($\lambda_{ex} = 300$ nm).

Figure S11. Partial ¹H NMR (CD₃CN, 400 MHz) of **1** ($c = 2.65 \times 10^{-3}$ M) with equivalent amount of AcO⁻ and F⁻.

Figure S12. Change in ¹H NMR (400 MHz) of **1** ($c = 2.67 \times 10^{-3}$ M) upon successive addition of tetrabutylammonium (a) acetate, (b) fluoride in d₆-DMSO.

Figure S13. Fluorescence titration curves ([Guest]/[Host] vs change in emission) of **2** ($c = 3.43 \times 10^{-5}$ M) measured at 365 nm in CH₃CN.

Figure S14. Fluorescence ratio $(I - I_0/I_0)$ of receptor **2** ($c = 3.43 \times 10^{-5}$ M) at 365 nm upon addition of 4.0 equiv of a particular anion in CH₃CN.

Figure S15. Fluorescence Job plots of receptor **2** (4.42 x 10^{-5} M) with (a) H₂PO₄⁻ and (b) fumarate in CH₃CN.

Figure S16. Fluorescence decays of (a) **2** ($c = 2.88 \times 10^{-5}$ M) and (b) **2** ($c = 2.88 \times 10^{-5}$ M) in the presence of equivalent amount of H₂PO₄⁻ ions in CH₃CN measured at 365 nm ($\lambda_{ex} = 300$ nm).

Figure S17. Change in fluorescence ratio of receptor **2** ($c = 3.43 \times 10^{-5}$ M) upon addition of 10 equivalent amounts of H₂PO₄⁻ in the presence of other anions in CH₃CN.

Figure S18. Change in ¹H NMR (400 MHz) of **2** ($c = 2.85 \times 10^{-3}$ M) upon successive addition of tetrabutylammonium fluoride in d₆-DMSO.

Figure S19. Change in emission of receptor **1** ($c = 4.92 \times 10^{-5}$ M, $\lambda_{ex} = 300$ nm, slit ex/em = 9/11, $\lambda_{max} = 345$ nm, filter = open) upon addition of various anions in CH₃CN: H₂O (1:1, v/v).

Figure S20. Change in emission of receptor **2** ($c = 3.83 \times 10^{-5}$ M, $\lambda_{ex} = 300$ nm, slit ex/em = 9/11, $\lambda_{max} = 345$ nm, filter = open) upon addition of various anions in CH₃CN: H₂O (1:1, v/v)

Figure S21. PM6 optimized structure for **1** with ADP (a = 2.06 Å, b = 1.77 Å, c = 1.71 Å, d = 2.17 Å) in CH₃CN.

Figure S22. Fluorescence Job plots of receptor **1** ($c = 5.32 \times 10^{-5}$ M) with (a) ADP and (b) ATP in CH₃CN: H₂O (1:1, v/v).

Figure S23. Change in emission of receptor **2** ($c = 3.83 \times 10^{-5}$ M) with increase in concentrations of (a) ATP and (b) ADP upon excitation at 300 nm in CH₃CN/ H₂O (1:1, v/v).

Figure S24. Partial ¹H NMR (DMSO $-d_6$, 400 MHz) of **2** ($c = 2.65 \times 10^{-3}$ M) with equivalent amount of ATP and ADP.

