Electronic Supplementary Information

Selective molecular recognition of methylated lysines and arginines by cucurbit[6]uril and cucurbit[7]uril in aqueous solution

Mona A. Gamal-Eldin and Donal H. Macartney

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, Canada K7L 3N6

donal@chem.queensu.ca

Table of Contents

Figure S1	¹ H NMR titration of LysMe ₃ (1.0 mmol dm ⁻¹) by CB[7]	S 3
Figure S2	¹ H NMR titration of LysMe ₂ (1.0 mmol dm ⁻¹) by CB[7]	S4
Figure S3	¹ H NMR titration of LysMe (1.0 mmol dm ⁻¹) by CB[7]	S 5
Figure S4	¹ H NMR titration of Lys (1.0 mmol dm ⁻¹) by CB[7]	S 6
Figure S5	Plot of $\Delta\delta_{obs}$ (H $_{\epsilon}$ proton) against [CB[7]] for the titration of LysMe with CB[7] in D_2O	S7
Figure S6	¹ H NMR titration of Lys (1.0 mmol dm ⁻³) by CB[7] at pD = 2	S8
Figure S7	¹ H NMR titration of LysMe ₃ (1.0 mmol dm ⁻¹) by CB[7] at pD = 2	S 9
Figure S8	¹ H NMR titration of Lys (0.50 mmol dm ⁻¹) by CB[6]	S10
Figure S9	Plot of $\Delta\delta_{obs}$ (H $_{\epsilon}$ proton) against [CB[6]] for the titration of Lys with CB[6] in D ₂ O (10 mmol dm ⁻³ NaCl)	S11
Figure S10	¹ H NMR titration of LysMe (0.50 mmol dm ⁻¹) by CB[6]	S12
Figure S11	¹ H NMR titration of LysMe ₂ (0.50 mmol dm ⁻¹) by CB[6]	S13
Figure S12	¹ H NMR titration of LysMe ₃ (0.50 mmol dm ⁻¹) by CB[6]	S14
Figure S13	¹ H NMR titration of Lys (0.50 mmol dm ⁻³) by CB[6] at pD = 1	S15
Figure S14	¹ H NMR titration of LysMe (0.50 mmol dm ⁻¹) by CB[6] at pD = 1	S16
Figure S15	¹ H NMR titration of LysMe ₂ (0.50 mmol dm ⁻¹) by CB[6] at pD = 1	S17
Figure S16	¹ H NMR titration of LysMe ₃ (0.30 mmol dm ⁻¹) by CB[6] at pD = 1	S18
Figure S17	Benesi-Hildebrand plots of $\Delta_{\sf obs}{}^{-1}$ against [CB[6]] $^{-1}$ for the 1 H NMR	

	titrations of (\blacksquare) HLysMe (H _{Me}), (\blacktriangle) HLysMe ₂ (H _{δ}) and (\bullet) HLysMe ₃ (H ε) with CB[6] in 0.10 M DCl (containing 0.10 M NaCl).	S19
Figure S18	The structures of the protonated HLysMe _n guest series. The values adjacent to the guest protons are the ¹ H NMR chemical shift changes ($\Delta\delta_{lim}$, ppm) induced by cucurbit[6]uril complexation in 0.10 M DCl (containing 0.10 M NaCl).	S20
Figure S19	¹ H NMR titration of acetyllysine (1.0 mmol dm ⁻³) by CB[7] in D ₂ O	S21
Figure S20	Benesi-Hildebrand plot for the binding of acetyllysine by CB[7] in D_2O	S22
Figure S21	¹ H NMR titration of L-arginine (0.50 mmol dm ⁻¹) by CB[7] in D ₂ O	S23
Figure S22	1 H NMR titration of methylarginine (1.0 mmol dm $^{-1}$) by CB[7] in D ₂ O	S24
Figure S23	¹ H NMR titration of asymmetric dimethylarginine (1.0 mmol dm ⁻¹) by CB[7] in D ₂ O	S25
Figure S24	¹ H NMR titration of symmetric dimethylarginine (1.0 mmol dm ⁻¹) by CB[7] in D ₂ O	S26
Figure S25	Benesi-Hildebrand plot for the binding of L-arginine by CB[7] in D_2O	S27
Figure S26	Benesi-Hildebrand plot for the binding of N-methylarginine by CB[7] in D_2O	S28
Figure S27	Plot of $\Delta\delta_{obs}$ against [CB[7]] for the binding of asymmetric dimethylarginine by CB[7] in D2O	S29
Figure S28	Plot of $\Delta\delta_{obs}$ against [CB[7]] for the binding of symmetric dimethylarginine by CB[7] in D2O	S30
Figure S29	Plot of logK _{CB[7]} (LysMe _n) against n in LysMe _n for binding with CB[7]	624
		221

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S1. ¹H NMR titration of LysMe₃ (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.0, (b) 0.22, (c) 0.46, (d) 0.71, (e) 1.09, (f) 1.11, (g) 1.20, (h) 1.56, and (i) 2.04 eq CB[7].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Figure S2. ¹H NMR titration of LysMe₂ (1.0 mmol dm⁻¹) by CB[7] (impurity signals *) in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.0, (b) 0.15, (c) 0.30, (d) 0.49, (e) 0.65, (f) 0.78, (g) 0.96, (h) 1.22, (i) 1.54, and (j) 3.52 eq CB[7].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S3. ¹H NMR titration of LysMe (0.50 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 $^{\circ}$ C). (a) 0.00, (b) 0.23, (c) 0.42, (d) 0.68, (e) 0.78, (f) 1.38, (g) 1.81, (h) 2.36, (i) 2.85, (j) 3.27, (k) 4.08, and (l) 4.31 eq CB[7].

Figure S4. ¹H NMR titration of Lys (1.0 mmol dm⁻¹) by CB[7] (impurity signal *) in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.0, (b) 0.17, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, and (g) 1.20 eq CB[7].

Figure S5. Plot of $\Delta \delta_{obs}$ (H_{ϵ} proton) against [CB[7]] for the titration of LysMe with CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). Solid line represents fit to $K_{CB[7]}$ = 1.8 x 10³ dm³ mol⁻¹.

Figure S6. ¹H NMR titration of Lys (1.0 mmol dm⁻¹) by CB[7] (impurity signal *) in D₂O (0.10 mol dm⁻³ DCl, 50 mmol dm⁻³ NaCl, pD = 2.0, 25 °C). (a) 0.0, (b) 0.17, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, and (g) 1.20 eq CB[7].

Figure S7. ¹H NMR titration of LysMe₃ (1.0 mmol dm⁻¹) by CB[7] in D₂O (10 mmol dm⁻³ DCl, 50 mmol dm⁻³ NaCl buffer, pD = 2.0, 25 °C). (a) 0.0, (b) 0.22, (c) 0.46, (d) 0.71, (e) 1.09, (f) 1.11, (g) 1.20, and (h) 1.56 eq CB[7].

Figure S8. ¹H NMR titration of Lys (0.5 mmol dm⁻¹) by CB[6] in D₂O (0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.22, (c) 0.46, (d) 0.71, and (e) 1.09 eq CB[6].

Figure S9. Plot of $\Delta \delta_{obs}$ against [CB[6]] for the H ϵ proton for the binding of lysine (0.30 mmol dm⁻³) by CB[6] in D₂O (100 mmol dm⁻³ NaCl).

Figure S10. ¹H NMR titration of LysMe (0.5 mmol dm⁻¹) by CB[6] in D₂O (0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.47, (c) 0.90, (d) 1.34, (e) 2.14, (f) 2.43, (g) 3.14, (h) 4.30, (i) 4.58, and (j) 5.98 eq CB[6].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S11. ¹H NMR titration of LysMe₂ (0.5 mmol dm⁻¹) by CB[6] in D₂O (0.10 mol dm⁻³ NaCl, 25 $^{\circ}$ C). (a) 0.0, (b) 0.54, (c) 1.00, (d) 1.64, (e) 2.06, (f) 4.07, (g) 5.12, and (h) 9.06 eq CB[6].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S12. ¹H NMR titration of LysMe₃ (0.5 mmol dm⁻¹) by CB[6] in D₂O (0.10 mol dm⁻³ NaCl, 25 $^{\circ}$ C). (a) 0.0, (b) 0.22, (c) 0.46, (d) 0.71, (e) 1.09, (f) 1.11, (g) 1.20, (h) 2.4, (i) 3.48, (j) 4.14, (k) 5.40, (l) 6.16, and (m) 6.95 eq CB[6].

Figure S13. ¹H NMR titration of Lys (0.5 mmol dm⁻¹) by CB[6] at pD = 1.0 in D₂O (0.10 mol dm⁻³ DCl and 0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.21, (c) 0.44, (d) 0.68, (e) 1.04, (f) 1.06, (g) 1.14, and (h) 1.94 eq CB[6].

Figure S14 ¹H NMR titration of LysMe (0.5 mmol dm⁻¹) by CB[6] at pD = 1.0 in D₂O (0.10 mol dm⁻³ DCl and 0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.24, (c) 0.45, (d) 0.67, (e) 1.07, (f) 1.22, (g) 2.15, and (h) 2.90 eq CB[6].

Figure S15 ¹H NMR titration of LysMe₂ (0.5 mmol dm⁻¹) by CB[6] at pD = 1.0 in D₂O (0.10 mol dm⁻³ DCl and 0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.40, (c) 0.50, (d) 0.70, (e) 1.03, (f) 1.27, (g) 1.43, (h) 2.04, (i) 2.56, and (j) 4.52 eq CB[6].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

Figure S16 ¹H NMR titration of LysMe₃ (0.30 mmol dm⁻¹) by CB[6] at pD = 1.0 in D₂O (0.10 mol dm⁻³ DCl and 0.10 mol dm⁻³ NaCl, 25 °C). (a) 0.0, (b) 0.40, (c) 0.75, (d) 1.10, (e) 1.60, (f) 2.15, (g) 4.95, and (h) 6.10 eq CB[6].

Figure S17. Benesi-Hildebrand plots of Δ_{obs}^{-1} against [CB[6]]⁻¹ for the ¹H NMR titrations of (**■**) HLysMe (H_{Me}), (**▲**) HLysMe₂ (H_{δ}) and (**●**) HLysMe₃ (H ϵ) with CB[6] in 0.10 M DCl (containing 0.10 M NaCl).

Figure S18. The structures of the protonated HLysMe_n guest series. The values adjacent to the guest protons are the ¹H NMR chemical shift changes ($\Delta \delta_{\text{lim}}$, ppm) induced by cucurbit[6]uril complexation in 0.10 M DCl (containing 0.10 M NaCl). The values were determined from the chemical shift changes in Figure S13 for HLys and from extrapolations using the limiting chemical shift changes determined in Figure S17 for the methylated HLysMe_n guests.

Figure S19. ¹H NMR titration of acetyllysine (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 $^{\circ}$ C). (a) 0.0, (b) 0.18, (c) 0.34, (d) 0.50, (e) 0.69, (f) 0.91, (g) 1.08, (h) 1.39, (i) 1.72, and (j) 4.04 eq CB[7].

Figure S20. Benesi-Hildebrand plot for the binding of acetyllysine by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 $^{\circ}$ C) using Me proton resonance.

Figure S21. ¹H NMR titration of L-arginine (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.00, (b) 0.17, (c) 0.34, (d) 0.54, (e) 0.71, (f) 0.93, (g) 1.17, (h) 1.48, (i) 1.80, and (j) 4.21 eq CB[7].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2012

Figure S22. ¹H NMR titration of methylarginine (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.00, (b) 0.26, (c) 0.51, (d) 0.94, (e) 1.11, (f) 1.36, (g) 1.59, (h) 2.18, (i) 2.68, and (j) 5.20 eq CB[7].

Figure S23. ¹H NMR titration of asymmetric dimethylarginine (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.00, (b) 0.25, (c) 0.48, (d) 0.69, (e) 1.45, (f) 1.89, (g) 2.30, (h) 2.70, (i) 3.19, and (j) 4.34 eq CB[7].

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Figure S24. ¹H NMR titration of symmetric dimethylarginine (1.0 mmol dm⁻¹) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C). (a) 0.00, (b) 0.20, (c) 0.42, (d) 0.63, (e) 0.79, (f) 1.05, (g) 1.23, (h) 1.55, (i) 1.93, and (j) 5.06 eq CB[7].

Figure S25. Benesi-Hildebrand plot for the binding of L-arginine by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C) using H α proton resonance.

Figure S26. Benesi-Hildebrand plot for the binding of N-methylarginine by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C) using H α proton resonance.

Figure S27. Plots of $\Delta\delta_{obs}$ (H δ) against [CB[7]] for the binding of asymmetric dimethylarginine (1.0 mmol dm⁻³) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C).

Figure S28. Plot of $\Delta \delta_{obs}$ for the guest methyl proton resonance against [CB[7]] for the binding of symmetric dimethylarginine (1.0 mmol dm⁻³) by CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C).

Figure S29. Plot of $\log K_{CB[7]}$ (LysMe_n) against n in LysMe_n for binding with CB[7] in D₂O (50 mmol dm⁻³ NaOAc buffer, pD = 4.7, 25 °C).