Electronic Supplementary Information

Pillar[5]arenes with an introverted amino group: a hydrogen bonding tuning effect

Lei Chen, Zhiming Li, Zhenxia Chen, Jun-Li Hou*

Department of chemistry, Fudan University, Shanghai, 200433, P. R. China. E-mail: houjl@fudan.edu.cn

Contents

1. General	S2
2. Synthetic procedure and characterization data for 1 and 2	S2
3. Synthetic procedure and characterization data for authentic sample of II	-DA-3 and
IP -MA-3	S4
4. Kinetic experiments for measurement the reaction rate constants	S 8
5. Full ¹ H NMR spectra of IP -DA-n and IP -MA-n	S12
6. Reference	S12

1. General:

¹H and ¹³C NMR spectra were recorded at 400 MHz with a Mercury plus 400 spectrometer at 298 K. Chemical shifts were referenced to CHCl₃ residue (7.26 ppm for ¹H NMR, 77.0 ppm for ¹³C NMR). Mass spectra were recorded with Bruker MicroTOF II spectrometer. For single crystal growing, **IP**-DA-3 (3 mg) was dissolved in chloroform (0.3 ml). The single crystals were obtained by slow evaporation the solutions under 25 °C for 2 weeks. The data set was treated with the SQUEEZE program to remove highly disordered solvent molecules. The crystallographic formulae include the number of solvent molecules suggested by the SQUEEZE program.

2. Synthetic procedure and characterization data for 1 and 2:

Compound **2** was synthesized according to our earlier work.^[1] ¹H NMR (CDCl₃, 400 MHz): δ 7.03-6.99 (m, 8 H), 6.92 (s, 1 H), 6.84 (s, 1 H), 4.55-4.90 (m, 20 H), 4.09-3.84 (m, 28 H), 1.06-0.80 (m, 27 H). HR-MS (ESI-TOF): Calcd. for C₇₃H₈₆O₃₀Na: 1465.5102. Found: 1465.4522.

Figure S1. ¹H NMR spectrum of 2 in CDCl₃.

Figure S2. HR ESI-MS of 2.

To the solution of **2** (200 mg, 0.14 mmol) in CH₂Cl₂ (8 mL) was added oxalyl chloride (96 μ L, 1.12 mmol) and DMF (2 μ L). The mixture was stirred at 25 °C for 3 h and then subject to distill under reduced pressure. The residue was redissolved in anhydrous CH₂Cl₂ (2 mL), and then phenol (40 mg, 0.42 mmol) and anhydrous pyridine (67 μ L, 0.84 mmol) was added to such a solution. After stirred at 25 °C for 12 h, the mixture was washed with saturated Na₂CO₃ and aqueous HCl (5%). The crude product was purified by column chromatography (CH₂Cl₂/EtOAc = 40/1) to give **1** as white solid (88 mg, 42%). ¹H NMR (CDCl₃, 400 MHz): δ 7.39 (t, *J* = 7.2 Hz, 1 H), 7.17-7.04 (m, 14 H), 4.82 (q, *J* = 14.8 Hz, 1 H), 4.53 (m, 19 H), 4.07 (m, 18 H), 3.87 (m, 10 H), 0.97-0.91 (m, 24), 0.69 (t, *J* = 6.4 Hz, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 168.1, 150.4, 149.3, 149.1, 149.0, 148.9, 148.7, 129.5, 129.1, 128.9, 128.7, 128.6, 126.1, 121.5, 114.8, 114.7, 114.6, 114.5, 114.4, 114.2, 66.0, 65.9, 65.7, 61.0, 60.8, 29.6, 29.4, 29.1, 29.0, 13.9, 13.8, 13.6. MS (ESI): *m*/*z* 1541 [M+Na]⁺, HR-MS (ESI-TOF): Calcd. for C₇₉H₉₀O₃₀Na: 1541.5415. Found: 1541.5425.

Figure S3. ¹H NMR spectrum of 1 in CDCl₃.

Figure S4. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S5. HR ESI-MS of 1.

3. Synthetic procedure and characterization data for authentic sample of IP-DA-3 and IP-MA-3:

General procedure for the synthesis of **IP**-DA-3 and **IP**-MA-3: To the solution of **2** (100 mg, 0.07 mmol) in CH₂Cl₂ (5 mL) was added oxalyl chloride (48 μ L, 0.56) and DMF (2 μ L). The mixture was stirred at 25 °C for 3 h and then subject to distill under reduced pressure. The residue was redissolved in anhydrous CH₂Cl₂ (2 mL), and then **DA**-3 or **MA**-3 (0.70 mmol) and anhydrous pyridine (67 μ L, 0.84 mmol) was added to such a solution. After stirred at 25 °C for 5 h, the mixture was washed with aqueous HCl (5%). The crude product was purified by column chromatography to give **IP**-DA-3 or **IP**-MA-3 as white solid.

IP-DA-3 (35%) ¹H NMR (CDCl₃, 400 MHz): δ 7.19-6.74 (m, 10 H), 5.92 (br, 1 H), 4.51-3.64 (m, 49 H), 2.45 (br, 1 H), 1.12-1.08 (m, 27 H), -0.42 (br, 2 H), -0.69 (br, 1 H), -0.83 (br, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ 169.6-168.0 (m), 149.2-148.3 (m),

129.9-127.1 (m), 115.4-113.6 (m), 66.2-65.4 (m), 61.4-61.0 (m), 30.2-28.5 (m), 14.2. MS (ESI): *m*/*z* 1499 [M+H]⁺, HR-MS (ESI-TOF): Calcd. for C₇₆H₉₅O₂₉N₂: 1499.6021. Found: 1499.6000.

Figure S6. ¹H NMR spectrum of **IP**-DA-3 in CDCl₃.

Figure S7. ¹³C NMR spectrum of IP-DA-3 in CDCl₃.

Figure S8. HR ESI-MS of IP-DA-3.

IP-MA-3 (48%) ¹H NMR (CDCl₃, 400 MHz): δ 7.14-6.71 (m, 10 H), 5.70 (br, 1 H), 4.54-3.87 (m, 48 H), 2.67 (br, 1 H), 2.09 (br, 1 H), 1.14-1.10 (m, 27 H), -0.02 (br, 2 H), -0.74 (br, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 169.6-168.4 (m), 149.6-148.5 (m), 129.9-127.6 (m), 115.4-113.5 (m), 66.1-65.6 (m), 61.3-61.0 (m), 39.8, 30.0-28.8 (m), 21.1, 14.1, 9.4. MS (ESI): *m*/*z* 1484 [M+H]⁺, HR-MS (ESI-TOF): Calcd. for C₇₆H₉₄O₂₉N: 1484.5912. Found: 1484.5916.

Figure S9. ¹H NMR spectrum of IP-MA-3 in CDCl₃.

Figure S10. ¹³C NMR spectrum of IP-MA-3 in CDCl₃.

Figure S11. HR ESI-MS of IP-MA-3.

Figure S12. 2D COSY ¹H NMR spectrum of IP-MA-3 (10 mM) in CDCl₃.

Figure S13. 2D NOESY ¹H NMR spectrum (mixing time = 0.6 s) of **IP**-MA-3 (10 mM) in CDCl₃.

4. Kinetic experiments for measurement the reaction rate constants:

For the kinetic experiments, $\mathbf{1}$ ([$\mathbf{1}_0$] = 4.0 mM) and **DA**-n (80 mM) or **MA**-n (160 mM) was dissolved in CDCl₃. The reactions were then monitored by ¹H NMR. The ratio of $\mathbf{1}$ and introverted pillar[5]arene or phenol in the reaction mixture was determined by their integration and thus the concentration of $\mathbf{1}$ ([$\mathbf{1}$]) could be calculated. By fitting the values of $\ln([\mathbf{1}_0]/[\mathbf{1}])$ or $\ln([\mathbf{3}_0]/[\mathbf{3}])$ versus time plots with a linear model, the reaction rate constants (*ks*) were obtained, which equal to the slop of the line.

Figure S14. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-2 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S15. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-3 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S16. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-4 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S17. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-5 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S18. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-6 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S19. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and **DA**-7 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S20. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and MA-3 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S21. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and MA-4 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S22. (a) Changes in [1] and (b) $\ln([1_0]/[1])$ of the reaction mixture with time (*t*) after mixing of 1 and MA-6 in CDCl₃. The solid line represents the linear simulation of measured data points.

Figure S23. (a) Changes in [3] and (b) $\ln([3_0]/[3])$ of the reaction mixture with time (*t*) after mixing of 3 and MA-3 in CDCl₃. The solid line represents the linear simulation of measured data points.

5. Full ¹H NMR spectra of IP-DA-n and IP-MA-n:

Figure S24. ¹H NMR spectra of **IP**-DA-n (n = 2-7) and **IP**-MA-n (n = 3, 4, 6) produced in situ by the reaction of **1** with **DA**-n and **MA**-n. • indicates the signals from the excess **DA**-n or **MA**-n. The assignment of the proton signals of CH_2NH_2 and CH_3 based on their integration and non-anisotropic properties.

6. Reference

[1] W. Si, L. Chen, X.-B. Hu, G. Tang, Z. Chen, J.-L. Hou, Z.-T. Li, Angew. Chem. Int. Ed. 2011, 50, 12564-12568.