Electronic Supplementary Information for:

Synthesis of helically twisted [1+1]macrocycles assisted by amidinium-carboxylate

salt bridges and control of their chiroptical properties

Yuji Nakatani, Yoshio Furusho, and Eiji Yashima*

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan

E-mail: yashima@apchem.nagoya-u.ac.jp

Contents

1.	Ch	aracterization of [1+1]Macrocycles (2)	
1	.1.	ESI-Mass Spectra	S2
1	.2.	RCM Reaction of the Carboxylic Acid (o-1b) Using 1st Generation Grubbs' Catalyst	S 3
1	.3.	¹ H NMR (500 MHz, CDCl ₃ , 25 °C) Spectra of p -[1+1]Macrocycle (p -2)	
		with Different cis/trans Ratios	S 3
1	. 4 .	CD Spectra of <i>m</i> -[1+1]Macrocycles (<i>m</i> -2)	S 4
2.	CI	O and Absorption Spectra of Models	S 5
3.	CI	and Absorption Spectral Changes of [1+1]Macrocycles in Diluted Acidic Solution	S 7
4. Ti		ne-Dependent CD, Absorption and Fluorescence Spectra of [1+1]Macrocycles	
	in	the Presence of $Zn(ClO_4)_2$	S 8
5.	Mo	plecular-Mechanics Calculations of trans-trans and cis-cis Isomers of	
	m-	[1+1]Macrocycle (<i>m</i> -2)	S 9
6.	Su	pporting References	S10

1. Characterization of [1+1]Macrocycles (2)

1.1. ESI-Mass Spectra

Figure S1. Positive mode ESI-MS spectra of (A) o-2, (B) m-2, and (C) p-2 in CHCl₃/MeOH (1/1, v/v).

1.2. RCM Reaction of the Carboxylic Acid (o-1b) Using 1st Generation Grubbs' Catalyst

Experimental Procedure: A solution of the carboxylic acid o-1b (6.98 mg, 10.0 μ mol) in dry toluene (100 mL) was deoxygenated by freeze-pump-thaw cycles for 3 times. To this was added the 1st generation Grubbs' catalyst (3.00 mg, 3.50 μ mol), and the reaction mixture was stirred at ambient temperature for 24 h under Ar. The mixture was subjected to ESI-MS analysis.

Figure S2. ESI-MS spectrum of the crude products after the reaction of o-1b with the 1st generation Grubbs' catalyst.

1.3. ¹H NMR (500 MHz, CDCl₃, 25 °C) Spectra of *p*-[1+1]Macrocycle (*p*-2) with Different *cis/trans* Ratios

Figure S3. Partial ¹H NMR spectra (500 MHz, 1.0 mM, 25 °C) of *p*-2 with different *cis/trans* ratios in CDCl₃.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2012

1.4. CD Spectra of *m*-[1+1]Macrocycles (*m*-2)

Figure S4. CD and absorption spectra of the (*trans*, *trans*)-*m*-[1+1]macrocycle ((*t*,*t*)-*m*-2) and as prepared *m*-[1+1]macrocycle (*m*-2) (*trans* : cis = 50 : 50) in CDCl₃ (0.1 mM) at 20 °C.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Figure S5. CD and absorption spectra of (A) $o-1a \cdot o-1b$, (B) $m-1a \cdot m-1b$, and (C) $p-1a \cdot p-1b$ in CHCl₃ (0.1 mM) (red) and DMSO (0.1 mM) (green) at 20 °C and after the addition of 1 equiv. of TFA in CHCl₃ (0.1 mM) at 20 °C (dashed blue). (D) CD and absorption spectra of **3a'** (0.1 mM) in CDCl₃ and **3a'-3b'** (0.1 mM) in CDCl₃ and DMSO at 25 °C.^{S2}

Figure S6. CD and absorption spectra of 3a" (0.1 mM) in CDCl₃ and 3a"•3b" (0.1 mM) in CDCl₃ and DMSO at 25 °C.^{S2}

3. CD and Absorption Spectral Changes of [1+1]Macrocycles in Diluted Acidic Solution

Figure S7. (A) Structural changes of macrocycles upon the addition of TFA followed by dilution. CD and absorption spectra of (B) o-2, (C) m-2, and (D) p-2 in CHCl₃ (0.1 mM) at 20 °C before (blue) and after the addition of 20 equiv. of TFA (red) followed by dilution with CHCl₃ (0.01 mM) (dashed violet).

4. Time-Dependent CD, Absorption and Fluorescence Spectra of [1+1]Macrocycles in the Presence of $Zn(ClO_4)_2$

Figure S8. Time-dependent CD, absorption (A, C, E), and fluorescence spectra (B, D, F) of *o*-2 (A, B) ($\lambda_{ex} = 313 \text{ nm}$), *m*-2 (C, D) ($\lambda_{ex} = 300 \text{ nm}$), and *p*-2 (E, F) ($\lambda_{ex} = 313 \text{ nm}$) in CH₂Cl₂/THF (10/1, 0.01 mM) at ambient temperature before (blue) and after the addition of 2 equiv. of Zn(ClO₄)₂.

5. Molecular-Mechanics Calculations of *trans-trans* and *cis-cis* Isomers of *m*-[1+1]Macrocycle (*m*-2)

The molecular mechanics (MM)-calculations of the *trans-trans* and *cis-cis* isomers of the *m*-[1+1]macrocycle (*m*-2) were performed on a Windows XP PC using the Compass Force Field as implemented in the Material Studio package (Version 4.1; Accelrys Inc.). The initial structures of the *trans-trans* and *cis-cis* isomers with a right-handed helical macrocyclic conformation were constructed based on the crystal structure of a double helical dimer comprising complementary amidine and carboxylic acid dimers linked by diacetylene residues bound together through salt brigdes.⁸² The energy minimization was conducted using the Smart Minimizer of the Discover module using the Compass Force Field until the root-mean-square (r.m.s.) value became less than 0.1 kcal mol⁻¹ Å⁻¹. The optimized structures indicate that the (*trans, trans*)-*m*-[1+1]macrocycle appears to have a more highly strain structure than that of the (*cis, cis*)-isomer, resulting in the upfield shifts of the *m*-linked aromatic proton resonances, in particular g due to the ring current effect as observed in the ¹H NMR spectra (d and e in Fig. 2B).

A: Trans-trans isomer of m-[1+1]macrocycle (m-2)

B: Cis-cis isomer of m-[1+1]macrocycle (m-2)

Side view

Side view

Figure S9. Space-filling drawings of the calculated structures of (A) *trans-trans* and (B) *cis-cis* isomers of the *m*-[1+1]macrocycle. Hydrogen (white), carbon (gray), nitrogen (blue), and oxygen (red).

6. Supporting References

- (S1) T. Maeda, Y. Furusho, S.-i. Sakurai, J. Kumaki, K. Okoshi and E. Yashima, J. Am. Chem. Soc., 2008, 130, 7938–7945.
- (S2) Y. Tanaka, H. Katagiri, Y. Furusho and E. Yashima, *Angew. Chem., Int. Ed.*, **2005**, *44*, 3867–3870.