Synthesis and stereochemical analysis of β -nitromethane substituted γ -amino acids and peptides.

Mothukuri Ganesh Kumar, Sachitanand M. Mali and Hosahudya N. Gopi*

Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi

Bhabha Road, Pashan, Pune-411 008, E-mali: hn.gopi@iiserpune.ac.in

List of contents	1
ORTEP structures of 2 c, 2 b acid & P3	2-3
Crystallographic information	3-5
Conformational analysis of vinylogous amino acid residues in monomer and peptide sin	ıgle
rystals5	5-7
H NMR, ¹³ C NMR spectra of α , β -unsaturated γ -amino esters	-20
H NMR, ¹³ C NMR spectra of Nitromethane Micheal addition products of vinylogous esters	
	-36
H NMR, ¹³ C NMR spectra of peptides (P1-P7)	-43
HPLC profiles & Crude NMR spectra of Diastereomers44	-59

Crystal structures of 2c, 2b acid & P3:

Figure2: ORTEP structure of **2c**.

Figure3: ORTEP structure of **2b acid**.

Figure 4: ORTEP structure of Dipeptide P3 (Boc- $\gamma V(\beta$ -CH₂NO₂)- $\gamma L(\beta$ -CH₂NO₂)-COOEt.

Crystal structure analysis of Boc-γL(β-CH₂**NO**₂**)-COOEt (2 c):** Crystals were grown by slow evaporation from a solution of EtOAc. A single crystal (0.19× 0.15 × 0.12 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100 K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_α radiation ($\lambda = 0.71073$ Å), ω scans ($2\theta = 56.56$), for a total of 4625 independent reflections. Space group P2(1), 2(1), 2(1), a = 11.306(6), b = 31.857(16), c = 5.353(3), V = 1928.2(17) Å³, Orthorhombic P, Z=4 for chemical formula C₁₆H₃₀N₂O₆, with one molecule in asymmetric unit; ρ calcd = 1.193 gcm⁻³, μ = 0.091 mm⁻¹, F(000) = 752, R_{int}= 0.0616. The structure was obtained by direct methods using SHELXS-97.The final R value was 0.0927 (wR2 = 0.2645) 2600 observed reflections ($F_0 \ge 4\sigma$ (IF₀I)) and 224 variables, S = 1.161. The largest difference peak and hole were 0.920 and -0.470 eÅ³, respectively. **Crystal structure analysis of Boc-γI(β-CH**₂**NO**₂**)-COOH (2b acid):** Crystals were grown by slow evaporation from a solution of EtOAc and Hexane. A single crystal (0.35× 0.24 × 0.20 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100 K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_α radiation ($\lambda = 0.71073$ Å), ω -scans (2 θ = 56.56), for a total of 4252 independent reflections. Space group P2(1), a = 11.226(8), b = 7.133(5), c = 12.018(9), β = 110.948(15) V= 898.7(11) Å³, Monoclinic P, Z=2 for chemical formula C₁₄H₂₆N₂O₆, with one molecule in asymmetric unit; ρ calcd = 1.176 gcm⁻³, $\mu = 0.092$ mm⁻¹, F(000) = 344, R_{int}= 0.0345. The structure was obtained by direct methods using SHELXS-97.The final R value was 0.0441 (wR2 = 0.1012) 3359 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 205 variables, S = 1.036. The largest difference peak and hole were 0.173 and - 0.239 eÅ³, respectively.

Crystal structure analysis of Boc-γV(β-CH₂NO₂)-γL(β-CH₂NO₂)-COOEt (P3):Crystals of peptide were grown by slow evaporation from a solution of EtOAc. A single crystal (0.34× 0.20 × 0.18 mm) was mounted on glass fiber with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_α radiation ($\lambda = 0.71073$ Å), ω -scans (2 θ = 58.56), for a total of 5572 independent reflections. Space group P3(2) , a = 13.503(9), b = 13.503 (9), c = 14.005(10), α = 90.00, β = 90.00, γ = 120.00, V = 2211.44 Å³, Trigonal, Z = 3, Z' = 0 for chemical formula C₂₄H₄₄N₄O₉, with one molecule in asymmetric unit; ρ calcd = 1.186 gcm⁻³, μ = 0.091 mm⁻¹, F(000) = 864, R_{int} = 0.1857. The structure was obtained by direct methods using SHELXS-97. The final R value was 0.0865 (wR2 = 0.2072)1917 observed reflections ($F_0 \ge 4\sigma$ (IF₀)) and 343 variables, S = 0.878. The largest difference peak and hole were 0.879 and -0.438eÅ³, respectively. During the crystal analysis, it was observed that leucine side chain methyl carbons C₁₇ and C₁₈ are showing disorder due to a large difference in the vibrating behavior and therefore H-atoms attached with them are showing short intramolecular contacts due to lack of sufficient van der waals space.

Conformational analysis of vinylogous amino acid residues in monomer and peptide single

crystals

Table 2: Torsion angle of θ_1 and the eclipsed conformations of α , β -unsaturated γ -amino acid residues

S1.	Monomer/Peptide	Torsion	Conformation	Ref.
No.		Angle (θ_1)	(eclipsed)	
1	BocHN	-10	N- C_{γ} - C_{β} = C_{α}	2
	Boc-dgA-OMe			
2		0	$N-C_{\gamma}-C_{\beta}=C_{\alpha}$	3
	Boc-dgV-OEt			
3	BocHN	-1	Ν-Cγ-Cβ=Cα	3
	Boc-dgL-OEt			
4	BocHN	0	N- C_{γ} - $C_{\beta}=C_{\alpha}$	3
	Boc-dgI-OEt			
5		-10	$N-C_{\gamma}-C_{\beta}=C_{\alpha}$	3
	Boc-dgU-OEt			

15	d		129	$H-C_{\gamma}-C_{\beta}=C_{\alpha}$	
16	e		7	N-C _{γ} -C _{β} =C _{α}	
17	f		-3	N-C _{γ} -C _{β} =C _{α}	
		Ac-V-dgL-V- ^D F	P-G-L-dgV-	V-NH ₂	
		dgL =	l		
		\mathbf{Y}			
		dgV =	5		4
18	dgL	dgV = 4	132	H-C _{γ} -C _{β} =C _{α}	4
18 19	dgL dgV	dgV =	132 123	H-C _{γ} -C _{β} =C _{α} H-C _{γ} -C _{β} =C _{α}	4
18 19 20	dgL dgV ^{Boc} ∖N		132 123 125	H-C _{γ} -C _{β} =C _{α} H-C _{γ} -C _{β} =C _{α} H-C _{γ} -C _{β} =C _{α}	4 4 Present work

280211-11-MGK-Boc-gs-NM-Single

Diastereomeric ratio analysis for the compound (2a+3a):

Diastereomeric ratio analysis for the compound (2b+3b):

Diastereomeric ratio analysis for the compound (2d+3d):

Diastereomeric ratio analysis for the compound (2f+3f):

Diastereomeric ratio analysis for the compound (2g+3g):

Diastereomeric ratio analysis for the compound (2h+3h):

BOC-ALA NM_MIX.999.001.1R.ESP

Diastereomeric ratio analysis for the compound (2i+3i):

Diastereomeric ratio analysis for the compound (2j+3j):

Diastereomeric ratio analysis for the compound (2k+3k):

270112-14-MGK-164-Mix

Diastereomeric ratio analysis for the compound (2l+3l):

