Synthesis and evaluation of novel Ellipticines as potential anticancer agents

Fiona M. Deane, Elaine C. O'Sullivan, Anita R. Maguire, Jayne Gilbert, Jennette A. Sakoff, Adam McCluskey and Florence O. McCarthy.

Supplementary Information

- **1.** Synthesis of ellipticine (1) and 6-methylellipticine **3**
- 2. NMR data
- 3. LCMS data

1. Synthesis of ellipticine (1) and 6-methylellipticine 3

The formulation reactions of 1,4-dimethyl-9*H*-carbazole (4) and 1,4,9-trimethylcarbazole (5) were key steps in the synthesis of sufficient quantities of ellipticine (1) and 6methylellipticine 3 to complete our proposed biological evaluations. The Vilsmeier-Haack reaction described by Murakami (POCl₃, DMF, 100 °C) was found to be the most efficient for the formylation of 1,4,9-trimethylcarbazole (5, towards 6-methylellipticine 3).^{12,13} Application of our modified Vilsmeier-Haack reaction facilitated the production of 3-formyl-1,4-dimethylcarbazole (6, a key precursor towards the synthesis of ellipticine 1, Scheme 1) in increased yields.¹⁴ Regardless of the formylation method employed, both 3-formylcarbazoles 6 and 7 were found to be contaminated with an undesired 6-formylcarbazole isomer byproduct. As a result of identical R_f value, removal of the undesired 6-formyl isomers from the 3-formyl compounds by column chromatography was not an option. Multiple recrystallisations were carried out to enable purification of compounds 6 and 7 with a subsequent yield reduction. Highest overall yields were obtained when the isomeric mixtures were carried through the synthetic route whereby recrystallization of tosylamides 10 and 11 afforded the 3-isomer as the sole product. From 3-formylcarbazoles 6 and 7, the route to ellipticine proceeds via a modified Pomeranz-Fritsch approach in which amines 8 and 9, formed via reductive amination, were subsequently tosylated. Ellipticine (1) and 6methylellipticine 3 were obtained in moderate yields by heating the respective tosyl amines 10 and 11 in acidic conditions (Scheme 1).

Scheme 1. Reagents and Conditions. (*i*) 2,5-hexanedione, *p*-TsOH (cat.), EtOH, reflux for 2h; (*ii*) NaH, MeI, DMF, r.t. overnight; (*iii*) POCl₃, DMF, 100 °C for 6 h; (*iv*) POCl₃, DMF, C₆H₅Cl, reflux for 6.5 h; (*v*) amino-acetaldehyde diethylacetal, 110 °C for 2 h; (*vi*) PtO₂, H₂, EtOH, r.t, 50 psi for 3 d (**8**) or NaBH₄, MeOH, r.t for 2 h (**9**); (*vii*) *p*-TsCl, pyridine, r.t for 3 d (**10**) or *p*-TsCl, K₂CO₃, THF.H₂O (1:2), r.t. for 1.5 h (**11**); (*viii*) HCl, dioxane, reflux for 2.5 h.

2. NMR Data

Figure 2 ¹H NMR of N^2 -(4'-Carboxybutyl)-ellipticinium bromide (13)

Figure 4 ¹H NMR of N^2 -(5'-Carboxyaminopentyl)-ellipticinium bromide (15)

Figure 6 ¹H NMR of N^2 -(5'-Hexanoylmethylsuphonamide)-ellipticinium bromide (17)

Figure 8 ¹H NMR of N^2 -(4'-Carboxybutyl)-6-methylellipticinium bromide (19)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

(peak at 3.30ppm under water suppression)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

3. LCMS data

LCMS data

Conditions: LCMS conditions: Samples were analysed for purity via LCMS using a Waters Alliance 2695 HPLC, Waters 996 photodiode array detector and a Waters LCT Premier TOF mass spectrometer (instrument number KD 160). The samples were injected onto a Waters Atlantis T3 column (150 x 4.6mm, 5um particle size) using acetonitrile (+0.1% HCOOH) and water (+0.1% HCOOH) as mobile phase over a 20 minute run time at a flow rate of 0.5 mL/min. The HPLC conditions are as follows: (gradient method) 0mins 10% ACN, 2mins 10% ACN, 18mins 90% ACN, 19mins 10% ACN, 20mins 10% ACN. Results are presented from the absorbance at 254nm and the molecular ion responsible for each sample.

Compound 12 N^2 -(2'-Carboxyethyl)-ellipticinium bromide

Compound 13 N^2 -(4'-Carboxybutyl)-ellipticinium bromide

Compound 14 N^2 -(5'-Carboxypentyl)-ellipticinium bromide

Compound 16 N^2 -(5'-Cyanopentyl)-ellipticinium bromide

Compound 17 N^2 -(5'-Hexanoylmethylsuphonamide)-ellipticinium bromide

Compound 18 N^2 -(2'-Carboxyethyl)-6-methylellipticinium bromide

Compound 19 N^2 -(4'-Carboxybutyl)-6-methylellipticinium bromide

Compound 20 N^2 -(5'-Carboxypentyl)-6-methylellipticinium bromide

Compound 21 N^2 -(5'-Carboxyaminopentyl)-6-methylellipticinium bromide

Compound 22 N^2 -(5'-Cyanopentyl)-6-methylellipticinium bromide

Compound 23 N^2 -(5'-Hexanoylmethylsulphonamide)-6-methylellipticinium bromide

