Chromenoquinoline-Based Thiol Probes: A Study on Quencher Position for Controlling Fluorescent *Off-On* Characteristics

Dnyaneshwar Kand,^[a] Arunasree Marasanapalli Kalle,^[b] and Pinaki Talukdar*^[a] ^[a] Department of Chemistry, Indian Institute of Science Education and Research Pune Dmitri Mendeleev Block, Indian Institute of Science Education and Research Pune 411021, India. E-mail: ptalukdar@iiserpune.ac.in

^[b] Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.

Supporting Information

Cont	ents	Page Number
I.	Theoretical Calculations	S1-S8
II.	Crystal Structures	S9-S11
III.	Photophysical Properties of Probes	S12
IV.	Thiols Sensing	S13-S17
V.	NMR Data	S18-S23
VI.	References	S24

I. Theoretical Calculations:

The molecular geometries of **5** and **6** were fully optimized at a level of density functional theory employing the hybrid functional $B3LYP^{S1}$ with Pople's basis set 6-311G(d,p) where polarization functions were added to all the atoms and diffuse functions to the heavy atoms. All the calculations were performed with the development version of Gaussian 09.^{S2}

Table S1. Atomic coordinates calculated for 5 from DFT B3LYP/6-311G(d,p) geometry optimization.

Symbolic Z-matrix:

Atom #	Atom Type	Х	У	Z
1	С	3.375847	-1.818948	-0.00538
2	С	3.180032	-0.414779	-0.047826
3	С	1.910106	0.119132	-0.032958
4	С	0.779936	-0.732779	0.021573
5	С	0.974737	-2.144062	0.075089
6	С	2.292004	-2.658264	0.060468
7	Ν	-0.455049	-0.162336	0.022986
8	С	-1.526053	-0.932946	0.091628
9	С	-1.421565	-2.362648	0.16183
10	С	-0.187472	-2.949817	0.138436
11	С	-2.887966	-0.35972	0.017336
12	С	-3.908259	-1.227693	-0.377345
13	0	-3.716377	-2.569664	-0.546825
14	С	-2.700271	-3.131099	0.288306
15	С	-3.221887	1.032406	0.217303
16	С	-4.557339	1.474039	-0.060316
17	С	-5.521823	0.54501	-0.531858
18	С	-5.211215	-0.77639	-0.679133
19	С	-2.305857	2.000196	0.708366
20	С	-2.684863	3.30986	0.90178
21	С	-3.995183	3.739421	0.612542
22	С	-4.910667	2.831492	0.140731
23	Ν	4.318363	0.441395	-0.124334
24	С	4.40717	1.612831	-0.911795
25	С	5.776581	2.172475	-0.669125
26	С	6.419843	1.389398	0.192872
27	С	5.525983	0.250812	0.581131
28	0	3.551313	2.061971	-1.628377
29	0	5.778803	-0.650023	1.340132
30	Н	4.379483	-2.218256	-0.010613
31	Н	1.741952	1.184617	-0.086004
32	Н	2.44148	-3.732056	0.098435
33	Н	-0.088574	-4.031051	0.177239
34	Н	-3.059412	-3.114278	1.328184
35	Н	-2.587689	-4.168424	-0.026025
36	Н	-6.522732	0.898531	-0.75564
37	Н	-5.935862	-1.507544	-1.014935

Н	-1.292794	1.695327	0.912673
Н	-1.95979	4.021124	1.282181
Н	-4.275838	4.775386	0.764971
Н	-5.927536	3.138317	-0.081619
Н	6.107258	3.075785	-1.160219
Н	7.41603	1.483266	0.59944
	Н Н Н Н Н	H-1.292794H-1.95979H-4.275838H-5.927536H6.107258H7.41603	H-1.2927941.695327H-1.959794.021124H-4.2758384.775386H-5.9275363.138317H6.1072583.075785H7.416031.483266

Table S2. Atomic coordinates calculated for 6 from DFT B3LYP/6-311G(d,p) geometry optimization.

Symbolic Z-matrix:

Atom #	Atom Type	X	У	Z
1	С	4.284985	2.073499	-0.332478
2	С	4.075632	0.688757	-0.16795
3	С	2.803739	0.169842	-0.094675
4	С	1.663614	1.024761	-0.182878
5	С	1.891869	2.426411	-0.335575
6	С	3.212131	2.927572	-0.413735
7	Ν	0.420967	0.488494	-0.094202
8	С	-0.631665	1.286957	-0.151892
9	С	-0.499856	2.708596	-0.274347
10	С	0.746548	3.259846	-0.363246
11	С	-2.000158	0.757131	0.010931
12	С	-2.953246	1.644748	0.511649
13	О	-2.706287	2.980744	0.653522
14	С	-1.771178	3.500894	-0.299356
15	С	-2.392532	-0.612616	-0.207695
16	С	-3.692347	-1.038535	0.21744
17	С	-4.571145	-0.103006	0.825839
18	С	-4.222847	1.212691	0.951848
19	С	-1.57809	-1.556913	-0.884188
20	С	-2.013145	-2.845741	-1.0978
21	С	-3.275916	-3.27285	-0.63871
22	С	-4.098254	-2.379526	0.003228
23	Ν	2.625467	-1.222934	0.136016
24	С	2.071932	-2.137294	-0.774354
25	С	1.981344	-3.442299	-0.03843
26	С	2.440699	-3.277515	1.199845
27	С	2.865254	-1.850236	1.376313
28	О	3.327318	-1.329774	2.358141
29	О	1.756516	-1.910359	-1.915078

Н	5.2971	2.455988	-0.386854
Н	4.922144	0.018025	-0.088659
Н	3.363255	3.995591	-0.530259
Н	0.872689	4.335235	-0.450227
Н	-2.23523	3.460663	-1.295628
Н	-1.609515	4.543438	-0.027363
Н	-5.545038	-0.442591	1.162059
Н	-4.892759	1.949877	1.376542
Н	-0.609844	-1.253063	-1.247629
Н	-1.375026	-3.535085	-1.639757
Н	-3.599974	-4.293574	-0.807504
Н	-5.083262	-2.68239	0.343193
Н	1.598821	-4.332631	-0.515198
Н	2.527029	-3.994329	2.003189
	H H H H H H H H H H	H5.2971H4.922144H3.363255H0.872689H-2.23523H-1.609515H-5.545038H-4.892759H-0.609844H-1.375026H-3.599974H-5.083262H1.598821H2.527029	H5.29712.455988H4.9221440.018025H3.3632553.995591H0.8726894.335235H-2.235233.460663H-1.6095154.543438H-5.545038-0.442591H-4.8927591.949877H-0.609844-1.253063H-1.375026-3.535085H-3.599974-4.293574H-5.083262-2.68239H1.598821-4.332631H2.527029-3.994329

 Table S3. Atomic coordinates calculated for 6+Cys from DFT B3LYP/6-311G(d,p) geometry optimization.

Symbolic Z-matrix:

_				
Atom #	Atom Type	X	У	Z
1	С	-0.2146	4.7245	-0.0920
2	С	0.5557	3.6383	0.3741
3	С	0.0334	2.3678	0.3955
4	С	-1.2968	2.1157	-0.0503
5	С	-2.0704	3.2267	-0.5028
6	С	-1.5048	4.5231	-0.5195
7	Ν	-1.7812	0.8499	-0.0063
8	С	-3.0221	0.6218	-0.4007
9	С	-3.8834	1.6772	-0.8445
10	С	-3.4067	2.9567	-0.8889
11	С	-3.6137	-0.7265	-0.3000
12	С	-5.0015	-0.7857	-0.1680
13	0	-5.8005	0.3090	-0.3326
14	С	-5.2740	1.2848	-1.2407
15	С	-2.8666	-1.9566	-0.2157
16	С	-3.5555	-3.1636	0.1305
17	С	-4.9567	-3.1282	0.3625
18	С	-5.6700	-1.9744	0.1966
19	С	-1.4835	-2.0520	-0.5208
20	С	-0.8250	-3.2603	-0.4577
21	С	-1.4977	-4.4379	-0.0718
22	С	-2.8403	-4.3845	0.2118
23	Ν	0.8045	1.2886	0.9242
24	С	0.9523	1.0721	2.3072
25	С	1.6855	-0.2488	2.4856
26	С	2.1077	-0.6768	1.0759

27	С	1.3793	0.2883	0.1400
28	О	0.5505	1.8066	3.1683
29	О	1.3194	0.2190	-1.0628
30	S	3.9333	-0.5166	0.8828
31	С	4.1609	-1.1927	-0.8210
32	С	5.6504	-1.4056	-1.1293
33	Ν	6.2137	-2.4635	-0.3084
34	С	6.4341	-0.0862	-1.0733
35	О	7.3826	0.1259	-0.3635
36	О	5.9508	0.8199	-1.9528
37	Н	0.2174	5.7178	-0.1003
38	Н	1.5665	3.7999	0.7280
39	Н	-2.1072	5.3554	-0.8679
40	Н	-4.0427	3.7746	-1.2151
41	Н	-5.2835	0.8542	-2.2526
42	Н	-5.9626	2.1285	-1.2103
43	Н	-5.4633	-4.0455	0.6430
44	Н	-6.7438	-1.9345	0.3305
45	Н	-0.9479	-1.1659	-0.8226
46	Н	0.2246	-3.3058	-0.7274
47	Н	-0.9616	-5.3786	-0.0184
48	Н	-3.3818	-5.2838	0.4867
49	Н	2.5125	-0.1182	3.1849
50	Н	0.9882	-0.9623	2.9307
51	Н	1.8232	-1.7001	0.8320
52	Н	3.6627	-2.1616	-0.8712
53	Н	3.7090	-0.5072	-1.5333
54	Н	5.6892	-1.7251	-2.1780
55	Н	7.2067	-2.5537	-0.4982
56	Н	6.1367	-2.2164	0.6740
57	Н	6.4863	1.6217	-1.8559

Table	S4 .	Atomic	coordinates	calculated	for	6+GSH	from	DFT	B3LYP/6-311G(d,p)	geometry
optimiz	zatior	ı.								

Symbolic Z-matrix:

U	1 5			
Atom #	Atom Type	X	У	Z
1	С	-3.4293	-4.8277	1.2783
2	С	-2.3403	-4.1102	0.7394
3	С	-2.5030	-2.8179	0.3031
4	С	-3.7669	-2.1671	0.3947
5	С	-4.8714	-2.9221	0.8920
6	С	-4.6746	-4.2496	1.3391
7	Ν	-3.8760	-0.8769	-0.0061
8	С	-5.0600	-0.2899	0.0397
9	С	-6.2419	-0.9924	0.4419
10	С	-6.1376	-2.2857	0.8705
11	С	-5.2322	1.1025	-0.4117
12	С	-6.4916	1.4412	-0.9051

13	О	-7.5643	0.6013	-0.7955
14	С	-7.5300	-0.2276	0.3734
15	С	-4.1897	2.0958	-0.4500
16	С	-4.4452	3.3403	-1.1113
17	С	-5.7154	3.5681	-1.7055
18	С	-6.7254	2.6533	-1.5886
19	С	-2.9410	1.9419	0.2067
20	С	-2.0028	2.9506	0.2033
21	С	-2.2451	4.1578	-0.4856
22	С	-3.4434	4.3430	-1.1312
23	Ν	-1.4175	-2.1396	-0.3340
24	С	-0.5334	-1.2797	0.3015
25	С	0.5052	-0.8403	-0.7357
26	С	-0.1254	-1.2163	-2.0807
27	С	-1.2296	-2.1999	-1.7349
28	О	-1.8642	-2.8939	-2.4792
29	Ο	-0.5718	-0.9637	1.4684
30	Ο	5.0330	0.3554	-3.0507
31	С	5.4849	0.0151	-1.9686
32	Ν	6.8060	0.1503	-1.6730
33	С	7.4998	-0.1076	-0.4306
34	С	8.9625	-0.3779	-0.7197
35	Ο	9.6102	-0.7697	0.3930
36	Ο	9.4954	-0.2326	-1.7893
37	С	4.5681	-0.5935	-0.8796
38	С	3.2220	-0.9528	-1.5288
39	S	2.0665	-1.7518	-0.3363
40	Ν	4.4167	0.3268	0.2385
41	С	4.7075	-0.0352	1.5327
42	С	4.1416	0.9128	2.5829
43	C	2.6090	0.7191	2.7495
44	C	1.7866	2.0166	2.8241
45	N	0.3394	1.7842	2.8055
46	С	2.0879	2.9906	1.6841
47	0	2.0190	2.4001	0.4444
48	0	2.3298	4.1603	1.8010
49	0	5.3564	-1.0306	1.8082
50	Н	-3.2790	-5.8444	1.6203
51	Н	-1.3690	-4.5810	0.6485
52	Н	-5 5228	-4 8066	1 7230
53	Н	-7.0167	-2.8370	1.1918
54	Н	-7.6480	0.4162	1.2572
55	Н	-8 3936	-0.8879	0 3010
56	Н	-5 8885	4 5046	-2 2252
50 57	Н	-7 7135	2.8287	-1 9952
58	Н	-2.7354	1.0238	0 7351
59	Н	-1 0878	2 8160	0 7699
60	Н	-1 4965	4 9422	-0 4844
61	Н	-3 6545	5 2748	-1 6459
62	Н	0 5590	-1 6573	-2 8033
63	Н	-0.6005	-0 3480	-2 5485
~~	11	0.0005	0.2100	2.J TUJ

64	Н	7.3723	0.5217	-2.4263
65	Н	7.4609	0.7498	0.2549
66	Н	7.0750	-0.9466	0.1231
67	Н	10.5407	-0.8941	0.1528
68	Н	5.0358	-1.4909	-0.4680
69	Н	2.7541	-0.0498	-1.9213
70	Н	3.3947	-1.6179	-2.3733
71	Н	3.7641	1.0902	0.1104
72	Н	4.6682	0.7145	3.5154
73	Н	4.3729	1.9435	2.2918
74	Н	2.2186	0.1216	1.9232
75	Н	2.4032	0.1449	3.6557
76	Н	2.0446	2.5800	3.7237
77	Н	0.1038	0.8829	2.3966
78	Н	-0.0553	1.8295	3.7355
79	Н	2.1019	3.1224	-0.1979
80	Н	0.6997	0.2249	-0.6140

Table	S5.	Atomic	coordinates	calculated	for	6+HCy	from	DFT	B3LYP/6-311G(d,p)	geometry
optimiz	zation	l.								

Symbolic Z-matrix:

Atom #	Atom Type	X	У	Z
1	С	1.0167	3.9638	-0.1974
2	С	1.4352	2.6374	0.0432
3	С	0.5151	1.6186	0.1078
4	С	-0.8733	1.8726	-0.0857
5	С	-1.2849	3.2220	-0.2986
6	С	-0.3179	4.2529	-0.3536
7	Ν	-1.7430	0.8333	-0.0555
8	С	-3.0335	1.0653	-0.2192
9	С	-3.5448	2.3912	-0.4052
10	С	-2.6769	3.4461	-0.4399
11	С	-4.0202	-0.0291	-0.1253
12	С	-5.3195	0.3365	0.2298
13	0	-5.7220	1.6383	0.3077
14	С	-5.0270	2.5234	-0.5779
15	С	-3.7211	-1.4339	-0.2624
16	С	-4.7298	-2.3944	0.0731
17	С	-6.0010	-1.9482	0.5233
18	С	-6.2985	-0.6165	0.5851
19	С	-2.4885	-1.9285	-0.7648
20	С	-2.2664	-3.2809	-0.9037
21	С	-3.2506	-4.2218	-0.5386
22	С	-4.4601	-3.7790	-0.0627
23	Ν	0.9357	0.2832	0.3801
24	С	0.7190	-0.3466	1.6229
25	С	1.1046	-1.8088	1.4548

26	С	1.8620	-1.8685	0.1234
27	С	1.4947	-0.5632	-0.5760
28	Ο	0.2966	0.1969	2.6059
29	Ο	1.6654	-0.2936	-1.7404
30	S	3.6745	-1.9575	0.4805
31	С	6.1779	0.1494	-0.7915
32	Ν	7.2871	-0.7927	-0.9147
33	С	5.8914	0.5212	0.6660
34	0	6.4193	0.0161	1.6233
35	0	4.9913	1.5297	0.7784
36	Н	1.7571	4.7532	-0.2462
37	Н	2.4859	2.4120	0.1821
38	Н	-0.6454	5.2734	-0.5225
39	Н	-3.0424	4.4594	-0.5800
40	Н	-5.3204	2.2798	-1.6096
41	Н	-5.3792	3.5268	-0.3407
42	Н	-6.7485	-2.6864	0.7932
43	Н	-7.2710	-0.2551	0.8949
44	Н	-1.7215	-1.2242	-1.0447
45	Н	-1.3230	-3.6261	-1.3134
46	Н	-3.0568	-5.2828	-0.6466
47	Н	-5.2384	-4.4855	0.2063
48	Н	1.6720	-2.1509	2.3206
49	Н	0.1791	-2.3899	1.4082
50	Н	1.5869	-2.7126	-0.5077
51	Н	6.4636	1.0870	-1.2796
52	Н	8.1686	-0.3000	-0.8166
53	Н	7.2594	-1.4435	-0.1342
54	Н	4.8643	1.6774	1.7282
55	С	4.4459	-1.7598	-1.1880
56	Н	5.2781	-2.4653	-1.2119
57	Н	3.7097	-2.0918	-1.9199
58	С	4.9264	-0.3528	-1.5490
59	Н	5.2039	-0.3763	-2.6076
60	Н	4.1130	0.3650	-1.4466

II. Crystal Structures:^{S3}

Figure S1. ORTEP diagram of chromenoquinoline-based thiol probe 4.

Figure S2. ORTEP diagram of chromenoquinoline 12.

Figure S3. ORTEP diagram of chromenoquinoline-based thiol probe 6.

III. Photophysical Properties of Probes:

Figure S4. Photophysical properties of the chromenoquinoline-based probes **5** (**A**) and **6** (**B**) recorded in HEPES buffer (10 mM, pH 7.4, 1% DMSO).

	Solvents									
Compounds		CHCl ₃ ^{<i>a</i>}		CH ₃ CI buffer	N/10 mM H • pH = 7.4 (IEPES 70:30)	HEPES Buffer			
-	λ _{max} (nm)	$\lambda_{\rm em}{}^b$ (nm)	Φ	λ _{max} (nm)	λ _{em} ^b (nm)	Φ	λ _{max} (nm)	λ _{em} ^b (nm)	Φ	
5	385	432	0.0075	380	440	0.009	374	455	0.009	
5+Cys	ND	ND	ND	380	444	0.24	383	460	0.22	
5+GSH	ND	ND	ND	380	444	0.27	383	460	0.28	
5+Hcy	ND	ND	ND	ND	ND	ND	383	460	0.21	
6	380	435	0.0033	377	433	0.004	382	457	0.0052	
6+Cys	ND	ND	ND	377	435	0.32	383	460	0.38	
6+GSH	ND	ND	ND	377	436	0.30	383	460	0.33	
6+Hcy	ND	ND	ND	ND	ND	ND	383	460	0.48	

Table S6. Quantum yields in different solvents.

^{*a*} Thiol addition reaction in CHCl₃ was not successful as pH could not be maintained in the pure organic solvent. ^{*b*} For all cases λ_{ex}

= 383 nm was used. ND = Not determined.

IV. Thiols Sensing:

Procedures:

Preparation of the medium: Deionized water was used throughout all experiments. Conjugate addition reactions were carried out in HEPES buffer (10 mM, pH 7.4) with/without 1.0% DMSO (maximum).

Preparation of the solution of 5 and 6: Stock solutions of **5** and **6** (1255 μ M each) were prepared in DMSO. The stock solutions of **5** and **6** were then diluted to 100 μ M in DMSO. Final concentration of **5** and **6** during each assay was 10 μ M with 1% DMSO (maximum).

Preparation of the solution of amino acids: Stock solutions of amino acids were prepared in H_2O with varied concentrating ranging from 1952 μ M to 12234 μ M. Calculated volumes of amino acids were added from respective stock solutions to fluorescence each cuvette to provide 100 μ M. Conjugate addition reactions were carried out in HEPES buffer (10 mM, pH 7.4) with maximum 1.0% DMSO. Spectra data were recorded 20 min in an indicated time after the addition of amino acids by exciting at 383 nm. The excitation and emission slit width was 3 nm and 3 nm respectively.

Figure S5. Fluorometric titrations of probes **4** in response to biological thiols (Cys, GSH and Hcy). (**A**) Fluorescence responses of **4** (10 μ M) toward various concentrations (0, 2, 4, 6, 8, 10, 20, 40 and 100 μ M) of Cys in HEPES buffer (10 mM, pH 7.4, 1% DMSO). Each spectrum was recorded at 20 min after addition of Cys to **4**. The same experiment was carried out for 4 with GSH (**B**) and Hcy (**C**); for **5** with Cys (**D**), GSH (**E**) and Hcy (**F**); for **6** with Cys (**G**), GSH (**H**) and Hcy (**I**).

Detection limit: The detection limits were determined based on the fluorescence titrations.⁸⁴ To improve the sensitivity, probes **5** and **6** were employed at 10 μ M and the slit was adjusted to 3.0 nm/3.0 nm. To determine the *S/N* ratio, the emission intensity of each probe without thiol was measured by 3-4 times and the standard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the thiol

concentration could be obtained in the 2 - 10 μ M, as shown in figure S4 and figure S5. The detection limits were then calculated with the equation: detection limit = $3\sigma_{bi}/m$, where σ_{bi} is the standard deviation of blank measurements, *m* is the slope between intensity versus sample concentration (Table S3).

Figure S6. The linearity of the Cys (A), GSH (B) and Hcy (C) titration assay of probe 4; The same experiment was carried out for 5 with Cys (D), GSH (E) and Hcy (F); for 6 with Cys (G), GSH (H) and Hcy (I).

Probe	σ_{bi}	S/N .	Slope	From linear pl	lots, <i>m</i>	Detection limit (M)			
			Cys	GSH	Нсу	Cys	GSH	Нсу	
4	6797.083	3.0	1.05×10^{6}	1.40×10^{6}	8.82×10^{5}	1.94×10^{-8}	1.46×10^{-8}	2.31×10^{-8}	
5	34410.17039	3.0	$7.86 imes 10^5$	9.88×10^5	1.16×10^6	13.13×10^{-8}	$10.45\times10^{\text{-8}}$	$8.90\times10^{\text{-8}}$	
6	10108.32080	3.0	5.69×10^5	$1.05 imes 10^6$	1.17×10^{6}	$5.33 imes 10^{-8}$	$2.89 imes 10^{-8}$	$2.59\times 10^{\text{-8}}$	

 Table S7. Calculation of detection limit of Cys, GSH and Hcy with probes 4, 5 and 6.

Mass Spectrometric Analysis of Thiol Addition Reactions:

Figure S7. ESI-MS of the probe **5** (10 μ M) titrated with GSH (100 μ M) in HEPES buffer (10 mM, pH 7.4, 1% DMSO).

Figure S8. ESI-MS of the probe **6** (10 μ M) titrated with GSH (100 μ M) in HEPES buffer (10 mM, pH 7.4, 1% DMSO).

Figure S10. ¹³C NMR spectra of 12 in CDCl₃.

Figure S12. ¹³C NMR spectra of 13 in CDCl₃.

Figure S14. ¹³C NMR spectra of 5 in CDCl₃.

S21

Figure S17. ¹H NMR spectra of 16 in CDCl₃.

Figure S18. ¹³C NMR spectra of 16 in CDCl₃.

Figure S20. ¹³C NMR spectra of 6 in CDCl₃.

VII. References.

- S1 (a) P. Hohenberg and W. Kohn, *Phys. Rev.* 1964, 136, B864; (b) W. Kohn and L. Sham, *Phys. Rev.* 1965, 140, A1133; (c) A. D. Becke *J. Chem. Phys.* 1993, 98, 5648; (d) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, 37, 785.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision A.1*, Gaussian, Inc., Wallingford CT, 2009.
- S3 (a) SHELXS-97: G. M. Sheldrick, *Acta Crystallogr. Sect A*, 1990, 46, 467; (b) G. M. Sheldrick, SHELXL-97, Universität Göttingen (Germany) 1997.
- S4 (a) B. P. Joshi, J. Park, W. I. Lee and K. Lee, *Talanta.*, 2009, 78, 903; (b) H. Guo, Y. Jing, X. Yuan, S. Ji, J. Zhao, X. Li and Y. Kan, *Org. Biomol. Chem.*, 2011, 9, 3844; (c) D. Kand, A. M. Kalle, S. J. Varma, P. Talukdar, *Chem. Commun.* 2012, 48, 2722.