The size of aryl linker between two polyaza-cyclophane moieties controls the binding selectivity to ds-RNA vs ds-DNA

Jorge González-García, ${ }^{\text {a }}$ Lidija Uzelac, ${ }^{\text {b }}$ Marijeta Kralj, ${ }^{\text {c }}$ José M. Llinares, ${ }^{\text {a }}$ Enrique García-España*a and Ivo Piantanida*b
${ }^{a}$ Instituto de Ciencia Molecular (ICMOL), Departamento de Química Inorgánica, Universidad de Valencia
${ }^{b}$ Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
${ }^{c}$ Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry and Biochemistry. Rudjer Boskovic Institute, Zagreb, Croatia.

Supplementary Material include:

Table S1. Electronic absorption data of PHENPOD and PYPOD at $\mathrm{pH}=6,5$ and 7.
Scheme S1. Distribution diagrams of PYPOD and PHENPOD.
Fig. S1. Fluorimetric titrations of PHENPOD ($c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}$) at pH 5 with ct-DNA at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S2. Fluorimetric titrations of PHENPOD ($c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}$) at pH 5 with poly A -poly U at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S3. Fluorimetric titrations of PHENPOD $\left(c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\text {exc }}=369 \mathrm{~nm}\right)$ at pH 5 with poly dA -poly dT at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S4. Fluorimetric titrations of PHENPOD $\left(c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}\right)$ at pH 5 with poly dC - poly dG at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S5. CD titrations of ct-DNA ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound }}$ [polynucleotide] $=0.1 ; 0.2 ; 0.3$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Fig. S6. CD titrations of ct-DNA ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound }}$ [polynucleotide] $=0.1 ; 0.2 ; 0.3$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Fig. S7. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S8. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S9. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S10. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S11. CD titrations of poly dC - poly $\mathrm{dG}\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S12. CD titrations of poly dC - poly $\mathrm{dG}\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S13. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound }[\text { polynucleotide] }}=0.3$ and 0.6 at pH 6.0 (sodium cacodylate buffer $+\mathrm{NaCl} ; I=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S14. CD titrations of poly A - poly $\mathrm{U}(\mathrm{left})$ and poly $\mathrm{dA}-$ poly $\mathrm{dT}($ right $)\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound } \text { [polynucleotide] }}=0.3$ and 0.6 at $\mathrm{pH} 6.0\left(\right.$ sodium cacodylate buffer $+\mathrm{NaCl} ; I=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S15. Dose-response profiles for PHENPOD tested in vitro on a panel of human cell lines.

[^0]
Supplementary Material

Table S1. Electronic absorption data of PHENPOD and PYPOD at $\mathrm{pH}=6,5$ and 7. ${ }^{\text {a }}$

Compound	$\mathrm{pH}=5.0$		$\mathrm{pH}=6.0$		$\mathrm{pH}=7.0$	
	$\lambda_{\text {max }} / \mathrm{nm}$	$\begin{gathered} \varepsilon \times 10^{3} / \\ \mathrm{mmol}^{-1} \mathrm{~cm}^{2} \end{gathered}$	$\lambda_{\max } / \mathrm{nm}$	$\begin{gathered} \varepsilon \times 10^{3} / \\ \mathrm{mmol}^{-1} \mathrm{~cm}^{2} \end{gathered}$	$\lambda_{\max } / \mathrm{nm}$	$\begin{gathered} \varepsilon \times 10^{3} / \mathrm{mmol}^{-} \\ { }^{1} \mathrm{~cm}^{2} \end{gathered}$
PHENPOD	269	25.72	269	22.46	269	19.63
PYPOD	260	9.50	260	9.52	262	8.88

${ }^{\mathrm{a}}$ Sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$,

Scheme S1. Distribution diagrams of PYPOD (up) and PHENPOD (down), details see in Ref 22 of the manuscript.

Supplementary Material

Fig. S1. Fluorimetric titrations of PHENPOD ($c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}$) at pH 5 with ct-DNA at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S2. Fluorimetric titrations of PHENPOD $\left(c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}\right)$ at pH 5 with poly A -poly U at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S3. Fluorimetric titrations of PHENPOD $\left(c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\mathrm{exc}}=369 \mathrm{~nm}\right)$ at pH 5 with poly dA -poly dT at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Supplementary Material

Fig. S4. Fluorimetric titrations of PHENPOD $\left(c=2.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \lambda_{\text {exc }}=369 \mathrm{~nm}\right)$ at pH 5 with poly dC -poly dG at pH 5.0 (left) and pH 6.0 (right) performed in sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S5. CD titrations of ct-DNA ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound }}$ [polynucleotide] $=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Fig. S6. CD titrations of ct-DNA $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound }}$ [polynucleotide] $=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Supplementary Material

Fig. S7. CD titrations of poly A - poly U (left) and poly $\mathrm{dA}-$ poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S8. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S9. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) ($c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Supplementary Material

Fig. S10. CD titrations of poly A - poly $\mathrm{U}(\mathrm{left})$ and poly $\mathrm{dA}-$ poly $\mathrm{dT}($ right $)\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S11. CD titrations of poly $\mathrm{dC}-$ poly $\mathrm{dG}\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3$ at pH 5.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S12. CD titrations of poly $\mathrm{dC}-$ poly $\mathrm{dG}\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD (left) and PHENPOD (right) at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.1 ; 0.2 ; 0.3,0.4,0.5$ at pH 6.0 (sodium cacodylate buffer, $I=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Supplementary Material

CD experiments at high ionic strength, $\mathbf{p H} 6.0$ (sodium cacodylate buffer, $\mathrm{I}=$ $0.05 \mathrm{M}, \mathbf{N a C l}=100 \mathbf{m M}$ concentration, thus in total $\mathrm{I}=\mathbf{1 5 0} \mathbf{~ m M}$)

Fig. S13. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PHENPOD at molar ratios $\boldsymbol{r}_{\text {[compound [polynucleotide] }}=0.3$ and 0.6 at pH 6.0 (sodium cacodylate buffer $+\mathrm{NaCl} ; I=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$.

Fig. S14. CD titrations of poly A - poly U (left) and poly dA - poly dT (right) $\left(c=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ with PYPOD at molar ratios $\boldsymbol{r}_{\text {[compound } \text { [polynucleotide] }}=0.3$ and 0.6 at $\mathrm{pH} 6.0\left(\right.$ sodium cacodylate buffer $+\mathrm{NaCl} ; I=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$.

Supplementary Material

PHENPOD

Figure S15. Dose-response profiles for PHENPOD tested in vitro on a panel of human tumor cell lines. PG - percentage of growth.

Antitumor evaluation assay

The experiments were carried out on four human cell lines, which are derived from three cancer types. The following cell lines were used: SW 620, HCT 116 (colon carcinoma), H 460 (lung carcinoma) and MCF-7 (breast carcinoma). The cells were cultured as monolayers and maintained in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, $100 \mathrm{U} / \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.
The growth inhibition activity was assessed as described previously ${ }^{1},^{2}$. The cell lines were inoculated onto a series of standard 96 -well microtiter plates on day 0 , at 3×10^{4} cells $/ \mathrm{mL}$ (SW 620, HCT 116, H 460) to 5×10^{4} cells $/ \mathrm{mL}$ (MCF-7), depending on the doubling times of a specific cell line. Test agents were then added in ten-fold dilutions (10^{-8} to $10^{-4} \mathrm{M}$) and incubated for further 72 h . Working dilutions were freshly prepared on the day of testing. After 72 h of incubation the cell growth rate was evaluated by performing the MTT assay, which detects dehydrogenise activity in viable cells. The absorbance (A) was measured on a microplate reader at 570 nm . The absorbance is directly proportional to the number of living, metabolically active cells. The percentage of growth (PG) of the cell lines was calculated according to

Supplementary Material

one or the other of the following two expressions:
If (mean $\mathrm{A}_{\text {test }}-$ mean $\left.\mathrm{A}_{\text {tzero }}\right) \geq 0$, then $\mathrm{PG}=100 \times\left(\right.$ mean $\mathrm{A}_{\text {test }}-$ mean $\left.\mathrm{A}_{\text {tzero }}\right) /($ mean $\mathrm{A}_{\text {ctrr }}-$ mean $_{\text {tzero }}$).
If (mean $\mathrm{A}_{\text {test }}-$ mean $\left.\mathrm{A}_{\text {tzero }}\right)<0$, then: $\mathrm{PG}=100 \times\left(\right.$ mean $\mathrm{A}_{\text {test }}-$ mean $\left.\mathrm{A}_{\text {tzero }}\right) / \mathrm{A}_{\text {tzero }}$, where the mean $\mathrm{A}_{\text {tzero }}$ is the average of optical density measurements before exposure of cells to the test compound, the mean $\mathrm{A}_{\text {test }}$ is the average of optical density measurements after the desired period of time and the mean $\mathrm{A}_{\text {ctrl }}$ is the average of optical density measurements after the desired period of time with no exposure of cells to the test compound.

The results are expressed as IC_{50}, which is the concentration necessary for 50% of inhibition. The IC_{50} values for each compound are calculated from concentrationresponse curves using linear regression analysis by fitting the test concentrations that give PG values above and below the reference value (i.e. 50\%). If however, for all of the tested concentrations produce PGs exceeding the respective reference level of effect (e.g. PG value of 50), then the highest tested concentration is assigned as the default value, which is preceded by a ">" sign. Each test was performed in quadruplicate in at least two individual experiments.

References

[^1]
[^0]: Additional experimental details about antitumor evaluation assay

[^1]: ${ }^{1}$ G. Malojčić, I. Piantanida, M. Marinić, M. Žinić, M. Marjanović, M. Kralj, K. Pavelić and H-J Schneider, Org. Biomol. Chem., 2005, 3, 4373
 ${ }^{2}$ M. Marjanović, M. Kralj, F. Supek, L. Frkanec, I. Piantanida, T. Šmuc and L. Tušek-Božić, J. Med. Chem., 2007, 50, 1007.

