Supplementary Information

Reaction-based dual signaling of fluoride ions by resorufin sulfonates

by Hyun Gyu Im, Hong Yeong Kim, Myung Gil Choi, and Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea

Fig. S1.	Changes in absorbance ratio A_{587}/A_{433} of 1 in the presence of various
	anions
Fig. S2.	Fluorescence intensity ratio I/I_0 at 591 nm of 1 in the presence of various
	anions
Fig. S3.	UV-vis spectra of 1, 1 + tetrabutylammonium fluoride, resorufin +
	tetrabutylammonium fluoride
Fig. S4.	Fluorescence spectra of 1, 1 + tetrabutylammonium fluoride, resorufin +
	tetrabutylammonium fluoride
Fig. S5.	Time trace for the changes in UV-vis absorbance of 1 at 587 nm in the
	presence of fluoride ions
Fig. S6.	UV-vis spectral changes of 1 upon titration with fluoride ions
Fig. S7.	Competitive signaling of fluoride ions by 1 in the presence of common
	anions as background
Fig. S8 .	UV-vis spectral changes of $1-F$ in the presence of common anions as
	background
Fig. S9.	Time trace for the changes in UV-vis absorbance of 2 at 587 nm in the
	presence of fluoride ions
Fig. S10.	Concentration dependent fluorescence signaling behavior of 2 for fluoride
	ions
Fig. S11.	Changes in UV-vis spectra of 2 in the presence of various anions
Fig. S12.	Changes in absorption intensity ratio A_{587}/A_{433} of 2 in the presence of various
	anions
Fig. S13.	Time trace for the changes in UV-vis absorbance of 3 at 587 nm in the
	presence of fluoride ions
Fig. S14.	Concentration dependent fluorescence signaling behavior of 3 for fluoride
	ions
Fig. S15.	Changes in fluorescence intensity ratio (I/I_0) at 591 nm of 1, 2 and 3 in the
	presence of fluoride and sulfide ions

Fig. S16.	Changes in fluorescence intensity ratio (I/I_o) at 591 nm of 1 and 1	+ fluoride
	as a function of water content in CH ₃ CN.	S10
Fig. S17.	Fluorescence intensity ratio I/I_o at 591 nm of 1 in the presence of	of various
	anions	S11
Fig. S18.	¹ H NMR spectrum of 1 in DMSO-d ₆ .	S11
Fig. S19.	¹³ C NMR spectrum of 1 in DMSO- d_6 .	S12
Fig. S20.	¹ H NMR spectrum of 3 in DMSO- d_6 .	S12
Fig. S21.	¹³ C NMR spectrum of 3 in DMSO- d_6 .	S13

Fig. S1. Changes in absorbance ratio A_{587}/A_{433} of **1** in the presence of various anions. [**1**] = 1.0×10^{-5} M, [Aⁿ⁻] in TBA salt = 1.0×10^{-4} M in CH₃CN.

Fig. S2. Fluorescence intensity ratio I/I_o at 591 nm of **1** in the presence of various anions. [**1**] = 5.0×10^{-6} M, [Aⁿ⁻] in TBA salt = 5.0×10^{-5} M in CH₃CN. $\lambda_{ex} = 485$ nm.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Fig. S3. UV-vis spectra of **1**, **1** + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. [**1**] = [Resorufin] = 1.0×10^{-5} M, [TBA⁺F⁻] = 1.0×10^{-4} M in CH₃CN.

Fig. S4. Fluorescence spectra of 1, 1 + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. [1] = [Resorufin] = 5.0×10^{-6} M, [TBA⁺F⁻] = 5.0×10^{-5} M in CH₃CN. $\lambda_{ex} = 485$ nm.

Fig. S5. Time trace for the changes in UV-vis absorbance of 1 at 587 nm in the presence of fluoride ions. $[1] = 1.0 \times 10^{-5}$ M, $[TBA^+F^-] = 1.0 \times 10^{-4}$ M in CH₃CN.

Fig. S6. UV-vis spectral changes of **1** upon titration with fluoride ions. $[\mathbf{1}] = 1.0 \times 10^{-5}$ M, $[\text{TBA}^+\text{F}^-] = \text{from 0 to } 5.5 \times 10^{-5}$ M in CH₃CN.

Fig. S7. Competitive signaling of fluoride ions by **1** in the presence of common anions as background. $[\mathbf{1}] = 5.0 \times 10^{-6} \text{ M}$, $[\text{F}^-] = [\text{A}^-]$ in TBA salt = $5.0 \times 10^{-5} \text{ M}$ in CH₃CN. $\lambda_{\text{ex}} = 485 \text{ nm}$. Other anions = Cl⁻, Br⁻. I', AcO⁻, NO₃⁻, N₃⁻, ClO₄⁻, and HSO₄⁻.

Fig. S8. UV-vis spectral changes of $1-F^-$ in the presence of common anions as background. $[1] = 1.0 \times 10^{-5}$ M, $[F^-] = [A^-]$ in TBA salt = 1.0×10^{-4} M in CH₃CN. Other anions = Cl⁻, Br⁻. I⁻, AcO⁻, NO₃⁻, N₃⁻, ClO₄⁻, and HSO₄⁻.

Fig. S9. Time trace for the changes in UV-vis absorbance of 2 at 587 nm in the presence of fluoride ions. $[2] = 1.0 \times 10^{-5}$ M, $[TBA^+F^-] = 1.0 \times 10^{-4}$ M in CH₃CN.

Fig. S10. Concentration-dependent fluorescence signaling behavior of 2 for fluoride ions. [2] = 5.0×10^{-6} M, [TBA⁺F⁻] = $0 \sim 1.2 \times 10^{-5}$ M in CH₃CN. $\lambda_{ex} = 485$ nm.

Fig. S11. Changes in UV-vis spectra of **2** in the presence of various anions. $[\mathbf{2}] = 1.0 \times 10^{-5} \text{ M}$, $[\text{A}^-]$ in TBA salt = $1.0 \times 10^{-4} \text{ M}$ in CH₃CN.

Fig. S12. Changes in absorption intensity ratio A_{587}/A_{433} of **2** in the presence of various anions. [**2**] = 1.0×10^{-5} M, [A⁻] in TBA salt = 1.0×10^{-4} M in CH₃CN.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Fig. S13. Time trace for the changes in UV-vis absorbance of 3 at 587 nm in the presence of fluoride ions. $[3] = 1.0 \times 10^{-5} \text{ M}$, $[\text{TBA}^+\text{F}^-] = 1.0 \times 10^{-4} \text{ M}$ in CH₃CN.

Fig. S14. Concentration dependent fluorescence signaling behavior of 3 for fluoride ions. $[3] = 5.0 \times 10^{-6} \text{ M}, [\text{TBA}^+\text{F}^-] = 0 \sim 7.0 \times 10^{-4} \text{ M} \text{ in CH}_3\text{CN}. \lambda_{ex} = 485 \text{ nm}.$

Fig. S15. Changes in fluorescence intensity ratio (I/I_0) at 591 nm of **1**, **2**, and **3** in the presence of fluoride and sulfide ions. [**1**] = [**2**] = [**3**] =5.0 × 10⁻⁶ M, [TBA⁺F⁻] = [(TBA⁺)₂S²⁻] = 5.0 × 10⁻⁵ M in CH₃CN. $\lambda_{ex} = 485$ nm.

Fig. S16. Changes in fluorescence intensity ratio (I/I_0) at 591 nm of **1** and **1** + fluoride as a function of water content in CH₃CN. [**1**] = 5.0×10^{-6} M, [TBA⁺F⁻] = 5.0×10^{-5} M in aqueous acetonitrile (water content: from 0 to 5%). $\lambda_{ex} = 485$ nm.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Fig. S17. Fluorescence intensity ratio I/I_o at 591 nm of 1 in the presence of various anions. [1] = 1.0×10^{-5} M, [A⁻] in TBA salt = 1.0×10^{-4} M in 1% aqueous acetonitrile solution. $\lambda_{ex} = 485$ nm.

Fig. S18. ¹H NMR spectrum of 1 in DMSO-d₆.

Fig. S20. ¹H NMR spectrum of **3** in DMSO-d₆.

