Supporting Information

Photoresponsive	Two-Component	Organogelators	based	on
Trisphenylisoxazolylbe	enzene			

Takeharu Haino,*a Yuko Hirai,a Toshiaki Ikedaa and Hiroshi Saitoa

a Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan E-mail: haino@hiroshima-u.ac.jp

Table of Contents

Analysis of self-association by ¹ H NMR experiments	S3
Table S1. Gelation properties of 1, 2a-e, and the mixtures of 1 and 2a-e.	S4
Figure S1. Gelation temperatures (T_{gel}) of a solution of 1 ([1] = 3 g L ⁻¹) in benzyl alcol	nol in the presence
of 2c .	S5
Figure S2. UV/vis absorption spectra of 1 (a) in THF in the presence of 0, 100, 500, 10	00, and 2000 eq. of
N,N-dimethylaniline (DMAP), (b) in benzyl alcohol in the presence of 0, 500, and 1	000 eq. of DMAP,
and (c) in benzyl alcohol in the presence of 0, 20, and 40 eq. of NaOH. [1] = 1.0×10^{-4} r	nol L ⁻¹ . S5
Figure S3. (a) AFM image of cast-films prepared from a solution of 1 in THF.	(b) Height profile
corresponding to the white line of image a.	S5
Figure S4. (a, c, e, g, i) AFM images of cast-films prepared from solutions of (a) 2a, (c	c) 2b, (e) 2c, (g) 2d,
and (i) 2e in THF. (b, d, f, h, j) Height profiles corresponding to the white lines of image	ges a, c, e, g, and i.
	S6
Figure S5. (a, c, e, g, i) AFM images of cast-films prepared from solutions of 1 with (a	a) 2a , (c) 2b , (e) 2c ,
(g) 2d, and (i) 2e in THF. (b, d, f, h, j) Height profiles corresponding to the white lines	of images a, c, e, g,
and i.	S7
Figure S6. The AFM images (a, b) of Figure 5. Height profiles corresponding to	the white lines of
images a and b.	S8
¹ H NMR and ¹³ C NMR spectra of compound 3	S9
¹ H NMR and ¹³ C NMR spectra of compound 4	S10
¹ H NMR and ¹³ C NMR spectra of compound 5	S11
¹ H NMR and ¹³ C NMR spectra of compound 6	S12
¹ H NMR and ¹³ C NMR spectra of compound 2a	S13
¹ H NMR and ¹³ C NMR spectra of compound 2b	S14

¹ H NMR and ¹³ C NMR spectra of compound 2c	S15
¹ H NMR and ¹³ C NMR spectra of compound 2d	S16
¹ H NMR and ¹³ C NMR spectra of compound 2e	S17

Analysis of self-association by ¹**H NMR experiments:** Hyperbolic curves were obtained by plotting of compound concentrations vs ¹H NMR chemical shifts (δ) of the aromatic protons. The curve-fitting analysis of the plots was carried out on the basis of an isodesmic association model, which is a type of unlimited self-association where the addition of each successive monomer to polymer involves an equal association constant ($K_2 = K_3 = = K_i = K_E$). The fitting functions are given by equations 1 for NMR experiments. δ denotes apparent chemical shifts obtained from spectra; δ_m and δ_a are chemical shifts for a monomer and self-assembled species, respectively. K_E is the association constant; and c is the total concentration of a compound. The complexation-induced shift $\Delta\delta$ displays the difference between δ_m and δ_a .

	1 <i>a</i>	2a ^b	2b ^b	2c ^b	2d ^b	2e ^b	1+2a ^{c,d,e}	1+2b ^{c,d,e}	1+2c ^{c,d,e}	1+2d ^{c,d,e}	1+2e ^{c,d,e}
acetone	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
THF	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
acetonitrile	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
methanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
ethanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
decanol	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
dichloromethane	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
chloroform	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
benzene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
toluene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
benzyl alcohol	Р	Р	Р	Р	S	Р	G (3)	G (3)	G (2)	G (2)	G (2)
benzaldehyde	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
ethyl acetate	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
acetophenone	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
<i>p</i> -methoxybenzyl alcohol	Р	Р	Р	S	S	Р	G (5)	G (5)	G (3)	G (3)	G (3)
5-nonanone	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
cyclohexane	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
cyclohexene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
cycloheptanone	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
chlorobenzene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
bromobenzene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
1,2,4-trichlorobenzene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
1,1,2,2-tetrachloroethane	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
1,2,4-trimethylbenzene	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
tributylamine	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
2-aminoethanol	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
aniline	Р	Р	Р	S	S	Р	G (5)	G (5)	G (3)	G (3)	G (3)
N-methyl aniline	Ι	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι
benzonitrile	Ι	Р	Р	Р	S	Р	Ι	Ι	Ι	Ι	Ι

Table S1. Gelation properties of 1, 2a-e, and the mixtures of 1 and 2a-e.

G = gel, P = precipitation, S = solution, and I = insoluble. ^{*a*}P, I, and S are at [**1**] = 10 g L⁻¹. ^{*b*}P, I, and S are at [gelator] = 30 g L⁻¹. ^{*c*}The molar ratio of **1** and **2a–e** is 2:3. ^{*d*}P, I, and S are at [**1**] = 10 g L⁻¹. ^{*c*}The critical gelation concentrations of **1** (g L⁻¹) are shown in parentheses.

Figure S1. Gelation temperatures (T_{gel}) of a solution of **1** ([**1**] = 3 g L⁻¹) in benzyl alcohol in the presence of **2c**.

Figure S2. UV/vis absorption spectra of **1** (a) in THF in the presence of 0, 100, 500, 1000, and 2000 eq. of *N*,*N*-dimethylaniline (DMAP), (b) in benzyl alcohol in the presence of 0, 500, and 1000 eq. of DMAP, and (c) in benzyl alcohol in the presence of 0, 20, and 40 eq. of NaOH. [**1**] = 1.0×10^{-4} mol L⁻¹.

Figure S3. (a) AFM image of cast-films prepared from a solution of **1** in THF. (b) Height profile corresponding to the white line of image a.

Figure S4. (a,c,e,g,i) AFM images of cast-films prepared from solutions of (a) **2a**, (c) **2b**, (e) **2c**, (g) **2d**, and (i) **2e** in THF. (b,d,f,h,j) Height profiles corresponding to the white lines of images a, c, e, g, and i.

Figure S5. (a,c,e,g,i) AFM images of cast-films prepared from solutions of **1** and (a) **2a**, (c) **2b**, (e) **2c**, (g) **2d**, and (i) **2e** in THF. (b,d,f,h,j) Height profiles corresponding to the white lines of images a, c, e, g, and i.

Figure S6. The AFM images (a, b) of Figure 5. Height profiles corresponding to the white lines of images a and b.

