Supporting Information

Asymmetric α-Alkylation of Aldehydes with 3-Hydroxy-3-Indolylox-Indoles in Aqueous Media

Ying Zhang, Shun-Yi Wang*, Xiao-Ping Xu, Ran Jiang, Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Fax: (+86)-512-65880307; Tel: (+86)-512-65880307;
E-mail: shunjun@suda.edu.cn; shunyi@suda.edu.cn

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Table of Contents

General Methods S3
Enantioselective α-alkylation of aldehydes S4
Description of products S5
Determination of the absolute configuration of the alkylation products S15
Copy of NMR spectra of products S16
Copy of HPLC traces of products S35

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

General Methods. The aldehydes 2a-d were purchased from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INOVA 300 or $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR) and 75 or $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR) spectrumeter using CDCl_{3} or DMSO- d_{σ} as solvent. Chemical shifts ($\delta \mathrm{ppm}$) were relative to the resonance of the deuterated solvent as the internal standard. High resolution mass spectra were obtained using GCT-TOF instrument with EI or ESI source. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using a Chiralcel AD-H column $(0.46 \mathrm{~cm} \mathrm{x}$ 25 cm), Chiralcel OD-H column ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) and HPLC grade isopropanol and n-hexane were used as the eluting solvents. Chromatographic purification was done with $300-400$ mesh silica gel. Materials: All the reactions were carried out in undistilled solvent without any precautions to exclude water. The 3 -hydroxy-3-indolylox-indoles $\mathbf{1 a - h}{ }^{1}$ were prepared according to the literature procedure. The imidazolidinones $\mathbf{A}-\mathbf{I}^{2}$ were prepared according to the reported procedure.

[^0]Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Enantioselective α-alkylation of aldehydes:

General procedure: In an ordinary test tube equipped with a magnetic stirring bar, the alcohol $\mathbf{1}$ (0.5 mmol , 1 equiv.) and aldehyde 2 ($5 \mathrm{mmol}, 10$ equiv.) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ solvent mixture at room temperature. After stirring for 1 min , chiral imidazolidinone catalyst \mathbf{B} (0.05 mmol, $10 \mathrm{~mol} \%$) was added. The mixture was vigorously stirred at room temperature, until alcohol 1 was completely consumed as indicated by TLC analysis. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The desired product $\mathbf{3}$ (diastereomer mixture) was obtained after purification by flash column chromatography using petroleum ether /ethyl acetate as the eluent.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Description of products:

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3aa)

$d r=70: 30$ ratio (syn-3aa/anti-3aa) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=85 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda$ $=210 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=16.306 \mathrm{~min}, t_{\text {minor }}=5.354 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $6.411 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.75-0.85(\mathrm{~m}$, $12 \mathrm{H}), 1.15-1.22(\mathrm{~m}, 14 \mathrm{H}), 3.46-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.66(\mathrm{~m}, 1 \mathrm{H}), 6.83-7.03(\mathrm{~m}, 9 \mathrm{H})$, 7.16-7.27 (m, 5H), 7.29-7.35 (m, 3H), 7.43-7.45 (m, 1H), 9.71 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.80 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.64 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.78 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.10 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=203.49,203.11,178.53,177.74$, $142.37,141.82,136.96,136.80,131.67,130.02,128.60,128.23,125.72(2 \mathrm{C}), 124.99,124.84$, $124.54,124.38,121.78,121.62,121.27(2 \mathrm{C}), 120.50,119.87,118.68(2 \mathrm{C}), 112.46,111.75(2 \mathrm{C})$, $111.55,109.87,109.61,55.02,54.34,53.98,53.84,30.95,30.82,28.51,28.28,27.15,27.02$, 24.73, 24.02, 21.92(2C), 13.86(2C); HRMS (ESI): found: $m / z=373.1935$, calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{\circ}: 373.1922$.

2-(3-(5-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ba)

$d r=62: 38$ ratio (syn-3ba/anti-3ba) was determined by integration of $\mathbf{C H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=71 \%$; Anti diastereomer $e e=78 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=8.997 \mathrm{~min}, t_{\text {minor }}=5.715 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=7.181 \mathrm{~min}, t_{\text {minor }}=7.550 \mathrm{~min}$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.75-0.84(\mathrm{~m}, 6 \mathrm{H}), 1.06-1.16(\mathrm{~m}, 20 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-7.07(\mathrm{~m}, 9 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 7 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.77 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.61 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.76 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.95-10.96 (m, 2H); ${ }^{13}$ C NMR (75 MHz , DMSO- d_{6}): $\delta=203.55,203.16,178.56,177.74,142.32,141.80,135.36$, $135.19,131.71,130.07,128.52,128.20,127.00$, 126.88, 125.68, 125.21, 125.05, 124.48, $124.39(2 \mathrm{C}), 122.89(2 \mathrm{C}), 121.74,121.56,120.24,119.52,111.90,111.47,111.45,111.00$,

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$109.80,109.56,54.90,54.21,53.98,53.82,30.92,30.81,28.51,28.24,27.10,27.00,24.75$, 23.99, 22.04, 21.91, 21.45, 21.35, 13.84(2C); HRMS (ESI): found: $m / z=387.2087$, calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{`}: 387.2078$.

2-(3-(5-methoxy-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ca)

$d r=50: 50$ ratio (syn-3ca/anti-3ca) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=65 \%$; Anti diastereomer $e e=90 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/$ i- $\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=11.951 \mathrm{~min}, t_{\text {minor }}=6.956 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $9.914 \mathrm{~min}, t_{\text {minor }}=9.565 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.77-0.83(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.23(\mathrm{~m}, 20 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.64(\mathrm{~m}$, $4 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.94-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 6 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.84 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.64 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.76 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.96 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=203.59,203.15,178.52,177.73,152.88,152.75,142.54,141.94$, $132.00(2 \mathrm{C}), 131.45,130.00,128.62,128.28,125.92,125.31,125.28,125.23,125.04,124.59$, 121.77, 121.64, 112.29, 112.23, 111.93, 110.99(3C), 109.81, 109.57, 102.42, 102.25, 55.21, 54.97, 54.86, 54.11, 53.91, 53.78, 30.95, 30.84, 28.48, 28.29, 27.18, 26.96, 24.69, 24.03, 21.94, 21.90, 13.85(2C). HRMS (ESI): found: $m / z=403.2053$, calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{-}$: 403.2027.

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3da)

$d r=62: 38$ ratio (syn-3da/anti-3da) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=67 \%$; Anti diastereomer $e e=67 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ \mathrm{i}-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=14.040 \mathrm{~min}, t_{\text {minor }}=5.111 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=6.237 \mathrm{~min}, t_{\text {minor }}=9.417 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.74-0.84(\mathrm{~m}, 6 \mathrm{H}), 1.06-1.23(\mathrm{~m}, 20 \mathrm{H}), 3.47(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}$,

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.23(\mathrm{~m}, 1 \mathrm{H})$, 7.26-7.28 (m, 2H), 7.32-7.36 (m, 3H), $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.78 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.71 (s, 1 H , diast.), 10.83 (s, 1 H , diast.), $11.34-11.36$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.35,202.93,178.34,177.56,142.31,141.79$, 135.69 , 135.53, 130.97, 129.46, 128.81, 128.48, 126.64, 126.52, 126.18(2C), 125.84(2C), $124.64,123.85,122.85,122.18,121.89,121.76,113.81,112.09,111.47,111.43(2 \mathrm{C}), 111.28$, $110.00,109.76,55.00,54.36,53.84,53.64,30.91,30.78,28.48,28.17,27.09,26.94,24.77$, 23.88, 21.91(2C), 13.86(2C); HRMS (ESI): found: $m / z=451.1057$, calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}\right]: 451.1027$.

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ea)

$d r=34: 66$ ratio (syn-3ea/anti-3ea) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=83 \%$; Anti diastereomer $e e=82 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=7.910 \mathrm{~min}, t_{\text {minor }}=9.588 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $16.220 \mathrm{~min}, t_{\text {minor }}=9.045 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.76-0.83(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.23(\mathrm{~m}, 20 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.91-7.03(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 5 \mathrm{H}), 9.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, 1 H , diast.), 9.81 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.63 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.77 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.06 (s, 2 H); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.43,177.73,142.36,136.34,130.13,128.60$, $128.20,125.69,124.69,124.22,121.73,120.74,118.89,117.98,112.05,109.83,54.31,53.94$, 30.95, 28.51, 27.01, 24.68, 21.92, 16.70, 13.88; HRMS (ESI): found: $m / z=387.2084$, calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 387.2078$.

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)octanal(3fa)

$d r=$ 55:45 ratio (syn-3fa/anti-3fa) was determined by integration of $\mathbf{C} \underline{H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=78 \%$; Anti diastereomer $e e=81 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=9.173 \mathrm{~min}, t_{\text {minor }}=6.314 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$12.386 \mathrm{~min}, t_{\text {minor }}=7.952 \mathrm{~min} .{ }^{1}$ H NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.77-0.81(\mathrm{~m}, 6 \mathrm{H}), 1.14-1.33(\mathrm{~m}, 20 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 9 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.79 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.12 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=203.35,203.00$, 176.67, 175.99, 143.75, 143.27, 136.97, 136.80, 130.78, 129.26, 128.72, 128.36, 125.36, 124.90 , 124.71, 124.58, 124.48, 124.09, 122.46, 122.29, 121.31(2C), 120.46(2C), 118.82, $118.75,112.18,111.79,111.26(2 \mathrm{C}), 108.90,108.68,55.03,54.46,53.51,53.37,30.95,30.81$, $28.47,28.25,27.13,27.01,26.16(2 \mathrm{C}), 24.77(2 \mathrm{C}), 21.90,21.87,13.86,13.83$; HRMS (ESI): found: $m / z=387.2085$, calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 387.2078$.

2-(5-bromo-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ga)

$d r=60: 40$ ratio (syn-3ga/anti-3ga) was determined by integration of $\mathbf{C H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=60 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/ i-\operatorname{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda$ $=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=11.362 \mathrm{~min}, t_{\text {minor }}=4.844 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $6.128 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.77-0.84$ (m, $6 \mathrm{H}), 1.16-1.20(\mathrm{~m}, 20 \mathrm{H}), 3.52(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.96(\mathrm{~m}, 4 \mathrm{H})$, 7.04-7.10 (m, 3H), 7.21-7.27 (m, 2H), 7.36-7.42 (m, 6H), 7.48-7.50 (m, 1H), $9.80(\mathrm{~s}, 2 \mathrm{H})$, 10.82 (s, 1 H , diast.), 10.97 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.15-11.19 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.56,202.97,178.20,177.38,141.66,141.16,136.91,136.70,134.48$, $132.80,131.43,131.02,128.25,126.96,124.79(2 \mathrm{C}), 124.61(2 \mathrm{C}), 121.43,121.38,120.05$, $119.38,118.93,118.88,113.65,113.45,111.90(2 \mathrm{C}), 111.78,111.59,110.96(2 \mathrm{C}), 54.57,54.11$, $54.08,53.98,30.96,30.81,28.49,28.16,27.03,26.99,24.83,23.92,21.93,21.90,13.89(2 \mathrm{C})$;
HRMS (ESI): found: $m / z=451.1054$, calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}\right]^{\circ}: 451.1027$.

2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ha)

$d r=60: 40$ ratio (syn-3ha/anti-3ha) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=62 \%$; Anti diastereomer $e e=79 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/$ i-PrOH 75:25, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=11.124 \mathrm{~min}, t_{\text {minor }}=4.735 \mathrm{~min}$. Anti diastereomer

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$t_{\text {major }}=6.050 \mathrm{~min}, t_{\text {minor }}=12.525 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.77-0.82(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.23(\mathrm{~m}, 20 \mathrm{H}), 3.52(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-7.00(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 4 \mathrm{H})$, 9.77-9.80 (m, 2H), 10.80 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.95 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.14-11.18 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.54,202.95$, 178.29, 177.49, 141.27, 140.75, 136.92, 136.71, $134.04,132.36,128.57,128.16,125.91,125.73(2 \mathrm{C}), 125.61,124.79$ (2C), 124.60(3C), 124.29, $121.37,120.08,119.43,118.86,111.87(2 \mathrm{C}), 111.25(2 \mathrm{C}), 111.06,110.94,54.17,54.07(2 \mathrm{C})$, 54.05, 30.95, 30.81, 28.48, 28.17, 27.01(2C), 24.82, 23.95, 21.92(2C), 13.87(2C); HRMS (ESI): found: $m / z=407.1541$, calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{2}\right]: 407.1532$.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3ab)

$d r=60: 40$ ratio (syn-3ab/anti-3ab) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=68 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/$ i-PrOH 75:25, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=49.598 \mathrm{~min}, t_{\text {minor }}=7.813 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=9.937 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.79$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.76-3.87(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.95(\mathrm{~m}$, $2 \mathrm{H}), 6.97-7.06(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.93 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.65 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.79 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.15 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.85,203.27,178.82,177.86,142.68,141.84,137.06,136.93$, 132.12 , 129.92, 128.71, 128.16, 125.39, 125.16, 124.95, 124.70, 124.41, 124.23, 121.90, $121.72,121.38,121.32,120.31,119.83,118.86,118.75,112.58,111.89,111.82,111.51$, 109.82, 109.78, 54.01(2C), 49.41, 48.82, 9.38, 9.14; HRMS (ESI): found: $m / z=303.1132$, calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 303.1139$.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)

$d r=70: 30$ ratio (syn-3ac/anti-3ac) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=56 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/ i-\operatorname{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=19.858 \mathrm{~min}, t_{\text {minor }}=6.020 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $7.455 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.80(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}$), 1.19-1.38 (m, 4H), 3.40-3.43 (m, 1H, diast.), 3.55-3.58 (m, 1H, diast.), 6.83-6.87 $(\mathrm{m}, 1 \mathrm{H}), 6.91-6.98(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H}), 9.71(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.80 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.64 (s, 1 H , diast.), 10.78 ($\mathrm{s}, 1 \mathrm{H}$, diast.), $11.10(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=203.47$, 203.09, 178.52, 177.75, $142.33,141.80,136.92,136.78,130.06,129.90$ 128.61, 128.24, 125.70, 125.55, 124.97, 124.83 , 124.51, 124.41(2C), 124.32, 121.81, 121.62, 121.27, 120.43, 118.75, 118.68, 112.50, $111.74,111.55,109.86,109.61,108.28,56.83,56.20,53.94,53.85,18.17,17.66,12.46,12.15$; HRMS (ESI): found: $m / z=317.1294$, calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{-}: 317.1296$.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ad)

$d r=45: 55$ ratio (syn-3ad/anti-3ad) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=78 \%$; Anti diastereomer $e e=80 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=26.000 \mathrm{~min}, t_{\text {minor }}=12.477 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=17.514 \mathrm{~min}, t_{\text {minor }}=21.833 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=2.39-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.74$ (dd, $J=14.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (dd, $J=13.8$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.13(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 6 \mathrm{H})$, 7.07-7.11 (m, 5H), 7.17-7.20 (m, 5H), 7,23-7.27 (m, 5H), 7.33-7.37 (m, 4H), 7.43-7.44 (m, $1 \mathrm{H}), 7.59-7.62(\mathrm{~m}, 1 \mathrm{H}), 9.68(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.78 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.75 (s, 1 H , diast.), 10.83 (s, 1 H , diast.), $11.16-11.17$ (m, 2 H); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=$ $202.80,202.15,178.12,177.59,142.28,141.91,139.16,138.97,137.00,136.97,130.94$, 129.73, 128.83(2C), 128.77(2C), 128.49, 128.33(4C), 128.22(4C), 126.20, 126.14, 125.68, $124.94,124.77,124.71,124.68,121.90,121.77,121.43,121.34,120.48,120.23,118.81(2 \mathrm{C})$, $111.90,111.14,110.04,109.84,57.14,56.20,54.25,54.22,30.83,30.41$; HRMS (ESI): found: $m / z=379.1468$, calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{\circ}: 379.1452$.

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3db)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

$d r=62: 38$ ratio (syn-3db/anti-3db$)$ was determined by integration of $\mathbf{C H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=64 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane $/$ i-PrOH 75:25, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=31.871 \mathrm{~min}, t_{\text {minor }}=6.390 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=7.192 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.77$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.94-7.05 (m, 4H), 7.12-7.26 (m, 6H), 7.32-7.35 (m, 5H), 7.62 (s, 1H), $9.73(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.87 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.69 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.84 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.39 (s, 2H); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=203.58,202.90,178.57,177.59,142.58,141.79,135.74,135.58,131.46$, $129.30,128.85,128.34,126.76,126.60,126.30,126.01,125.44,124.55,123.90,123.82$, 122.65, 121.97, 121.94, 121.79, 113.87, 113.80, 112.21, 111.55, 111.44, 111.19, 109.87, 109.84, 53.83, 53.68, 49.55, 48.74, 9.30, 9.06; HRMS (ESI): found: $m / z=381.0244$, calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{2}\right]^{\circ}: 381.0244$.

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3dc)

$d r=$ 52:48 ratio (syn-3dc/anti-3dc) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=77 \%$; Anti diastereomer $e e=68 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane i - $\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda$ $=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=14.711 \mathrm{~min}, t_{\text {minor }}=5.574 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $5.844 \mathrm{~min}, t_{\text {minor }}=10.060 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.78-0.82(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.24(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93-7.00 (m, 3H), 7.03-7.09 (m, 2H), 7.16-7.18 (m, 2H), 7.23-7.27 (m, 4H), 7.32-7.34 (m, $3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 9.67$ (s, 1H, diast.), 9.77 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.69 (s, 1H, diast.), 10.83 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.32-11.36 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=203.29$, 202.92, 178.32, 177.58, 142.29, 141.77, 135.67, 135.49, 131.15, 129.48, 128.79, 128.47, 126.62 , 126.53, 126.15(2C), 125.82(2C), 124.59, 123.84, 122.79, 121.92, 121.75, 113.85, 113.77, 112.17, 111.48, 111.42(2C), 111.26, 109.99, 109.73, 56.89, 56.19, 53.82, 53.65, 18.26, 17.64(1), 12.49(1), 12.08; HRMS (ESI): found: $m / z=395.0408$, calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}\right]$:

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
395.0401 .

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3eb)

$d r=34: 66$ ratio (syn-3eb/anti-3eb) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=83 \%$; Anti diastereomer $e e=84 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\operatorname{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=9.174 \mathrm{~min}, t_{\text {minor }}=10.525 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ 12.255 min , $t_{\text {minor }}=10.961 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.78$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, diast.), 0.88 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, diast.), 2.42 (s , $6 \mathrm{H}), 3.76-3.79(\mathrm{~m}, 1 \mathrm{H}$, diast.), 3.81-3.86 (m, 1 H , diast.), 6.70-6.74 (m, 1H), 6.79-6.87 (m, $4 \mathrm{H}), 6.91-7.00(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 9.81(\mathrm{~s}, 1 \mathrm{H}$, diast.), 9.94 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.63 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.78 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.11 ($\mathrm{s}, 2 \mathrm{H}$), ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.84,203.29,178.75,177.79,142.64,141.76,136.39,136.29$, $132.20,129.98,128.63,128.06,125.31(2 \mathrm{C}), 124.82,124.59,124.32,123.81,121.79$, $121.69(2 \mathrm{C}), 121.64,120.89,120.78,119.00,118.88,117.73,117.30,113.05,111.95$, $109.68(2 \mathrm{C}), 54.01,53.92,49.26,48.73,16.72(2 \mathrm{C}), 9.32,9.06$; HRMS (ESI): found: $m / z=$ 317.1310, calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 317.1296$.

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ec)

$d r=34: 66$ ratio (syn-3ec/anti-3ec) was determined by integration of $\mathbf{C H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=75 \%$; Anti diastereomer $e e=78 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=8.624 \mathrm{~min}, t_{\text {minor }}=9.472 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $13.113 \mathrm{~min}, t_{\text {minor }}=12.003 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.19-1.40(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 3.40-3.42(\mathrm{~m}, 1 \mathrm{H}$, diast.), $3.55-3.58(\mathrm{~m}, 1 \mathrm{H}$, diast.), 6.73-6.86 (m, 4H), 6.91-6.94 (m, 1H), 6.97-7.04 (m, 6H), 7.15-7.16 (m, 1H), 7.19-7.25 (m, 3H), 7.29-7.32 (m, 1H), $9.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.81 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.63 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 10.78 ($\mathrm{s}, 1 \mathrm{H}$, diast.), 11.07 (s, 2 H); ${ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=203.53,203.18,178.55,177.78,142.37,141.80,136.33,136.21$,

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$131.89,130.16,128.59,128.21,125.68,124.70,124.54,124.34,124.21,123.98,121.74$, 121.61(2C), 120.85(2C), 120.74, 118.96, 118.89, 117.98, 117.36, 113.06, 112.07, 109.83, $109.58,56.80,56.17,53.93,53.87,18.12,17.63,16.70(2 \mathrm{C}), 12.42,12.14$; HRMS (ESI): found: $m / z=331.1462$, calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 331.1452$.

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ed)

$d r=43: 57$ ratio (syn-3ed/anti-3ed) was determined by integration of $\mathrm{CHCHO}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=73 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane i - $\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda$ $=254 \mathrm{~nm}$: Syn diastereomer $t_{\text {major }}=30.187 \mathrm{~min}, t_{\text {minor }}=7.336 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $8.428 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=2.39-2.46$ (m, $8 \mathrm{H}), 2.74(\mathrm{dd}, J=14.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 6 \mathrm{H})$, 7.10-7.12 (m, 4H), 7.16-7.20 (m, 5H), 7.23-7.26 (m, 4H), 7.31-7.35 (m, 1H), 7.39-7.41 (m, 2 H), 9.70 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 9.78 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, diast.), 10.72 (s, 1 H , diast.), 10.81 ($\mathrm{s}, 1 \mathrm{H}$, diast.), $11.09-11.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=202.84$, $202.20,178.12,177.59,142.28,141.89,139.14,138.99,136.36(2 \mathrm{C}), 131.12,129.83$, $128.83(2 \mathrm{C}), 128.75(4 \mathrm{C}), 128.44,128.28(3 \mathrm{C}), 126.17,126.11,125.64,124.73,124.65,124.47$, $124.33(2 \mathrm{C}), 121.89(2 \mathrm{C}), 121.77(2 \mathrm{C}), 120.92,120.85,119.00(2 \mathrm{C}), 118.01,117.75,112.45$, 111.63, 109.98, 109.79, 57.06, 56.14, 54.26, 54.20, 30.79, 30.37, 16.72(2C); HRMS (ESI): found: $m / z=393.1618$, calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\right]: 393.1609$.

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)propanal(3fb)

$d r=48: 52$ ratio (syn-3fb/anti-3fb) was determined by integration of $\mathbf{C H C H O}{ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=>99 \%$; Anti diastereomer $e e=>99 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\mathrm{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=10.598 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=12.935 \mathrm{~min} .{ }^{1} \mathbf{H} \mathbf{~ N M R}$ (400 MHz , DMSO- d_{6}, mixture of two diastereomers): $\delta=0.73$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 0.87 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.93(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.92(\mathrm{~m}$,

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012
$1 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 4 \mathrm{H}), ~ 9.75-9.79$ (m, 1 H , diast.), $9.88-9.91$ (m, 1H, diast.), 11.17 (m, 2H); ${ }^{13}$ C NMR (75 MHz , DMSO- d_{6}): $\delta=$ 203.62, 203.11, 176.88, 176.07, 144.00, 143.26, 137.00, 136.87, 131.16, 129.15, 128.77, $128.24,125.00,124.98,124.79,124.72,124.29,124.07,122.52,122.33,121.35,121.30$, $120.18,119.67,118.89,118.76,112.21,111.84,111.81,111.15,108.79(2 \mathrm{C}), 53.48(2 \mathrm{C}), 49.46$, 48.91, 26.15(2C), 9.35, 9.09; HRMS (ESI): found: $m / z=317.1295$, calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{-}$: 317.1296.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-2-phenylacetaldehyde(3ae)

$d r=28: 72$ ratio (syn-3ae/anti-3ae) was determined by integration of CHCHO ${ }^{1} \mathrm{H}$ NMR signal. Syn diastereomer $e e=8 \%$; Anti diastereomer $e e=50 \%$. The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\operatorname{PrOH} 75: 25$, flow rate $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=$ 254 nm : Syn diastereomer $t_{\text {major }}=16.474 \mathrm{~min}, t_{\text {minor }}=23.171 \mathrm{~min}$. Anti diastereomer $t_{\text {major }}=$ $27.758 \mathrm{~min}, t_{\text {minor }}=32.016 \mathrm{~min} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of two diastereomers): $\delta=5.02-5.03(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-7.21(\mathrm{~m}, 19 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.15(\mathrm{~s}, 1 \mathrm{H}$, diast., CHO$), 10.23(\mathrm{~s}, 1 \mathrm{H}$, diast., NH$)$, 10.29 (s, 1H, diast., CHO), $10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.22(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=201.79,200.68,179.08,176.97,142.82,141.23,136.93,136.87,134.21,132.97$, $131.94(2 \mathrm{C}), 130.40,130.16(3 \mathrm{C}), 130.01,128.91,127.78(3 \mathrm{C}), 127.69(2 \mathrm{C}), 127.61,127.24$, 126.67, 125.16, 124.84, 124.77, 124.57, 121.57, 121.46, 121.32, 121.23, 120.09, 119.85, $118.95,118.68,112.68,111.93,111.75,111.44,109.59,109.32,60.91,60.61,55.42,55.09$; HRMS (ESI): found: $m / z=389.1260$, calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\right]^{\dagger}: 389.1260$.

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Determination of the absolute configuration of the alkylation products:

3fb: d.r. 48:52
syn-3fb: ee $>99 \%$ anti-3fb: ee $>99 \%$

4fb: d.r. 48:52
syn-4fb: ee 87% anti-4fb: ee 96%
a. $\mathrm{CH}_{3} \mathrm{MgBr}, \mathrm{THF}\left(-78^{\circ} \mathrm{C}\right)$; b. $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous). c. IBX, DMSO, RT

The relative and absolute configurations of the syn and anti product $\mathbf{3 f b}$ were assigned by chemical correlation to a known derivative $\mathbf{4 f b}$ obtained by Guo and Peng. Compound syn-4fb was assigned by comparison of its elution order from a chiral phase HPLC column to those reported in the literature. ${ }^{3}$

3-(1H-indol-3-yl)-1-methyl-3-(3-oxobutan-2-yl)indolin-2-one(syn-4fb)

syn-4fb $e e=87 \%$; The $e e$ was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane $/ i-\operatorname{PrOH} 70: 30$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}: t_{\text {major }}=20.905 \mathrm{~min}, t_{\text {minor }}=$ $13.601 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}$, $3 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=13.4,5.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.26-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.00(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=209.36,176.83,143.58,136.82,131.00,127.93,125.10,124.98$, 123.91, 121.67, 121.09, 120.52, 118.65, 112.54, 111.75, 108.25, 53.21, 50.31, 30.36, 26.09, 12.28; HRMS (ESI): $m / z=331.1465$, calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{\circ}: 331.1452$.

[^1]Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Copy of NMR spectra of products:

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3aa)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ba)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-methoxy-1 H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ca)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3da)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ea)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)octanal(3fa)

(

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(5-bromo-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ga)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ha)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3ab)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ad)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3db)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3dc)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1 H -indol-3-yl)-2-oxoindolin-3-yl)propanal(3eb)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ec)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ed)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)propanal(3fb)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

3-(1H-indol-3-yl)-1-methyl-3-(3-oxobutan-2-yl)indolin-2-one(syn-4fb)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-2-phenylacetaldehyde(3ae)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Copy of HPLC traces of products:

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3aa)

Racemic

Enantioselective

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	5.354 VV	0.3088	4282.81982	209.25627	5.4098
2	6.411 VB	0.5057	$2.36432 e 4$	697.08380	29.8646
3	16.306 BB	1.4470	5.12419 e 4	525.77747	64.725

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ba)

Racemic

Enantioselective

	DAD1 A, Sig=254,4 Ref=360,10	E:USJIDATAISN				min
	1	4	1	1×10	12	
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%	
1	5.715 FM	0.3093	1597.52893	86.09654	8.9161	
2	7.181 MF	0.3305	6221.05127	313.74289	34.7208	
3	7.550 FM	0.3155	774.87799	35.57333	4.3247	
4	8.997 BB	0.3684	9323.89160	387.90668	52.0383	

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-methoxy-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ca)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3da)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ea)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)octanal(3fa)

Racemic

	DAD 1 A, Sig-254,4		(E:VSJIDATAISNAP	.D)			
	5		$10 \quad 15$	20	25 30		
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	
1	6.294		0.2150	1.06020 e 4	740.56549	27.2920	
2	7.935	BV	0.2671	8921.90723	502.51572	22.9671	
3	9.154	VB	0.3202	1.05651 e 4	496.60941	27.1972	
4	12.340	BB	0.4333	8757.39941	306.51401	22.5437	

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(5-bromo-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ga)

Racemic

	DAD1 A, Sig=254,4 Ref=360,100	VUJIDATAISNAPS	HOT.D)			1
	2.5	5 1, $\quad 1.5$	510	12.5	17.5	
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	Area \%	
1	4.864 VB	0.2956	1714.41663	85.62328	29.06	
2	6.189 BV	0.4531	1467.71619	48.76577	24.88	
3	11.464 BV	1.0548	1432.60376	18.88880	24.28	
4	13.668 VB	1.0625	1283.57031	14.44738	21.76	

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ha)

Racemic

Enantioselective

	2	6	8	10×12	14	16 min
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }} \end{gathered}$	Height [mAU]		
1	4.735 VB	0.3865	1985.65381	70.95663	11	
2	6.050 BB	0.5820	6084.29297	166.62265	35	
3	11.124 MF	1.1179	8490.64648	126.58896	49	
4	12.525 FM	0.7522	725.68567	16.07951		

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3ab)

Racemic

CAU		JSJIDATAISNAP	SHOT.D)		
	10	20	30	40	50
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	7.722 BB	0.5990	2150.32690	57.40340	26.9017
2	9.894 BB	0.7797	1901.24719	37.87059	23.7856
3	25.112 BB	1.3993	1819.93774	15.37159	22.7684
4	49.769 MM	4.1674	2121.75171	8.48561	26.5442

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ad)

Racemic

$\begin{gathered} \text { mAU } \\ 30 \\ 25 \\ 20 \\ 20 \\ 15 \\ 10 \\ 10 \\ 10 \\ 5 \\ 5 \\ 0 \\ 0 \end{gathered}$	DAD1 A, Sig=254,4 Ref=360,100	:USJJDATAISNA			
	5	10	${ }_{15}^{15}$	20	${ }_{25}$
Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.434 BB	0.4502	1057.51294	36.26501	25.6565
2	17.500 BB	0.6301	1010.57288	24.55861	24.5177
3	21.923 BB	0.7627	991.64905	19.38980	24.0585
4	26.008 BB	0.9342	1062.08154	17.15685	25.7673

Enantioselective

	$\bigcirc \quad 1$		15	20	25	min
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	
1	12.477 BB	0.4491	359.01813	12.28032	5.1627	
2	17.514 BB	0.6307	3355.77173	81.43875	48.2566	
3	21.833 BV	0.7322	375.07544	6.07620	5.3937	
4	26.000 VB	0.9576	2864.14771	45.42830	41.1870	

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3db)

Racemic

		:USJIDATAISNA	SHOT.D)		$\begin{array}{lll} 30 & 35 & \text { min } \end{array}$		
		10	$15 \quad 20$	25			
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%		
1	6.403 VV	0.4774	2841.07349	86.46140	26.1525		
2	7.194 VB	0.6273	3164.93726	79.70119	29.1337		
3	17.071 BB	1.2244	2553.69043	28.36269	23.5071		
4	32.120 BB	1.8759	2303.77930	14.38915	21.2066		

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3dc)

Racemic

	DAD1 A, Sig=254,4 Ref=360,100		SHOT.D)		
	2	4	8	$10 \quad 12$	14
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.501 VV	0.2458	1193.26990	74.92126	15.3121
2	5.801 VB	0.4227	2866.90039	94.29029	36.7881
3	10.045 BB	0.7981	1860.86987	35.58725	23.8787
4	14.724 BBA	1.0880	1871.96680	25.39402	24.0211

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3eb)

Racemic

	DAD1 A, Sig=254,4 Ref=360,100	USJIDATAISNAP $\sum 0$	HOT.D)		$16 \quad 18 \mathrm{~min}$	
	1 2	6	1	12×14		
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%	
1	9.270 BV	0.2977	7808.24365	400.10464	25.3	
2	10.605 VV	0.3120	6823.58105	331.71347	22.1	
3	11.036 VV	0.3738	8478.53613	334.36444	27.5	
4	12.422 VB	0.4254	7647.81494	272.49286	24.86	

Enantioselective

mAU						
	2	4	8	10	12	14
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	Area [mAU*s]			Area \%
1	9.174 VV	0.3035	1.63609 e 4	81		31.79
2	10.525 VV	0.3094	1522.50012		1	2.95
3	10.961 VV	0.3716	2703.98779	10	80	5.25
4	12.255 VB	0.4391	3.08639 e 4	106	86	59.98

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ec)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(7-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ed)

Racemic

Enantioselective

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)propanal(3fb)

Racemic

Enantioselective

2	4	1 , 8	10	12	14	min
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]			
110.598 BB	0.1940	1120.25793	92.0559			
212.935 BB	0.2391	1348.54980	90.8715			

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

3-(1H-indol-3-yl)-1-methyl-3-(3-oxobutan-2-yl)indolin-2-one(syn-4fb)

Enantioselective

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-2-phenylacetaldehyde(3ae)

Racemic

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	16.465	BB	0.5643	574.97797	15.58911	22.8030
2	23.099	BB	0.7812	578.42609	11.15117	22.9398
3	27.507		0.9722	703.37244	10.30625	27.8950
4	31.699		0.9924	664.72174	9.11889	26.3622

Enantioselective

[^0]: ${ }^{1}$ S.-Y. Wang and S.-J. Ji, Tetrahedron, 2006, 62, 1527.
 ${ }^{2}$ (a) K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243; (b) T. J. Peelen, Y. Chi and S. H. Gellman, J. Am. Chem. Soc., 2005, 127, 11598.

[^1]: ${ }^{3}$ L. Song, Q.-X. Guo, X.-C. Li, J. Tian and Y.-G. Peng, Angew. Chem., Int. Ed., 2012, 51, 1899.

