Supporting Information

Asymmetric α-Alkylation of Aldehydes with 3-Hydroxy-3-Indolylox-Indoles in Aqueous Media

Ying Zhang, Shun-Yi Wang*, Xiao-Ping Xu, Ran Jiang, Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

> Fax : (+86)-512-65880307; Tel: (+86)-512-65880307; E-mail: shunjun@suda.edu.cn; shunyi@suda.edu.cn

Table of Contents

General Methods	S 3
Enantioselective α -alkylation of aldehydes	S 4
Description of products	S5
Determination of the absolute configuration of the alkylation products	S15
Copy of NMR spectra of products	S16
Copy of HPLC traces of products	<mark>S35</mark>

General Methods. The aldehydes **2a-d** were purchased from commercial suppliers and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Varian INOVA 300 or 400 MHz (¹H NMR) and 75 or 100 MHz (¹³C NMR) spectrumeter using CDCl₃ or DMSO- d_6 as solvent. Chemical shifts (δ ppm) were relative to the resonance of the deuterated solvent as the internal standard. High resolution mass spectra were obtained using GCT-TOF instrument with EI or ESI source. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using a Chiralcel AD-H column (0.46cm x 25cm), Chiralcel OD-H column (0.46cm x 25cm) and HPLC grade isopropanol and *n*-hexane were used as the eluting solvents. Chromatographic purification was done with 300-400 mesh silica gel. Materials: All the reactions were carried out in undistilled solvent without any precautions to exclude water. The 3-hydroxy-3-indolylox-indoles **1a-h**¹ were prepared according to the reported procedure.

² (*a*) K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, *J. Am. Chem. Soc.*, 2000, **122**, 4243; (*b*) T. J. Peelen, Y. Chi and S. H. Gellman, *J. Am. Chem. Soc.*, 2005, **127**, 11598.

¹ S.-Y. Wang and S.-J. Ji, *Tetrahedron*, 2006, **62**, 1527.

Enantioselective α-alkylation of aldehydes:

General procedure: In an ordinary test tube equipped with a magnetic stirring bar, the alcohol **1** (0.5 mmol, 1 equiv.) and aldehyde **2** (5 mmol, 10 equiv.) were dissolved in CH₃CN/H₂O solvent mixture at room temperature. After stirring for 1 min, chiral imidazolidinone catalyst **B** (0.05 mmol, 10 mol %) was added. The mixture was vigorously stirred at room temperature, until alcohol **1** was completely consumed as indicated by TLC analysis. After dilution with Et₂O, the organic layer was separated and the aqueous layer was extracted twice with Et₂O. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired product **3** (diastereomer mixture) was obtained after purification by flash column chromatography using petroleum ether /ethyl acetate as the eluent.

Description of products:

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3aa)

dr = 70:30 ratio (*syn*-**3aa**/*anti*-**3aa**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer *ee* = 85%; Anti diastereomer *ee* = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 210 nm: Syn diastereomer *t_{major}* = 16.306 min, *t_{minor}* = 5.354 min. Anti diastereomer *t_{major}* = 6.411 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 0.75-0.85 (m, 12H), 1.15-1.22 (m, 14H), 3.46-3.48 (m, 1H), 3.63-3.66 (m, 1H), 6.83-7.03 (m, 9H), 7.16-7.27 (m, 5H), 7.29-7.35 (m, 3H), 7.43-7.45 (m, 1H), 9.71 (d, *J* = 2.5 Hz, 1H, diast.), 9.80 (d, *J* = 2.8 Hz, 1H, diast.), 10.64 (s, 1H, diast.), 10.78 (s, 1H, diast.), 11.10 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 203.49, 203.11, 178.53, 177.74, 142.37, 141.82, 136.96, 136.80, 131.67, 130.02, 128.60, 128.23, 125.72(2C), 124.99, 124.84, 124.54, 124.38, 121.78, 121.62, 121.27(2C), 120.50, 119.87, 118.68(2C), 112.46, 111.75(2C), 111.55, 109.87, 109.61, 55.02, 54.34, 53.98, 53.84, 30.95, 30.82, 28.51, 28.28, 27.15, 27.02, 24.73, 24.02, 21.92(2C), 13.86(2C); HRMS (ESI): found: *m/z* = 373.1935, calcd. for [C₂₄H₂₅N₂O₂]: 373.1922.

2-(3-(5-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ba)

dr = 62:38 ratio (*syn-3ba/anti-3ba*) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 71%; *Anti* diastereomer *ee* = 78%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30° C, $\lambda = 254$ nm: *Syn* diastereomer $t_{major} = 8.997$ min, $t_{minor} = 5.715$ min. *Anti* diastereomer $t_{major} = 7.181$ min, $t_{minor} = 7.550$ min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.75-0.84$ (m, 6H), 1.06-1.16 (m, 20H), 2.25 (s, 3H), 2.29 (s, 3H), 3.47 (d, J = 10.6 Hz, 1H), 3.65 (d, J = 9.4 Hz, 1H), 6.87-7.07 (m, 9H), 7.21-7.31 (m, 7H), 9.69 (s, 1H, diast.), 9.77 (s, 1H, diast.), 10.61 (s, 1H, diast.), 10.76 (s, 1H, diast.), 10.95-10.96 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.55$, 203.16, 178.56, 177.74, 142.32, 141.80, 135.36, 135.19, 131.71, 130.07, 128.52, 128.20, 127.00, 126.88, 125.68, 125.21, 125.05, 124.48, 124.39(2C), 122.89(2C), 121.74, 121.56, 120.24, 119.52, 111.90, 111.47, 111.45, 111.00,

109.80, 109.56, 54.90, 54.21, 53.98, 53.82, 30.92, 30.81, 28.51, 28.24, 27.10, 27.00, 24.75, 23.99, 22.04, 21.91, 21.45, 21.35, 13.84(2C); **HRMS** (ESI): found: m/z = 387.2087, calcd. for $[C_{25}H_{27}N_2O_2]^-$: 387.2078.

dr = 50:50 ratio (*syn*-**3ca**/*anti*-**3ca**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 65%; *Anti* diastereomer *ee* = 90%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 11.951 min, *t_{minor}* = 6.956 min. *Anti* diastereomer *t_{major}* = 9.914 min, *t_{minor}* = 9.565 min. ¹H NMR (400 MHz, DMSO-*d₆*, mixture of two diastereomers): δ = 0.77-0.83 (m, 6H), 1.07-1.23 (m, 20H), 3.46 (s, 1H), 3.53-3.55 (m, 3H), 3.63-3.64 (m, 4H), 6.47 (s, 1H), 6.70-6.82 (m, 3H), 6.94-7.11 (m, 6H), 7.23-7.31 (m, 6H), 9.69 (s, 1H, diast.), 9.84 (s, 1H, diast.), 10.64 (s, 1H, diast.), 10.76 (s, 1H, diast.), 10.96 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d₆*): δ = 203.59, 203.15, 178.52, 177.73, 152.88, 152.75, 142.54, 141.94, 132.00(2C), 131.45, 130.00, 128.62, 128.28, 125.92, 125.31, 125.28, 125.23, 125.04, 124.59, 121.77, 121.64, 112.29, 112.23, 111.93, 110.99(3C), 109.81, 109.57, 102.42, 102.25, 55.21, 54.97, 54.86, 54.11, 53.91, 53.78, 30.95, 30.84, 28.48, 28.29, 27.18, 26.96, 24.69, 24.03, 21.94, 21.90, 13.85(2C). **HRMS** (ESI): found: *m*/*z* = 403.2053, calcd. for [C₂₅H₂₇N₂O₃]: 403.2027.

2-(3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3da)

dr = 62:38 ratio (*syn-3da/anti-3da*) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer ee = 67%; *Anti* diastereomer ee = 67%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30° C, $\lambda = 254$ nm: *Syn* diastereomer $t_{major} = 14.040$ min, $t_{minor} = 5.111$ min. *Anti* diastereomer $t_{major} = 6.237$ min, $t_{minor} = 9.417$ min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.74-0.84$ (m, 6H), 1.06-1.23 (m, 20H), 3.47 (d, J = 10.8 Hz, 1H), 3.60 (d,

J = 10.0 Hz, 1H), 6.93-7.00 (m, 3H), 7.03-7.10 (m, 3H), 7.15-7.19 (m, 2H), 7.22-7.23 (m, 1H), 7.26-7.28 (m, 2H), 7.32-7.36 (m, 3H), 7.41 (s, 1H), 7.61 (s, 1H), 9.65 (d, J = 2.7 Hz, 1H, diast.), 9.78 (d, J = 3.2 Hz, 1H, diast.), 10.71(s, 1H, diast.), 10.83 (s, 1H, diast.), 11.34-11.36 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.35$, 202.93, 178.34, 177.56, 142.31, 141.79, 135.69, 135.53, 130.97, 129.46, 128.81, 128.48, 126.64, 126.52, 126.18(2C), 125.84(2C), 124.64, 123.85, 122.85, 122.18, 121.89, 121.76, 113.81, 112.09, 111.47, 111.43(2C), 111.28, 110.00, 109.76, 55.00, 54.36, 53.84, 53.64, 30.91, 30.78, 28.48, 28.17, 27.09, 26.94, 24.77, 23.88, 21.91(2C), 13.86(2C); HRMS (ESI): found: m/z = 451.1057, calcd. for [C₂₄H₂₄BrN₂O₂]: 451.1027.

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ea)

dr = 34:66 ratio (*syn*-**3ea**/*anti*-**3ea**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 83%; *Anti* diastereomer *ee* = 82%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 7.910 min, *t_{minor}* = 9.588 min. *Anti* diastereomer *t_{major}* = 16.220 min, *t_{minor}* = 9.045 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 0.76-0.83 (m, 6H), 1.07-1.23 (m, 20H), 2.41 (s, 6H), 3.47 (d, *J* = 10.1 Hz, 1H), 3.64 (d, *J* = 9.8 Hz, 1H), 6.73-6.84 (m, 4H), 6.91-7.03 (m, 7H), 7.16-7.32 (m, 5H), 9.74 (d, *J* = 2.4 Hz, 1H, diast.), 9.81 (d, *J* = 2.6 Hz, 1H, diast.), 10.63 (s, 1H, diast.), 10.77 (s, 1H, diast.), 11.06 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 203.43, 177.73, 142.36, 136.34, 130.13, 128.60, 128.20, 125.69, 124.69, 124.22, 121.73, 120.74, 118.89, 117.98, 112.05, 109.83, 54.31, 53.94, 30.95, 28.51, 27.01, 24.68, 21.92, 16.70, 13.88; **HRMS** (ESI): found: *m/z* = 387.2084, calcd. for [C₂₅H₂₇N₂O₂]⁻: 387.2078.

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)octanal(3fa)

dr = 55:45 ratio (*syn-***3fa**/*anti-***3fa**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer ee = 78%; Anti diastereomer ee = 81%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, $\lambda = 254$ nm: Syn diastereomer $t_{major} = 9.173$ min, $t_{minor} = 6.314$ min. Anti diastereomer $t_{major} = 5.173$ min, $t_{minor} = 6.314$ min.

12.386 min, $t_{minor} = 7.952$ min. ¹**H NMR** (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.77$ -0.81 (m, 6H), 1.14-1.33 (m, 20H), 3.17 (s, 3H), 3.26 (s, 3H), 3.54 (d, J = 8.9 Hz, 1H), 3.72 (d, J = 7.1 Hz, 1H), 6.86-6.88 (m, 2H), 7.04-7.17 (m, 7H), 7.25-7.40 (m, 9H), 9.71 (s, 1H, diast.), 9.79 (s, 1H, diast.), 11.12 (s, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.35$, 203.00, 176.67, 175.99, 143.75, 143.27, 136.97, 136.80, 130.78, 129.26, 128.72, 128.36, 125.36, 124.90, 124.71, 124.58, 124.48, 124.09, 122.46, 122.29, 121.31(2C), 120.46(2C), 118.82, 118.75, 112.18, 111.79, 111.26(2C), 108.90, 108.68, 55.03, 54.46, 53.51, 53.37, 30.95, 30.81, 28.47, 28.25, 27.13, 27.01, 26.16(2C), 24.77(2C), 21.90, 21.87, 13.86, 13.83; **HRMS** (ESI): found: m/z = 387.2085, calcd. for $[C_{25}H_{27}N_2O_2]^{-}$: 387.2078.

2-(5-bromo-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ga)

dr = 60:40 ratio (*syn*-**3ga**/*anti*-**3ga**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 60%; *Anti* diastereomer *ee* = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 11.362 min, *t_{minor}* = 4.844 min. *Anti* diastereomer *t_{major}* = 6.128 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 0.77-0.84 (m, 6H), 1.16-1.20 (m, 20H), 3.52 (d, *J* = 9.4 Hz, 1H), 3.73 (d, *J* = 8.5 Hz, 1H), 6.87-6.96 (m, 4H), 7.04-7.10 (m, 3H), 7.21-7.27 (m, 2H), 7.36-7.42 (m, 6H), 7.48-7.50 (m, 1H), 9.80 (s, 2H), 10.82 (s, 1H, diast.), 10.97 (s, 1H, diast.), 11.15-11.19 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 203.56, 202.97, 178.20, 177.38, 141.66, 141.16, 136.91, 136.70, 134.48, 132.80, 131.43, 131.02, 128.25, 126.96, 124.79(2C), 124.61(2C), 121.43, 121.38, 120.05, 119.38, 118.93, 118.88, 113.65, 113.45, 111.90(2C), 111.78, 111.59, 110.96(2C), 54.57, 54.11, 54.08, 53.98, 30.96, 30.81, 28.49, 28.16, 27.03, 26.99, 24.83, 23.92, 21.93, 21.90, 13.89(2C); HRMS (ESI): found: *m*/*z* = 451.1054, calcd. for [C₂₄H₂₄BrN₂O₂]⁻: 451.1027.

2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ha)

dr = 60:40 ratio (*syn-***3ha**/*anti-***3ha**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 62%; *Anti* diastereomer *ee* = 79%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30° C, $\lambda = 254$ nm: *Syn* diastereomer $t_{maior} = 11.124$ min, $t_{minor} = 4.735$ min. *Anti* diastereomer

 $t_{major} = 6.050 \text{ min}, t_{minor} = 12.525 \text{ min}.$ ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.77$ -0.82 (m, 6H), 1.16-1.23 (m, 20H), 3.52 (d, J = 10.1 Hz, 1H), 3.71 (d, J = 9.7 Hz, 1H), 6.86-7.00 (m, 4H), 7.05-7.09 (m, 3H), 7.20-7.31 (m, 5H), 7.35-7.42 (m, 4H), 9.77-9.80 (m, 2H), 10.80 (s, 1H, diast.), 10.95 (s, 1H, diast.), 11.14-11.18 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.54$, 202.95, 178.29, 177.49, 141.27, 140.75, 136.92, 136.71, 134.04, 132.36, 128.57, 128.16, 125.91, 125.73(2C), 125.61, 124.79(2C), 124.60(3C), 124.29, 121.37, 120.08, 119.43, 118.86, 111.87(2C), 111.25(2C), 111.06, 110.94, 54.17, 54.07(2C), 54.05, 30.95, 30.81, 28.48, 28.17, 27.01(2C), 24.82, 23.95, 21.92(2C), 13.87(2C); HRMS (ESI): found: m/z = 407.1541, calcd. for $[C_{24}H_{24}ClN_2O_2]^{-1}$: 407.1532.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3ab)

dr = 60:40 ratio (*syn-3ab/anti-3ab*) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 68%; *Anti* diastereomer *ee* = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, $\lambda = 254$ nm: *Syn* diastereomer $t_{major} = 49.598$ min, $t_{minor} = 7.813$ min. *Anti* diastereomer $t_{major} = 9.937$ min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.79$ (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H), 3.76-3.87 (m, 2H), 6.82-6.85 (m, 1H), 6.89-6.95 (m, 2H), 6.97-7.06 (m, 4H), 7.08-7.12 (m, 3H), 7.18-7.32 (m, 6H), 7.35-7.37 (m, 2H), 9.79 (s, 1H, diast.), 9.93 (s, 1H, diast.), 10.65 (s, 1H, diast.), 10.79 (s, 1H, diast.), 11.15 (s, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.85$, 203.27, 178.82, 177.86, 142.68, 141.84, 137.06, 136.93, 132.12, 129.92, 128.71, 128.16, 125.39, 125.16, 124.95, 124.70, 124.41, 124.23, 121.90, 121.72, 121.38, 121.32, 120.31, 119.83, 118.86, 118.75, 112.58, 111.89, 111.82, 111.51, 109.82, 109.78, 54.01(2C), 49.41, 48.82, 9.38, 9.14; **HRMS** (ESI): found: m/z = 303.1132, calcd. for [C₁₉H₁₅N₂O₂]⁻: 303.1139.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)

dr = 70:30 ratio (*syn-***3ac**/*anti-***3ac**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer ee = 56%; Anti diastereomer ee = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ

= 254 nm: *Syn* diastereomer t_{major} = 19.858 min, t_{minor} = 6.020 min. *Anti* diastereomer t_{major} = 7.455 min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): δ = 0.80 (t, J = 7.3 Hz, 6H), 1.19-1.38 (m, 4H), 3.40-3.43 (m, 1H, diast.), 3.55-3.58 (m, 1H, diast.), 6.83-6.87 (m,1H), 6.91-6.98 (m, 4H), 7.02-7.05 (m, 4H), 7.16-7.24 (m, 6H), 7.31-7.35 (m, 3H), 9.71 (d, J = 2.6 Hz, 1H, diast.), 9.80 (d, J = 2.9 Hz, 1H, diast.), 10.64 (s, 1H, diast.), 10.78 (s, 1H, diast.), 11.10 (s, 2H); ¹³C NMR (75 MHz, DMSO- d_6): δ = 203.47, 203.09, 178.52, 177.75, 142.33, 141.80, 136.92, 136.78, 130.06, 129.90 128.61, 128.24, 125.70, 125.55, 124.97, 124.83, 124.51, 124.41(2C), 124.32, 121.81, 121.62, 121.27, 120.43, 118.75, 118.68, 112.50, 111.74, 111.55, 109.86, 109.61, 108.28, 56.83, 56.20, 53.94, 53.85, 18.17, 17.66, 12.46, 12.15; HRMS (ESI): found: m/z = 317.1294, calcd. for [C₂₀H₁₇N₂O₂]⁻: 317.1296.

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ad)

dr = 45:55 ratio (*syn*-**3***ad*/*anti*-**3***ad*) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 78%; *Anti* diastereomer *ee* = 80%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, $\lambda = 254$ nm: *Syn* diastereomer $t_{major} = 26.000$ min, $t_{minor} = 12.477$ min. *Anti* diastereomer $t_{major} = 17.514$ min, $t_{minor} = 21.833$ min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): $\delta = 2.39-2.42$ (m, 2H), 2.74 (dd, J = 14.0, 10.3 Hz, 1H), 3.06 (dd, J = 13.8, 11.1 Hz, 1H), 3.88-3.92 (m, 1H), 4.10-4.13 (m, 1H), 6.87-6.91 (m, 1H), 6.96-7.02 (m, 6H), 7.07-7.11 (m, 5H), 7.17-7.20 (m, 5H), 7,23-7.27 (m, 5H), 7.33-7.37 (m, 4H), 7.43-7.44 (m, 1H), 7.59-7.62 (m, 1H), 9.68 (d, J = 2.6 Hz, 1H, diast.), 9.78 (d, J = 2.6 Hz, 1H, diast.), 10.75 (s, 1H, diast.), 10.83 (s, 1H, diast.), 11.16-11.17 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 202.80$, 202.15, 178.12, 177.59, 142.28, 141.91, 139.16, 138.97, 137.00, 136.97, 130.94, 129.73, 128.83(2C), 128.77(2C), 128.49, 128.33(4C), 128.22(4C), 126.20, 126.14, 125.68, 124.94, 124.77, 124.71, 124.68, 121.90, 121.77, 121.43, 121.34, 120.48, 120.23, 118.81(2C), 111.90, 111.14, 110.04, 109.84, 57.14, 56.20, 54.25, 54.22, 30.83, 30.41; **HRMS** (ESI): found: m/z = 379.1468, calcd. for [C₂₅H₁₀N₂O₂]: 379.1452.

2-(3-(5-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)propanal(3db)

dr = 62:38 ratio (*syn*-**3db**/*anti*-**3db**) was determined by integration of C<u>H</u>CHO⁻¹H NMR signal. *Syn* diastereomer *ee* = 64%; *Anti* diastereomer *ee* = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 31.871 min, *t_{minor}* = 6.390 min. *Anti* diastereomer *t_{major}* = 7.192 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 0.77 (d, *J* = 6.7 Hz, 3H), 0.92 (d, *J* = 7.0 Hz, 3H), 3.81 (q, *J* = 7.5 Hz, 1H), 4.03 (q, *J* = 7.1 Hz, 1H), 6.94-7.05 (m, 4H), 7.12-7.26 (m, 6H), 7.32-7.35 (m, 5H), 7.62 (s, 1H), 9.73 (s, 1H, diast.), 9.87 (s, 1H, diast.), 10.69 (s, 1H, diast.), 10.84 (s, 1H, diast.), 11.39 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 203.58, 202.90, 178.57, 177.59, 142.58, 141.79, 135.74, 135.58, 131.46, 129.30, 128.85, 128.34, 126.76, 126.60, 126.30, 126.01, 125.44, 124.55, 123.90, 123.82, 122.65, 121.97, 121.94, 121.79, 113.87, 113.80, 112.21, 111.55, 111.44, 111.19, 109.87, 109.84, 53.83, 53.68, 49.55, 48.74, 9.30, 9.06; **HRMS** (ESI): found: *m*/*z* = 381.0244, calcd. for [C₁₉H₁₄BrN₂O₂]⁻: 381.0244.

2-(3-(5-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)butanal(3dc)

dr = 52:48 ratio (*syn*-**3dc**/*anti*-**3dc**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 77%; *Anti* diastereomer *ee* = 68%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 14.711 min, *t_{minor}* = 5.574 min. *Anti* diastereomer *t_{major}* = 5.844 min, *t_{minor}* = 10.060 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 0.78-0.82 (m, 6H), 1.16-1.24 (m, 4H), 3.39 (d, *J* = 10.2 Hz, 1H), 3.52 (d, *J* = 9.8 Hz, 1H), 6.93-7.00 (m, 3H), 7.03-7.09 (m, 2H), 7.16-7.18 (m, 2H), 7.23-7.27 (m, 4H), 7.32-7.34 (m, 3H), 7.41 (s, 1H), 7.55 (s, 1H), 9.67 (s, 1H, diast.), 9.77 (s, 1H, diast.), 10.69 (s, 1H, diast.), 10.83 (s, 1H, diast.), 11.32-11.36 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 203.29, 202.92, 178.32, 177.58, 142.29, 141.77, 135.67, 135.49, 131.15, 129.48, 128.79, 128.47, 126.62, 126.53, 126.15(2C), 125.82(2C), 124.59, 123.84, 122.79, 121.92, 121.75, 113.85, 113.77, 112.17, 111.48, 111.42(2C), 111.26, 109.99, 109.73, 56.89, 56.19, 53.82, 53.65, 18.26, 17.64(1), 12.49(1), 12.08; **HRMS** (ESI): found: *m/z* = 395.0408, calcd. for [C₂₀H₁₆BrN₂O₂]⁻:

395.0401.

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)propanal(3eb)

dr = 34:66 ratio (*syn*-**3eb**/*anti*-**3eb**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. *Syn* diastereomer *ee* = 83%; *Anti* diastereomer *ee* = 84%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: *Syn* diastereomer *t_{major}* = 9.174 min, *t_{minor}* = 10.525 min. *Anti* diastereomer *t_{major}* = 12.255 min, *t_{minor}* = 10.961 min. ¹H NMR (400 MHz, DMSO-*d₆*, mixture of two diastereomers): δ = 0.78 (d, *J* = 6.7 Hz, 3H, diast.), 0.88 (d, *J* = 6.9 Hz, 3H, diast.), 2.42 (s, 6H), 3.76-3.79 (m, 1H, diast.), 3.81-3.86 (m, 1H, diast.), 6.70-6.74 (m, 1H), 6.79-6.87 (m, 4H), 6.91-7.00 (m, 4H), 7.07-7.09 (m, 1H), 7.18-7.23 (m, 3H), 7.27-7.32 (m, 3H), 9.81 (s, 1H, diast.), 9.94 (s, 1H, diast.), 10.63 (s, 1H, diast.), 10.78 (s, 1H, diast.), 11.11 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d₆*): δ = 203.84, 203.29, 178.75, 177.79, 142.64, 141.76, 136.39, 136.29, 132.20, 129.98, 128.63, 128.06, 125.31(2C), 124.82, 124.59, 124.32, 123.81, 121.79, 121.69(2C), 121.64, 120.89, 120.78, 119.00, 118.88, 117.73, 117.30, 113.05, 111.95, 109.68(2C), 54.01, 53.92, 49.26, 48.73, 16.72(2C), 9.32, 9.06; HRMS (ESI): found: *m*/*z* = 317.1310, calcd. for [C₂₀H₁₇N₂O₂]⁻: 317.1296.

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ec)

dr = 34:66 ratio (*syn-***3ec**/*anti-***3ec**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer ee = 75%; Anti diastereomer ee = 78%. The ee was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, $\lambda =$ 254 nm: Syn diastereomer $t_{major} = 8.624$ min, $t_{minor} = 9.472$ min. Anti diastereomer $t_{major} =$ 13.113 min, $t_{minor} = 12.003$ min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.80$ (t, J = 7.2 Hz, 6H), 1.19-1.40 (m, 4H), 2.41 (s, 6H), 3.40-3.42 (m, 1H, diast.), 3.55-3.58 (m, 1H, diast.), 6.73-6.86 (m, 4H), 6.91-6.94 (m, 1H), 6.97-7.04 (m, 6H), 7.15-7.16 (m, 1H), 7.19-7.25 (m, 3H), 7.29-7.32 (m, 1H), 9.74 (d, J = 2.8 Hz, 1H, diast.), 9.81 (d, J = 2.9 Hz, 1H, diast.), 10.63 (s, 1H, diast.), 10.78 (s, 1H, diast.), 11.07 (s, 2H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 203.53$, 203.18, 178.55, 177.78, 142.37, 141.80, 136.33, 136.21,

131.89, 130.16, 128.59, 128.21, 125.68, 124.70, 124.54, 124.34, 124.21, 123.98, 121.74, 121.61(2C), 120.85(2C), 120.74, 118.96, 118.89, 117.98, 117.36, 113.06, 112.07, 109.83, 109.58, 56.80, 56.17, 53.93, 53.87, 18.12, 17.63, 16.70(2C), 12.42, 12.14; **HRMS** (ESI): found: m/z = 331.1462, calcd. for $[C_{21}H_{19}N_2O_2]^-$: 331.1452.

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ed)

dr = 43:57 ratio (*syn*-**3ed**/*anti*-**3ed**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer *ee* = 73%; Anti diastereomer *ee* = >99%. The *ee* was determined by HPLC analysis Daicel Chiralcel OD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: Syn diastereomer *t_{major}* = 30.187 min, *t_{minor}* = 7.336 min. Anti diastereomer *t_{major}* = 8.428 min. ¹H NMR (400 MHz, DMSO-*d*₆, mixture of two diastereomers): δ = 2.39-2.46 (m, 8H), 2.74 (dd, *J* = 14.0, 10.6 Hz, 1H), 3.04 (dd, *J* = 13.7, 11.0 Hz, 1H), 3.88 (d, *J* = 10.9 Hz, 1H), 4.10 (d, *J* = 10.4 Hz, 1H), 6.76-6.80 (m, 1H), 6.84-6.87 (m, 3H), 6.99-7.05 (m, 6H), 7.10-7.12 (m, 4H), 7.16-7.20 (m, 5H), 7.23-7.26 (m, 4H), 7.31-7.35 (m, 1H), 7.39-7.41 (m, 2H), 9.70 (d, *J* = 2.7 Hz, 1H, diast.), 9.78 (d, *J* = 2.5 Hz, 1H, diast.), 10.72 (s, 1H, diast.), 10.81 (s, 1H, diast.), 11.09-11.11 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 202.84, 202.20, 178.12, 177.59, 142.28, 141.89, 139.14, 138.99, 136.36(2C), 131.12, 129.83, 128.83(2C), 128.75(4C), 128.44, 128.28(3C), 126.17, 126.11, 125.64, 124.73, 124.65, 124.47, 124.33(2C), 121.89(2C), 121.77(2C), 120.92, 120.85, 119.00(2C), 118.01, 117.75, 112.45, 111.63, 109.98, 109.79, 57.06, 56.14, 54.26, 54.20, 30.79, 30.37, 16.72(2C); HRMS (ESI): found: *m/z* = 393.1618, calcd. for [C₂₆H₂₁N₂O₂]⁻: 393.1609.

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)propanal(3fb)

dr = 48:52 ratio (*syn-***3fb**/*anti-***3fb**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer ee = >99%; Anti diastereomer ee = >99%. The ee was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, $\lambda = 254$ nm: Syn diastereomer $t_{major} = 10.598$ min. Anti diastereomer $t_{major} = 12.935$ min. ¹H NMR (400 MHz, DMSO- d_6 , mixture of two diastereomers): $\delta = 0.73$ (d, J = 6.6 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H), 3.18 (s, 3H), 3.26 (s, 3H), 3.82-3.93 (m, 2H), 6.82-6.86 (m, 1H), 6.89-6.92 (m, 1H), 6.89-6

1H), 7.03-7.08 (m, 4H), 7.11-7.22 (m, 5H), 7.28-7.32 (m, 3H), 7.35-7.41 (m, 4H), 9.75-9.79 (m, 1H, diast.), 9.88-9.91 (m, 1H, diast.), 11.17 (m, 2H); ¹³**C NMR** (75 MHz, DMSO-*d*₆): δ = 203.62, 203.11, 176.88, 176.07, 144.00, 143.26, 137.00, 136.87, 131.16, 129.15, 128.77, 128.24, 125.00, 124.98, 124.79, 124.72, 124.29, 124.07, 122.52, 122.33, 121.35, 121.30, 120.18, 119.67, 118.89, 118.76, 112.21, 111.84, 111.81, 111.15, 108.79(2C), 53.48(2C), 49.46, 48.91, 26.15(2C), 9.35, 9.09; **HRMS** (ESI): found: *m*/*z* = 317.1295, calcd. for [C₂₀H₁₇N₂O₂]⁻: 317.1296.

2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-2-phenylacetaldehyde(3ae)

dr = 28:72 ratio (*syn*-**3ae**/*anti*-**3ae**) was determined by integration of C<u>H</u>CHO ¹H NMR signal. Syn diastereomer *ee* = 8%; Anti diastereomer *ee* = 50%. The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 75:25, flow rate 1 mL/min, 30°C, λ = 254 nm: Syn diastereomer *t_{major}* = 16.474 min, *t_{minor}* = 23.171 min. Anti diastereomer *t_{major}* = 27.758 min, *t_{minor}* = 32.016 min. ¹H NMR (400 MHz, DMSO-*d₆*, mixture of two diastereomers): δ = 5.02-5.03 (m, 2H), 6.65 (d, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.81 (t, *J* = 7.8 Hz, 2H), 6.94-7.21 (m, 19H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.37-7.41 (m, 2H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 10.15 (s, 1H, diast., C<u>H</u>O), 10.23 (s, 1H, diast., N<u>H</u>), 10.29 (s, 1H, diast., C<u>H</u>O), 10.75 (s, 1H, N<u>H</u>), 11.22 (s, 2H); ¹³C NMR (75 MHz, DMSO-*d₆*): δ = 201.79, 200.68, 179.08, 176.97, 142.82, 141.23, 136.93, 136.87, 134.21, 132.97, 131.94(2C), 130.40, 130.16(3C), 130.01, 128.91, 127.78(3C), 127.69(2C), 127.61, 127.24, 126.67, 125.16, 124.84, 124.77, 124.57, 121.57, 121.46, 121.32, 121.23, 120.09, 119.85, 118.95, 118.68, 112.68, 111.93, 111.75, 111.44, 109.59, 109.32, 60.91, 60.61, 55.42, 55.09; HRMS (ESI): found: *m*/*z* = 389.1260, calcd. for [C₂₄H₁₈N₂O₂Na]⁺: 389.1260.

Determination of the absolute configuration of the alkylation products:

a. CH₃MgBr, THF(- 78 °C); b. NH₄Cl (aqueous). c. IBX, DMSO, RT

The relative and absolute configurations of the *syn* and *anti* product **3fb** were assigned by chemical correlation to a known derivative **4fb** obtained by Guo and Peng. Compound *syn*-**4fb** was assigned by comparison of its elution order from a chiral phase HPLC column to those reported in the literature.³

3-(1H-indol-3-yl)-1-methyl-3-(3-oxobutan-2-yl)indolin-2-one(syn-4fb)

*syn-***4fb** *ee* = 87%; The *ee* was determined by HPLC analysis Daicel Chiralcel AD-H column: hexane/*i*-PrOH 70:30, flow rate 0.5 mL/min, 30°C, $\lambda = 254$ nm: $t_{major} = 20.905$ min, $t_{minor} = 13.601$ min. ¹**H NMR** (400 MHz, DMSO): $\delta = 1.01$ (d, J = 7.1 Hz, 3H), 1.93 (s, 3H), 3.18 (s, 3H), 4.27 (q, J = 7.0 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 7.02 (dt, J = 13.4, 5.4 Hz, 4H), 7.26-7.33 (m, 2H), 7.49 (d, J = 7.3 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 11.00 (s, 1H); ¹³C NMR (75 MHz, DMSO): $\delta = 209.36$, 176.83, 143.58, 136.82, 131.00, 127.93, 125.10, 124.98, 123.91, 121.67, 121.09, 120.52, 118.65, 112.54, 111.75, 108.25, 53.21, 50.31, 30.36, 26.09, 12.28; **HRMS** (ESI): m/z = 331.1465, calcd. for $[C_{21}H_{19}N_2O_2]^{-1}$: 331.1452.

³ L. Song, Q.-X. Guo, X.-C. Li, J. Tian and Y.-G. Peng, Angew. Chem., Int. Ed., 2012, **51**, 1899.

Copy of NMR spectra of products:

$\label{eq:2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal (3ha)} 2-(5-chloro-3-(1H-indol-3-yl)-2-oxoindolin-3-yl)octanal (3ha)$

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)

110 f1 (ppm) 90 80 70 60 50 40 30 20 10 0

210

190

170

150

130

-10

 $2\mbox{-}(3\mbox{-}(1\mbox{H-indol-}3\mbox{-}y\mbox{l})\mbox{-}2\mbox{-}oxoindolin\mbox{-}3\mbox{-}y\mbox{l})\mbox{-}3\mbox{-}phenylpropanal(3ad)$

Copy of HPLC traces of products:

2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)octanal(3aa)

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	Ŷ
1	5.354	VV	0.3088	4282.81982	209.25627	5.4098
2	6.411	VB	0.5057	2.36432e4	697.08380	29.8646
3	16.306	BB	1.4470	5.12419e4	525.77747	64.7256

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	90	
1	5.715	FM	0.3093	1597.52893	86.09654	8.9161	
2	7.181	MF	0.3305	6221.05127	313.74289	34.7208	
3	7.550	FM	0.3155	774.87799	35.57333	4.3247	
4	8.997	BB	0.3684	9323.89160	387.90668	52.0383	

Racemic

2-(3-(5-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)octanal(3da)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	5.111	VB	0.1716	1442.86646	127.93773	10.1098
2	6.237	BB	0.2281	4582.73584	303.61707	32.1101
3	9.417	BB	0.3714	899.67859	36.77618	6.3038
4	14.040	BB	0.5878	7346.66113	191.39357	51.4763

LCar	IVECTTIME	TAPC	Witach	ALCA	nergiic	Area	
#	[min]		[min]	[mAU*s]	[mAU]	olo	
1	7.910	BV	0.3265	4839.09570	229.01445	31.2959	
2	9.045	VV	0.3633	900.18970	37.86856	5.8218	
3	9.588	VB	0.3864	448.24783	17.41086	2.8990	
4	16.220	BB	0.6763	9274.88086	211.22705	59.9834	

Racemic

Racemic

2-(5-chloro-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)octanal(3ha)

Racemic

	DAD1 A, Sig=254,4 F	Ref=360,100 (E	JSJ DATA SNAPS	HOT.D)	\sim		
mAU 1100 1100 1100 1100 1100 1100 1100 11	CI CI CI NH CI CI NH CI CI NH CI CI CI NH CI CI CI NH CI CI CI CI CI CI CI CI CI CI						
0				· · · · · · ·			
	2		4	6 8	10	12 14	min
Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	010	
1	4.732	VV	0.3586	4606.39600	178.80412	25.9953	
2	6.073	VB	0.5974	4702.55225	123.17397	26.5379	
3	11.230	BV	0.9644	3844.07983	60.57000	21.6933	
1	12 796	VB	1 2054	1567 11328	55 07679	25 7736	

2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)propanal(3ab)

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	7.813	BB	0.6508	531.85730	12.85209	9.5836
2	9.937	BV	0.8292	2214.89209	40.80659	39.9102
3	49.598	BB	2.4548	2802.93970	13.36471	50.5062

$\label{eq:2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)} 2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ac)$

Racemic

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	12.477	BB	0.4491	359.01813	12.28032	5.1627
2	17.514	BB	0.6307	3355.77173	81.43875	48.2566
3	21.833	BV	0.7322	375.07544	6.07620	5.3937
4	26.000	VB	0.9576	2864.14771	45.42830	41.1870

Racemic

Enantioselective

4

14.711 BB

1.1403 3188.73047

42.64588

46.6475

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)propanal(3eb)

Racemic

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)butanal(3ec)

Racemic

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.624	BB	0.2781	971.56793	52.93105	30.5697
2	9.472	BB	0.3324	138.11148	6.14095	4.3456
3	12.003	BV	0.4015	224.76300	8.58345	7.0720
4	13.113	VB	0.4573	1843.76648	61.92967	58.0128

2-(3-(7-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylpropanal(3ed)

Racemic

2-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)propanal(3fb)

Racemic

3-(1H-indol-3-yl)-1-methyl-3-(3-oxobutan-2-yl)indolin-2-one(syn-4fb)

Enantioselective

2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-2-phenylacetaldehyde(3ae)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
			-	-		
1	16.465	BB	0.5643	574.97797	15.58911	22.8030
2	23.099	BB	0.7812	578.42609	11.15117	22.9398
3	27.507	BB	0.9722	703.37244	10.30625	27.8950
4	31.699	BB	0.9924	664.72174	9.11889	26.3622

