Supporting Information

For

Olefin Isomerization/Asymmetric Pictet-Spengler Cascade via Sequential Catalysis of Ruthenium

Alkylidene and Chiral Phosphoric Acid

Quan Cai, Xiao-Wei Liang, Shou-Guo Wang, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China, Fax: (+86) 21-5492-5087

E-mail: slyou@sioc.ac.cn

Table of Contents

1. General Methods	S2
2. Experimental Section	S2
3. References	S10
4. Copies of ¹ H NMR, ¹³ C NMR Spectra and HPLC Analysis of the Compounds	S11

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ, ppm). The protected *N*-allyltryptamines 2a-2n were prepared according to the references.^[1, 2]

2. Experimental Section.

	R ² N R ¹ Hov	eyda-Grubbs II (5 mol%) (S)- 1a (5 mol%) toluene, reflux	$N-R^2$ R^1 (S)	R ² S ¹ S ¹ S ¹ S ¹ S ¹ S ¹ S ¹ S ¹		
Entry ^[a]	\mathbf{R}^1	R^2	time (h)	3 , yield (%) ^[b]	ee (%) ^[c]	
1	Ph	Ac	10	no product	n.d	
2	Ph	Bn	5	no reaction	n.d.	
3	Н	Bn	0.5	70	58	
4	Н	Boc	6	44	36	
5	Н	Bz	8	42	7	
6	Н	Ts	3	73	6	
7	Н	1-naphthylmethyl	0.1	88	71	
8	Н	9-anthylmethyl	4	46	56	

2.1 The Screening of the Substituents on the Side Chain of Tryptamines.

[a] Reaction conditions: 5 mol% (S)-1a, 5 mol% Hoveyda-Grubbs II, 0.1 mol/L of 2 in toluene, reflux. [b] Isolated yield of 3. [c] Determined by HPLC analysis.

2.2 Olefin Isomerization/Asymmetric Pictet-Spengler Cascade Reaction of N-Allyltryptamines.

In a dry Schlenk tube, substrate 2 (0.2 mmol) and 4 Å molecular sieves (100 mg) were dissolved in benzene (2 mL) under argon. The solution was heated to reflux, and then the chiral phosphoric acid (*R*)-1e (5.7 mg, 0.01 mmol) and Hoveyda-Grubbs II (6.3 mg, 0.01 mmol) were added in one portion. After the reaction was complete (monitored by TLC), the solvent was removed and the residue was purified by flash chromatography to afford the product **3**.

(*R*)-1-ethyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tetrahydro-1H-p yrido[3,4-b]indole (3a)

Viscous oil (95% yield, 90% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3a**: $[\alpha]_D^{20}$ = +62.1 (*c* = 1.04, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.82 (t, *J* = 7.5 Hz, 3H), 1.67-1.77 (m, 2H), 2.56 (dd, *J* = 4.2, 7.5 Hz, 1H), 2.94-3.05 (m, 2H), 3.17-3.26 (m, 1H), 3.58 (t, *J* = 6.9 Hz, 1H), 4.16 (s, 2H), 7.09-7.20 (m, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.36-7.58 (m, 6H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.82-7.85 (m, 1H), 8.31 (d, *J* = 8.7 Hz, 1H); The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 9.69 min, t (minor) = 7.98 min.

(*R*)-1-ethyl-5-methyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tetrahy dro-1H-pyrido[3,4-b]indole (3b)

Viscous oil (92% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3b**: $[\alpha]_D^{20}$ = +60.2 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.79 (t, *J* = 7.5 Hz, 3H), 1.65-1.71 (m, 2H), 2.66 (s, 3H), 2.80-2.95 (m, 2H), 3.18-3.20 (m, 2H), 3.48 (t, *J* = 6.3 Hz, 1H), 4.13 (s, 2H), 6.82 (d, *J* = 6.6 Hz, 1H), 6.97-7.07 (m, 2H), 7.37-7.47 (m, 5H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 9.0 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.0, 19.7, 20.3, 27.6, 44.4, 55.5, 58.2, 108.0, 108.4, 120.4, 121.2, 125.0, 125.1, 125.5, 125.5, 126.2, 127.1, 127.7, 128.3, 130.3, 132.6, 133.8, 134.9, 135.3, 135.6; IR (film) 3409, 3046, 2922, 1508, 1332, 1310, 1193, 1077, 1001, 827, 790, 772, 734, 647 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{25}H_{26}N_2$ requires m/z 354.2096, found m/z 354.2090. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.35 min, t (minor) = 7.67 min.

(*R*)-1-ethyl-6-methyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tetr ahydro-1H-pyrido[3,4-b]indole (3c)

Viscous oil (84% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3c**: $[\alpha]_D^{20}$ = +53.9 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.80 (t, *J* = 7.5 Hz, 3H), 1.63-1.71 (m, 2H), 2.45 (s, 3H), 2.48-2.54 (m, 1H), 2.92-3.00 (m, 2H), 3.14-3.21 (m, 1H), 3.53 (t, *J* = 6.6 Hz, 1H), 4.14 (s, 2H), 6.97 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 1H), 7.31 (s, 1H), 7.35-7.48 (m, 5H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.81-7.84 (m, 1H), 8.30-8.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.1, 17.6, 21.5, 27.7, 44.2, 55.6, 58.2, 107.2, 110.3, 117.8, 122.7, 125.0, 125.1, 125.5, 125.5, 127.2, 127.6, 127.8, 128.3, 128.4, 132.6, 133.8, 134.0, 135.3, 135.7; IR (film) 3407, 3042, 2929, 1946, 1715, 1594, 1509, 1461, 1360, 1300, 1188, 1128, 791, 776 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₆N₂ requires *m*/*z* 354.2096, found *m*/*z* 354.2091. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 9.42 min, t (minor) = 7.30 min.

(*R*)-1-ethyl-8-methyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tetrahy dro-1H-pyrido[3,4-b]indole (3d)

Viscous oil (94% yield, 87% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3d**: $[\alpha]_D^{20}$ = +34.0 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.81 (t, *J* = 7.5 Hz, 3H), 1.68-1.75 (m, 2H), 2.44 (s, 3H), 2.51-2.57 (m, 1H), 2.96-3.03 (m, 2H), 3.18-3.22 (m, 1H), 3.60 (t, *J* = 6.6 Hz, 1H), 4.15 (s, 2H), 6.96 (d, *J* = 6.6 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 7.34-7.50 (m, 5H), 7.58 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 8.32 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.1, 16.7, 17.6, 27.8, 44.0, 55.5, 58.2, 108.2, 115.8, 119.4, 119.8, 122.0, 125.0, 125.1, 125.5, 126.9, 127.2, 127.8, 128.3, 132.6, 133.8, 135.2, 135.3; IR (film) 3422, 3315, 2926, 1509, 1461, 1338, 1297, 1163, 1123, 1081, 1058, 997, 947, 863, 792, 776, 744 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{25}H_{26}N_2$ requires m/z 354.2096, found m/z 354.2086. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 7.59 min, t (minor) = 5.70 min.

(*R*)-1-ethyl-6-methoxy-2-(naphthalen-1-ylmethyl)-2,3,4, 9-tetrahydro-1H-pyrido[3,4-b]indole (3e)

Viscous oil (84% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3e**: $[\alpha]_D^{20} = +68.5$ (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.80 (t, *J* = 5.7 Hz, 3H), 1.66-1.71 (m, 2H), 2.48-2.53 (m, 1H), 2.94-2.97 (m, 2H), 3.15-3.22 (m, 1H), 3.54 (t, *J* = 4.8 Hz, 1H), 3.85 (s, 3H), 4.14 (s, 2H), 6.80 (dd, *J* = 1.5, 6.9 Hz, 1H), 6.99 (s, 1H), 7.14 (d, *J* = 6.6 Hz, 1H), 7.37-7.47 (m, 4H), 7.57 (s, 1H), 7.75 (d, *J* = 6.0 Hz, 1H), 7.83 (d, *J* = 5.1 Hz, 1H), 8.31 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.0, 17.7, 27.6, 44.1, 55.6, 56.0, 58.3, 100.4, 107.5, 110.9, 111.3, 125.0, 125.1, 125.5, 125.5, 127.1, 127.7, 128.3, 130.8, 132.6, 133.8, 135.3, 136.5, 153.9; IR (film) 3402, 2930, 1722, 1590, 1543, 1510, 1453, 1276, 1213, 1135, 1027, 791, 776 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₅H₂₆N₂O requires *m/z* 370.2045, found *m/z* 370.2035. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 19.63 min, t (minor) = 11.44 min.

(*R*)-6-bromo-1-ethyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tet rahydro-1H-pyrido[3,4-b]indole (3f)

Viscous oil (63% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3f**: $[\alpha]_D^{20}$ = +46.2 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.80 (t, *J* = 7.2 Hz, 3H), 1.68-1.73 (m, 2H), 2.46-2.51 (m, 1H), 2.92-2.98 (m, 2H), 3.14-3.23 (m, 1H), 3.56 (t, *J* = 6.6 Hz, 1H), 4.13 (s, 2H), 7.13 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.38-7.49 (m, 4H), 7.64 (br, 2H), 7.76-7.86 (m, 2H), 8.29-8.32 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.1, 17.5, 27.6, 44.1, 55.6, 58.1, 107.6, 112.1, 112.5, 120.8, 124.0, 125.0, 125.1, 125.6, 127.2, 127.9, 128.4, 129.2, 132.6, 133.9, 134.4, 135.1, 137.0; IR (film) 3426, 2955, 2921, 2852, 1463, 1436, 1360, 1297, 1149, 1042, 986, 909, 861, 791, 778, 736 cm⁻¹; HRMS (ESI): Exact mass calcd for $C_{24}H_{23}N_2Br$ requires m/z 418.1045, found m/z 418.1036. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.66 min, t (minor) = 8.20 min.

(*R*)-7-bromo-1-ethyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tet rahydro-1H-pyrido[3,4-b]indole (3g)

Viscous oil (71% yield, 83% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3g**: $[\alpha]_D^{20}$ = +57.8 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.81 (t, *J* = 7.5 Hz, 3H), 1.66-1.74 (m, 2H), 2.50-2.56 (m, 1H), 2.96-3.02 (m, 2H), 3.15-3.22 (m, 1H), 3.57 (t, *J* = 6.6 Hz, 1H), 4.15 (s, 2H), 7.21 (dd, *J* = 1.8, 8.4 Hz, 1H), 7.35-7.50 (m, 6H), 7.58 (s, 1H), 7.77-7.87 (m, 2H), 8.30-8.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.0, 17.5, 27.6, 44.0, 55.6, 58.1, 108.0, 113.6, 114.6, 119.2, 122.4, 125.0, 125.1, 125.6, 126.3, 127.2, 127.9, 128.4, 132.6, 133.8, 135.1, 136.2, 136.5; IR (film) 3426, 3042, 2924, 2838, 1611, 1461, 1435, 1359, 1292, 1151, 1134, 1121, 1063, 909, 799, 780, 734, 653 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₂₃N₂Br requires *m/z* 418.1045, found *m/z* 418.1038. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (25 cm), Hexanes / IPA = 75 / 25, 0. 4 mL/min, λ = 254 nm, t (major) = 30.18 min, t (minor) = 35.91 min.

(*R*)-1-ethyl-7-fluoro-2-(naphthalen-1-ylmethyl)-2,3,4,9-tetr ahydro-1H-pyrido[3,4-b]indole (3h)

Viscous oil (71% yield, 87% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3h**: $[\alpha]_D^{20}$ = +44.3 (*c* = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.81 (t, *J* = 6.9 Hz, 3H), 1.68-1.70 (m, 2H), 2.46-2.50 (m, 1H), 2.89-2.98 (m, 2H), 3.14-3.19 (m, 1H), 3.55 (t, *J* = 6.0 Hz, 1H), 4.14 (s, 2H), 6.88 (t, *J* = 9.0 Hz, 1 H), 7.15 (d, *J* = 8.7 Hz, 2H), 7.36-7.57 (m, 5H), 7.75-7.85 (m, 2H), 8.31 (d, *J* = 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.1, 17.6, 27.6, 44.0, 55.6, 58.2, 103.2 (*J* = 23.5 Hz), 108.0 (*J* = 3.7 Hz), 109.2 (*J* = 26.2 Hz), 111.1 (*J* = 10.3 Hz), 125.0, 125.1, 125.6, 127.2, 127.8, 128.4, 132.4 (*J* = 28.1 Hz), 133.8, 135.1, 137.6, 157.8 (*J* = 233.2 Hz); IR (film) 3435, 2958, 2925, 2846, 1716, 1584, 1509, 1484, 1445, 1358, 1322, 1293, 1173, 1128, 999, 876, 802, 777, 621 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₂₃FN₂ requires *m*/z 358.1845, found *m*/z 358.1838. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 9.29 min, t (minor) = 7.27 min.

chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3i**: $[\alpha]_D^{20}$ = +44.4 (c = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.81 (t, J = 6.9 Hz, 3H), 1.65-1.73 (m, 2H), 2.49-2.55 (m, 1H), 2.92-3.01 (m, 2H), 3.15-3.21 (m, 1H), 3.56 (t, J = 6.0 Hz, 1H), 4.15 (s, 2H), 6.84-6.98 (m, 2H), 7.38-7.50 (m, 5H), 7.57 (s, 1H), 7.76-7.86 (m, 2H), 8.30-8.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.1, 17.6, 27.6, 44.1, 55.6, 58.2, 97.3 (J = 26.0 Hz), 107.6 (J = 20.6 Hz), 118.5 (J = 9.8 Hz), 123.9, 125.0, 125.1, 125.6, 127.2, 127.8, 128.3, 132.6, 133.8, 135.2, 135.5, 135.7, 135.8, 159.6 (J = 236.5 Hz); IR (film) 3444, 3043, 2967, 2839, 1621, 1571, 1493, 1464, 1335, 1226, 1192, 1129, 836, 792, 778, 739, 694, 658, 613 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₂₃FN₂ requires m/z 358.1845, found m/z 358.1838. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 32.27 min, t (minor) = 47.32 min.

(*R*)-7-chloro-1-ethyl-2-(naphthalen-1-ylmethyl)-2,3,4,9-tet rahydro-1H-pyrido[3,4-b]indole (3j)

Viscous oil (64% yield, 87% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3j**: $[\alpha]_D^{20}$ = +55.7 (*c* = 0.5, acetone); ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.2 Hz, 3H), 1.71-1.75 (m, 2H), 2.52-2.56 (m, 1H), 2.97-3.01 (m, 2H), 3.20-3.21 (m, 1H), 3.60 (t, *J* = 6.4 Hz, 1H), 4.16 (s, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.28 (s, 1H), 7.38-7.49 (m, 5H), 7.62 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.84-7.86 (m, 1H), 8.31 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.0, 17.6, 27.6, 44.1, 55.6, 58.2, 108.0, 110.7, 118.8, 119.9, 125.0, 125.1, 125.6, 125.6, 126.0, 127.1, 127.2, 127.9, 128.4, 132.6, 133.8, 135.1, 136.1, 136.2; IR (film) 3435, 2962, 2924, 2855, 1614, 1463, 1359, 1331, 1293, 1150, 1120, 1062, 910, 809, 799, 780, 737, 657 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₂₃N₂Cl requires *m/z* 374.1550, found *m/z* 374.1540. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 33.46 min, t (minor) = 46.51 min.

chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3k**: $[\alpha]_D^{20}$ = +55.3 (c = 0.5, acetone); ¹H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 7.6 Hz, 3H), 1.67-1.72 (m, 2H), 2.46-2.50 (m, 1H), 2.94-2.97 (m, 2H), 3.16-3.21 (m, 1H), 3.55 (t, J = 6.4 Hz, 1H), 4.13 (s, 2H), 7.07-7.16 (m, 2H), 7.38-7.47 (m, 5H), 7.60 (s 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.83-7.85 (m, 1H), 8.29-8.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.0, 17.5, 27.5, 44.0, 55.6, 58.1, 107.6, 111.5, 117.6, 121.4, 124.9, 124.9, 125.1, 125.6, 125.6, 127.2, 127.9, 128.3, 128.5, 132.5, 133.8, 134.1, 135.1, 137.1; IR (film) 3421, 3042, 2951, 2930, 2848, 1579, 1510, 1440, 1359, 1298, 1120, 1062, 988, 861, 791, 775, 644 cm⁻¹; HRMS (ESI): Exact mass calcd for C₂₄H₂₃N₂Cl requires m/z 374.1550, found m/z 374.1545. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 12.90 min, t (minor) = 9.76 min.

2.2 Olefin Isomerization/Asymmetric Pictet-Spengler Cascade Reaction of Internal Olefin Substrates.

In a dry sealed tube, substrate 2 (0.2 mmol), vinyl ethyl ether (0.2 mmol), 4 Å molecular sieves (100 mg) were dissolved in benzene (2 mL) under argon. Then the chiral phosphoric acid (*R*)-1e (5.7 mg, 0.01 mmol) and Hoveyda-Grubbs II (6.3 mg, 0.01 mmol) were added in one portion. The reaction was sealed and heated at 90 °C. After the reaction was complete (monitored by TLC), the solvent was removed and the residue was purified by flash chromatography to afford the product 3.

(*R*)-2-(naphthalen-1-ylmethyl)-1-propyl-2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indole (3l)

Viscous oil (72% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1,

v/v). Analytical data for **31**: $[\alpha]_D^{20} = +65.6$ (c = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 0.68 (t, J = 7.5 Hz, 3H), 1.20-1.38 (m, 2H), 1.55-1.63 (m, 1H), 1.73-1.78 (m, 1H), 2.54-2.61 (m, 1H), 2.99-3.08 (m, 2H), 3.21-3.30 (m, 1H), 3.71 (dd, J = 4.8, 9.0 Hz, 1H), 4.18 (AB, $J_{AB} = 13.2$ Hz, $J_{BA} = 13.2$ Hz, 2H), 7.09-7.19 (m, 2H), 7.31 (d, J = 7.8 Hz, 1H), 7.36-7.55 (m, 5H), 7.61 (s 1H), 7.76-7.79 (m, 1H), 7.83-7.86 (m, 1H), 8.30-8.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 13.8, 17.5, 19.5, 37.2, 44.0, 55.5, 56.1, 107.6, 110.6, 118.1, 119.3, 121.3, 125.1, 125.5, 127.3, 127.4, 127.8, 128.3, 132.6, 133.8, 135.3, 135.7; IR (film) 3054, 2963, 2931, 2871, 2844, 1596, 1509, 1464, 1378, 1300, 1156, 949, 787, 774, 740 cm⁻¹; HRMS (MALDI/DHB): Exact mass calcd for C₂₅H₂₇N₂⁺¹ requires *m*/z 355.2169, found *m*/z 355.2160. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.72 min, t (minor) = 7.59 min.

(*R*)-2-(naphthalen-1-ylmethyl)-1-phenethyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3m)

Viscous oil (75% yield, 85% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1,

v/v). Analytical data for **3m**: $[α]_D^{20} = +17.4$ (c = 0.5, acetone); ¹H NMR (300 MHz, CDCl₃) δ 1.81-1.90 (m, 1H), 1.98-2.09 (m, 1H), 2.30-2.40 (m, 1H), 2.54-2.67 (m, 2H), 2.97-3.14 (m, 2H), 3.26-3.36 (m, 1H), 3.66 (dd, J = 3.9, 9.3 Hz, 1H), 4.16 (AB, $J_{AB} = 13.5$ Hz, $J_{BA} = 13.5$ Hz, 2H), 6.76 (d, J = 6.3 Hz, 2H), 7.05-7.23 (m, 6H), 7.34-7.47 (m, 3H), 7.47-7.53 (m, 3H), 7.78-7.87 (m, 2H), 8.37 (d, J = 7.5 Hz, 1H),; ¹³C NMR (75 MHz, CDCl₃) δ 17.4, 32.3, 36.6, 44.3, 55.2, 55.6, 107.7, 110.7, 118.0, 119.3, 121.4, 125.1, 125.6, 125.7, 127.3, 127.5, 128.0, 128.2, 128.4, 132.7, 133.9, 135.1, 135.7, 142.4; IR (film) 3568, 3408, 3054, 2927, 2844, 1946, 1597, 1495, 1454, 1300, 1104, 1073, 1010, 946, 790, 777, 740, 699 cm⁻¹; HRMS (MALDI/DHB): Exact mass calcd for C₃₀H₂₉N₂⁺¹ requires *m/z* 417.2325, found *m/z* 417.2320. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 21.21 min, t (minor) = 24.94 min.

(*R*)-1-(4-bromophenethyl)-2-(naphthalen-1-ylmethyl)-2,3,4,9-te trahydro-1H-pyrido[3,4-b]indole (3n)

Viscous oil (74% yield, 87% *ee*) following silica gel column chromatography (petroleum ether/ethyl acetate/DCM = 30/1/1, v/v). Analytical data for **3m**: $[\alpha]_D^{20} = -3.2$ (*c* = 0.5, acetone); ¹H

NMR (300 MHz, CDCl₃) δ 1.71-1.82 (m, 1H), 1.96-2.05 (m, 1H), 2.20-2.30 (m, 1H), 2.45-2.63 (m, 2H), 2.99-3.20 (m, 2H), 3.28-3.38 (m, 1H), 3.61 (dd, J = 3.3, 9.6 Hz, 1H), 4.15 (AB, $J_{AB} = 12.9$ Hz, $J_{BA} = 12.9$ Hz, 2H), 6.48 (d, J = 8.4 Hz, 2H), 7.08-7.19 (m, 4H), 7.24-7.39 (m, 3H), 7.45-7.54 (m, 4H), 7.79-7.88 (m, 2H), 8.34 (d, J = 7.5 Hz, 1H),; ¹³C NMR (75 MHz, CDCl₃) δ 17.4, 31.4, 36.4, 44.6, 54.5, 55.6, 107.8, 110.7, 118.1, 119.1, 119.3, 121.5, 125.1, 125.7, 127.3, 127.7, 128.0, 128.4, 130.0, 131.1, 132.7, 133.9, 134.8, 135.0, 135.8, 141.2; IR (film) 3577, 3424, 3049, 2936, 1921, 1595, 1509, 1486, 1462, 1300, 1235, 1154, 1107, 1071, 1010, 945, 790, 738, 667 cm⁻¹; HRMS (MALDI/DHB): Exact mass calcd for C₃₀H₂₈N₂Br⁺¹ requires *m*/*z* 495.1430, found *m*/*z* 495.1431. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.81 min, t (minor) = 12.10 min.

3. References

- 1. D. Huang, F. Xu, X. Lin, Y. Wang, Chem. Eur. J. 2012, 18, 3148.
- 2. E. Ascic, C. L. Hansen, S. T. Le Quement, T. E. Nielsen, Chem. Commun. 2012, 48, 3345.

4. Copies of ¹H NMR, ¹³C NMR Spectra and HPLC Analysis of the Compounds

Compound **3a**'s ¹H NMR spectra

Compound **3b**'s ¹H NMR spectra

Compound **3b**'s ¹³C NMR spectra

Compound 3b's HPLC spectra

Compound **3c**'s ¹H NMR spectra

4 Peak2

9.743

Compound **3c**'s ¹³C NMR spectra

93.15

262953

89.65

9.416

Peak2

2

6209474

Compound **3d**'s ¹H NMR spectra

Compound **3d**'s ¹³C NMR spectra

Compound **3d**'s HPLC spectra

Compound **3e**'s ¹H NMR spectra

Compound **3e**'s ¹³C NMR spectra

Compound 3e's HPLC spectra

Compound **3f**'s ¹H NMR spectra

Compound **3f**'s ¹³C NMR spectra

Compound 3f's HPLC spectra

92.55

110641

89.60

Compound **3g**'s ¹H NMR spectra

Peak2

10.656

2777833

Compound **3g**'s ¹³C NMR spectra

Compound **5f**'s HPLC spectra

		Peak Name	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
ſ	1	Peak1	30.176	30283148	90.74	269515	94.18
ſ	2	Peak2	35.905	3090351	9.26	16652	5.82

Compound **3h**'s ¹H NMR spectra

Compound 3h's HPLC spectra

Compound 3i's ¹H NMR spectra

Compound **3i**'s HPLC spectra

Total		109546.991	17877786.125	100.0000	
2	47.323	3955. 678	1181143. 125	6.6068	
1	32.200	105591.515	10090045.000	95. 5952	

Compound **3j**'s ¹H NMR spectra

Compound **3k**'s ¹H NMR spectra

Compound 3k's HPLC spectra

Compound **31**'s ¹H NMR spectra

Compound **3l**'s HPLC spectra

Compound 3m's HPLC spectra

Compound **3n**'s ¹H NMR spectra

	Peak Name	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	Peak1	10.826	2792828	49.77	151054	52.42
2	Peak2	12.099	2818774	50.23	137119	47.58

		Peak Name	RI (min)	Area (µV*sec)	% Area	Height (µV)	% Height
	1	Peak1	10.807	5163232	93.02	277535	93.62
	2	Peak2	12.101	387596	6.98	18908	6.38