Electronic Supplementary Information: Gossage et al.

Table S-1: General Crystal data for compounds 3a , 3c , 3d , 4a and 5	.S-1a
DFT calculations	S-2
Spectroscopic Characterisation of compounds 2f, 3f and 5	S-30
Table S-2: Observed and Calculated Energies including solvation for 3d-3e	S -38
Table S-3: Calculated Energies of protonated 3a-3e (<i>i.e.</i> , 4a-4e)	S-39
LUMO and selected HOMOs (TD-DFT) for complex 5	S-40

Compound:	<u>3a†</u>	<u>3c†</u>	<u>3d</u> ‡	<u>3f</u> ‡	4a ‡	5‡
Formula	C ₁₃ H ₁₅ NO ₂	C ₁₃ H ₁₄ N ₂ O ₄	C ₁₁ H ₁₉ NO ₂	C ₁₈ H ₁₅ NO ₂	C ₁₃ H ₁₇ NO ₆ S	C ₂₆ H ₂₈ N ₂ O ₄ Cu
fw	217.26	262.26	197.27	277.31	315.34	496.04
Crystal size	$0.22 \times 0.20 \times$	$0.27 \times 0.10 \times$	$0.22 \times 0.14 \times$	$0.22 \times 0.06 \times$	$0.40 \times 0.36 \times$	$0.16 \times 0.14 \times$
(mm)	0.20	0.10	0.12	0.05	0.32	0.08
a (Å)	16.8344(14)	12.1245(3)	9.7809(3)	27.070(4)	8.0340(4)	12.8657(4)
<i>b</i> (Å)	12.0895(7)	14.0624(3)	11.4606(4)	5.0325(4)	9.1042(5)	13.4020(5)
<i>c</i> (Å)	19.8772(13)	16.2235(4)	20.8757(7)	10.3600(14)	11.2816(7)	14.1823(3)
α (°)	06	83.164(2)	60	06	70.084(3)	90
β(°)	117.868(5)	73.727(2)	90	103.134(4)	70.430(3)	100.6720(19)
γ (°)	06	69.797(2)	06	06	80.387(4)	90
$V(Å^3)$	3576.2(5)	2491.16(11)	2340.12(13)	1374.4(3)	729.70(7)	2403.10(13)
$D_{\rm calc}({\rm g/cm}^3)$	1.211	1.399	1.120	1.340	1.435	1.371
Crystal system,	Monoclinic,	Triclinic, P-1	Orthorhombic,	Monoclinic, C2	Triclinic, P-1	Monoclinic,
space group	P21/c		Pbcn			P21/c
Ζ	12	8	8	4	2	4
F(000)	1392	1104	864	584	332	1036
$T(\mathbf{K})$	173(2)	173(2)	150(1)	150(2)	150(1)	150(2)
Absorp. coeff. (mm ⁻¹)	0.082	0.105	0.076	0.088	0.249	0.943
2θ range (°)	2.63 - 25.03	3.25 - 27.43	2.74 - 25.00	2.81 - 25.08	2.61 - 27.50	2.81 - 27.54
Limiting	$-20 \le h \le 20$	$-15 \le h \le 15$	$-11 \le h \le 11$	$-32 \le h \le 31$	$-10 \le h \le 10$	$-16 \le h \le 16$
indices	$-14 \le k \le 14$	$-18 \le k \le 16$	$-13 \le k \le 13$	$-5 \le k \le 5$	$-11 \le k \le 11$	$-15 \le k \le 17$
	$-22 \le 1 \le 23$	$-20 \le 1 \le 20$	$-20 \le 1 \le 24$	$-10 \le 1 \le 12$	- 10 ≤ 1 ≤ 14	- 18 ≤ l ≤ 18
Reflections collected	22887	35976	15839	3875	6647	16014
Reflections	6320	11295	2062	1357	3295	5459

Table S-1. General crystal data for compounds 3a, 3c, 3d, 3f, 4a and 5.

S-1a

136
18 1
= 0.0691
$t_2 = 0.1759$
= 0.1395
$l_2 = 0.2306$
61, -0.282
9951

† Data collection, refinement and structure solution was carried out by J. W. Quail (University of Saskatchewan); see ref. 5a and 5d. ‡ Data collection, refinement and structure solution was carried out by A. J. Lough (University of Toronto); see: ref. 5e and ref. 23.

<u>DFT Calculations</u> 2-(4,4-dimethyl-2-oxazolidinylidene)-1-phenylethanone (3a)

The tables below compare the experimental and calculated structures for tautomer 3a. The rootmean-square difference between experimental (averaged) and calculated values for the bond lengths is 0.018 Å and for the bond angles is 0.96°. The crystal structure has three crystallographically independent molecules in the unit cell and these show significant variations in torsion angles. The torsion angles in the calculated structure show fairly good agreement with one or more of the unit cell molecules. The most notable differences involve the angle of the phenyl ring with respect to the carbonyl group and the twist angles of the oxazolidinylidene ring. It is plausible that these are due to the difference in phases (solid state and gas) for the experimental and calculated structures.

Comparison of Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) bond lengths (Å) for Compound **3a**

Bond	Experimental (fro	m three distinct mole	ecules in unit cell)	Calculated
O(1)-C(7)	1.250(3)	1.255(3)	1.256(3)	1.25
O(2)-C(9)	1.349(3)	1.345(3)	1.351(3)	1.35
O(2)-C(11)	1.441(3)	1.460(4)	1.443(3)	1.45
N(1)-C(9)	1.315(3)	1.320(3)	1.321(3)	1.35
N(1)-C(10)	1.465(3)	1.468(3)	1.457(3)	1.47
C(1)-C(2)	1.382(4)	1.386(3)	1.390(3)	1.40
C(1)-C(6)	1.391(3)	1.394(3)	1.394(3)	1.40
C(1)-C(7)	1.511(3)	1.495(3)	1.496(3)	1.51
C(2)-C(3)	1.390(4)	1.383(4)	1.386(4)	1.39
C(3)-C(4)	1.368(4)	1.378(4)	1.384(4)	1.40
C(4)-C(5)	1.363(5)	1.378(4)	1.379(4)	1.39
C(5)-C(6)	1.392(4)	1.380(4)	1.384(3)	1.39
C(7)-C(8)	1.414(3)	1.401(3)	1.414(3)	1.44
C(8)-C(9)	1.374(3)	1.370(4)	1.373(3)	1.37

C(10)-C(12)	1.508(4)	1.499(4)	1.482(4)	1.53
C(10)-C(13)	1.525(4)	1.506(4)	1.497(4)	1.54
C(10)-C(11)	1.541(3)	1.520(4)	1.498(4)	1.54

Comparison of Experimental	(Crystallographic)	and Calculated (C	Gas, B3LYP/6-311G(d))) bond
angles (°) for Compound 3a				

Anala	Europinontol (from	three distinct	aculas in unit ac ¹¹	Calculated
Angle	Experimental (from	urree distinct mol	ecules in unit cell)	Calculated
C(9)-O(2)-C(11)	109.16(19)	107.7(2)	108.2(2)	108.0
C(9)-N(1)-C(10)	113.7(2)	112.4(2)	112.7(2)	111.5
C(2)-C(1)-C(6)	118.1(2)	117.5(2)	118.6(2)	118.6
C(2)-C(1)-C(7)	118.6(2)	119.1(2)	118.2(2)	117.6
C(6)-C(1)-C(7)	123.3(2)	123.3(2)	123.2(2)	123.9
C(1)-C(2)-C(3)	120.9(3)	121.2(2)	120.7(2)	120.9
C(4)-C(3)-C(2)	120.3(3)	120.6(3)	120.1(2)	120.1
C(5)-C(4)-C(3)	119.6(3)	118.8(3)	119.4(2)	119.6
C(4)-C(5)-C(6)	120.8(3)	120.7(3)	120.7(2)	120.2
C(1)-C(6)-C(5)	120.2(3)	121.1(2)	120.4(2)	120.7
O(1)-C(7)-C(8)	122.9(2)	121.7(2)	122.5(2)	122.6
O(1)-C(7)-C(1)	117.9(2)	118.6(2)	118.00(19)	118.2
C(8)-C(7)-C(1)	119.2(2)	119.7(2)	119.5(2)	119.2
C(9)-C(8)-C(7)	122.2(2)	120.7(2)	120.9(2)	120.1
N(1)-C(9)-O(2)	110.5(2)	110.2(2)	110.6(2)	110.4
N(1)-C(9)-C(8)	129.4(2)	127.8(2)	129.6(2)	127.5
O(2)-C(9)-C(8)	120.1(2)	121.9(2)	119.8(2)	122.1
N(1)-C(10)-C(12)	110.3(2)	109.9(2)	111.7(2)	111.5
N(1)-C(10)-C(13)	98.94(19)	98.8(2)	100.5(2)	98.1
C(12)-C(10)-C(13)	112.5(3)	113.7(3)	114.5(3)	111.2
N(1)-C(10)-C(11)	109.3(2)	111.1(2)	108.0(2)	111.0
C(12)-C(10)-C(11)	113.4(2)	110.4(3)	110.5(4)	112.4
C(13)-C(10)-C(11)	111.6(2)	112.5(3)	111.2(3)	112.0
O(2)-C(11)-C(10)	106.03(19)	105.2(2)	106.9(2)	105.4

Comparison of Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) torsion angles (°) for Compound **3a**

Angle	Experimental (from	three distinct mole	ecules in unit cell)	Calculated
C(6)-C(1)-C(2)-C(3)	0.8(4)	0.1(4)	-0.1(4)	-0.7

C(7)-C(1)-C(2)-C(3)	179.8(2)	-177.6(2)	-179.7(2)	-179.9
C(1)-C(2)-C(3)-C(4)	0.1(4)	0.8(4)	-0.2(4)	0.4
C(2)-C(3)-C(4)-C(5)	-0.9(5)	-1.0(4)	0.4(4)	0.1
C(3)-C(4)-C(5)-C(6)	0.6(5)	0.3(4)	-0.3(4)	-0.4
C(2)-C(1)-C(6)-C(5)	-1.1(4)	-0.8(4)	0.2(3)	0.4
C(7)-C(1)-C(6)-C(5)	179.9(3)	176.8(2)	179.7(2)	179.7
C(4)-C(5)-C(6)-C(1)	0.4(5)	0.6(4)	0.0(4)	0.1
C(2)-C(1)-C(7)-O(1)	1.2(3)	2.4(3)	-15.4(3)	8.7
C(6)-C(1)-C(7)-O(1)	-179.8(2)	-175.2(2)	165.1(2)	-170.6
C(2)-C(1)-C(7)-C(8)	-176.8(2)	-176.9(2)	164.1(2)	-170.5
C(6)-C(1)-C(7)-C(8)	2.2(3)	5.5(4)	-15.4(3)	10.2
O(1)-C(7)-C(8)-C(9)	-3.8(4)	7.3(4)	4.1(4)	0.1
C(1)-C(7)-C(8)-C(9)	174.0(2)	-173.4(2)	-175.3(2)	179.2
C(10)-N(1)-C(9)-O(2)	7.3(3)	-9.5(3)	5.4(3)	13.0
C(10)-N(1)-C(9)-C(8)	-172.0(3)	169.1(3)	-175.8(3)	-166.5
C(11)-O(2)-C(9)-N(1)	1.8(3)	-6.9(4)	2.1(3)	4.8
C(11)-O(2)-C(9)-C(8)	-178.8(2)	174.4(3)	-176.9(3)	-175.7
C(7)-C(8)-C(9)-N(1)	-1.1(4)	-2.8(5)	2.2(4)	4.7
C(7)-C(8)-C(9)-O(2)	179.7(2)	175.6(3)	-179.1(2)	-174.8
C(9)-N(1)-C(10)-C(12)	-131.2(2)	-98.8(3)	-131.7(3)	-140.9
C(9)-N(1)-C(10)-C(13)	104.6(3)	138.8(3)	106.6(3)	94.4
C(9)-N(1)-C(10)-C(11)	-12.1(3)	20.4(3)	-9.9(3)	-23.0
C(9)-O(2)-C(11)-C(10)	-9.3(3)	19.7(4)	-8.3(4)	-19.2
N(1)-C(10)-C(11)-O(2)	12.1(3)	-22.8(4)	10.5(3)	24.4
C(12)-C(10)-C(11)-O(2)	128.9(3)	93.5(4)	130.3(3)	141.6
C(13)-C(10)-C(11)-O(2)	-102.8(3)	-140.1(3)	-103.6(3)	-92.2

Differences between Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) bond length and angles for Compound **3a**

Bond	Exp. – Calc. (Å)	Angle	Exp. – Calc. (°)
O(1)-C(7)	0.004	C(9)-O(2)-C(11)	0.35
O(2)-C(9)	-0.002	C(9)-N(1)-C(10)	1.43
O(2)-C(11)	-0.002	C(2)-C(1)-C(6)	-0.53
N(1)-C(9)	-0.031	C(2)-C(1)-C(7)	1.03
N(1)-C(10)	-0.007	C(6)-C(1)-C(7)	-0.63
C(1)-C(2)	-0.014	C(1)-C(2)-C(3)	0.03
C(1)-C(6)	-0.007	C(4)-C(3)-C(2)	0.23
C(1)-C(7)	-0.009	C(5)-C(4)-C(3)	-0.33

C(2)-C(3)	-0.004	C(4)-C(5)-C(6)	0.53
C(3)-C(4)	-0.023	C(1)-C(6)-C(5)	-0.13
C(4)-C(5)	-0.017	O(1)-C(7)-C(8)	-0.23
C(5)-C(6)	-0.005	O(1)-C(7)-C(1)	-0.03
C(7)-C(8)	-0.030	C(8)-C(7)-C(1)	0.27
C(8)-C(9)	0.002	C(9)-C(8)-C(7)	1.17
C(10)-C(12)	-0.034	N(1)-C(9)-O(2)	0.03
C(10)-C(13)	-0.031	N(1)-C(9)-C(8)	1.43
C(10)-C(11)	-0.020	O(2)-C(9)-C(8)	-1.50
		N(1)-C(10)-C(12)	-0.87
		N(1)-C(10)-C(13)	1.31
		C(12)-C(10)-C(13)	2.37
		N(1)-C(10)-C(11)	-1.53
		C(12)-C(10)-C(11)	-0.97
		C(13)-C(10)-C(11)	-0.23
		O(2)-C(11)-C(10)	0.64

2-(4,4-dimethyl-2-oxazolidinylidene)-1-(4-nitrophenyl)ethanone (3c)

The tables below compare the experimental and calculated structures for tautomers **3c**. The rootmean-square difference between experimental (averaged) and calculated values for the bond lengths is 0.011 Å and for the bond angles is 0.65°. The crystal structure has four crystallographically independent molecules in the unit cell and, as in the case of **3a**, these show significant variations in torsion angles. The torsion angles in the calculated structure show fairly good agreement with one or more of the unit cell molecules. The most notable structural difference is in the torsion angle between the nitrophenyl ring and the carbonyl group (example C(2)-C(1)-C(7)-O(2)). It is plausible that these are due to the difference in phases (solid state and gas) for the experimental and calculated structures.

Atom labelling scheme for **3c.**

Comparison of Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) bond lengths (Å) for Compound **3c**

Bond	Experimen	tal (from four dis	stinct molecules	in unit cell)	Calculated
O(1)-C(9)	1.350(2)	1.348(2)	1.347(2)	1.347(2)	1.35
O(1)-C(11)	1.466(3)	1.458(2)	1.464(2)	1.460(2)	1.45
O(2)-C(7)	1.253(2)	1.257(2)	1.254(2)	1.253(2)	1.25
O(3)-N(2)	1.226(2)	1.222(2)	1.227(2)	1.227(2)	1.22
O(4)-N(2)	1.223(2)	1.228(2)	1.219(2)	1.222(2)	1.22
N(1)-C(9)	1.321(3)	1.325(2)	1.321(2)	1.325(2)	1.34
N(1)-C(10)	1.471(2)	1.472(2)	1.476(2)	1.475(2)	1.47
N(2)-C(4)	1.468(2)	1.475(2)	1.474(2)	1.468(2)	1.48
C(1)-C(6)	1.396(3)	1.394(3)	1.393(3)	1.389(3)	1.40
C(1)-C(2)	1.397(3)	1.398(3)	1.395(3)	1.395(3)	1.40
C(1)-C(7)	1.504(3)	1.507(3)	1.503(2)	1.508(3)	1.51
C(2)-C(3)	1.384(3)	1.388(3)	1.387(3)	1.384(3)	1.39
C(3)-C(4)	1.381(3)	1.380(3)	1.380(3)	1.380(3)	1.39
C(4)-C(5)	1.381(3)	1.380(3)	1.384(3)	1.383(3)	1.39
C(5)-C(6)	1.382(3)	1.392(3)	1.387(3)	1.387(3)	1.39
C(7)-C(8)	1.408(3)	1.408(3)	1.411(3)	1.409(3)	1.43
C(8)-C(9)	1.386(3)	1.379(3)	1.385(3)	1.386(3)	1.38
C(10)- C(12)	1.504(3)	1.514(3)	1.525(3)	1.523(3)	1.53
C(10)- C(11)	1.518(3)	1.532(3)	1.525(3)	1.530(3)	1.55
C(10)- C(13)	1.529(2)	1.528(3)	1.512(3)	1.513(3)	1.54

Comparison of Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) bond angles (°) for Compound **3c**

Angle	Experiment	Experimental (from four distinct molecules in unit cell)				
C(9)-O(1)-C(11)	106.63(17)	107.49(15)	107.32(15)	107.65(15)	108.0	
C(9)-N(1)-C(10)	112.04(17)	111.88(16)	111.76(16)	111.67(16)	111.9	
O(4)-N(2)-O(3)	123.01(18)	123.41(18)	123.50(18)	123.13(18)	124.7	
O(4)-N(2)-C(4)	118.85(17)	118.26(18)	118.71(17)	118.90(17)	117.6	
O(3)-N(2)-C(4)	118.14(18)	118.33(18)	117.79(17)	117.96(17)	117.6	
C(6)-C(1)-C(2)	119.36(18)	119.78(17)	119.64(17)	119.42(18)	118.8	
C(6)-C(1)-C(7)	122.75(17)	122.34(17)	123.13(16)	123.27(17)	123.8	
C(2)-C(1)-C(7)	117.88(17)	117.81(17)	117.17(16)	117.26(16)	117.4	
C(3)-C(2)-C(1)	120.12(18)	120.24(18)	120.35(17)	120.63(18)	121.1	

C(4)-C(3)-C(2)	118.89(18)	118.26(18)	118.33(17)	118.56(18)	118.6
C(3)-C(4)-C(5)	122.50(18)	123.29(18)	122.99(17)	122.50(18)	121.8
C(3)-C(4)-N(2)	118.30(18)	118.53(18)	118.00(17)	118.36(17)	119.2
C(5)-C(4)-N(2)	119.20(17)	118.15(18)	119.00(17)	119.13(17)	119.0
C(4)-C(5)-C(6)	118.17(18)	117.87(18)	117.85(17)	118.19(18)	118.8
C(5)-C(6)-C(1)	120.91(18)	120.52(19)	120.79(18)	120.64(18)	120.9
O(2)-C(7)-C(8)	124.30(18)	124.08(17)	123.88(17)	123.75(17)	123.2
O(2)-C(7)-C(1)	117.69(18)	116.98(17)	116.79(17)	116.81(17)	117.7
C(8)-C(7)-C(1)	117.90(17)	118.92(17)	119.32(16)	119.43(17)	119.1
C(9)-C(8)-C(7)	120.08(18)	119.54(18)	118.91(17)	119.34(18)	119.9
N(1)-C(9)-O(1)	111.13(17)	110.82(16)	111.09(16)	111.17(16)	110.7
N(1)-C(9)-C(8)	128.50(19)	127.45(18)	127.51(18)	127.42(18)	127.4
O(1)-C(9)-C(8)	120.28(18)	121.69(17)	121.36(17)	121.36(17)	121.9
N(1)-C(10)-C(12)	111.15(18)	112.04(16)	109.72(16)	109.55(16)	111.3
N(1)-C(10)-C(11)	99.33(16)	97.91(14)	98.17(14)	98.42(14)	98.1
C(12)-C(10)-C(11)	115.3(2)	113.09(16)	112.15(18)	111.81(18)	112.4
N(1)-C(10)-C(13)	108.39(17)	109.63(16)	111.32(16)	111.45(16)	110.9
C(12)-C(10)-C(13)	111.7(2)	111.54(17)	111.48(17)	111.48(17)	111.4
C(11)-C(10)-C(13)	110.1(2)	111.90(17)	113.28(17)	113.43(17)	112.1
O(1)-C(11)-C(10)	104.65(19)	105.09(15)	105.02(15)	105.14(15)	105.5

<u>Comparison of Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d)) torsion</u> <u>angles (°) for Compound **3c**</u>

Experiment	al (from four disti	nct molecules in	unit cell)	Calculated
-1.7(3)	0.3(3)	-1.1(3)	-2.5(3)	-0.6
177.02(18)	-176.84(18)	176.21(17)	175.04(18)	-179.7
-0.4(3)	1.4(3)	-0.8(3)	0.4(3)	0.3
1.8(3)	-1.5(3)	1.6(3)	1.6(3)	0.2
-177.46(18)	176.54(17)	-177.54(17)	-177.02(18)	180.0
-176.74(18)	-178.31(19)	-176.13(19)	-170.24(18)	180.0
3.1(3)	2.3(3)	4.7(3)	10.0(3)	-0.1
3.9(3)	3.6(3)	4.7(3)	11.1(3)	-0.4
-176.2(2)	-175.82(19)	-174.48(18)	-168.7(2)	179.7
-1.1(3)	-0.2(3)	-0.3(3)	-1.4(3)	-0.4
178.15(18)	-178.20(18)	178.81(17)	177.22(18)	179.8
-1.0(3)	2.0(3)	-1.7(3)	-0.8(3)	0.1
	Experimenta -1.7(3) 177.02(18) -0.4(3) 1.8(3) -177.46(18) -176.74(18) 3.1(3) 3.9(3) -176.2(2) -1.1(3) 178.15(18) -1.0(3)	Experimental (from four distribution of the second state	Experimental (from four distinct molecules in $-1.7(3)$ $0.3(3)$ $-1.1(3)$ $177.02(18)$ $-176.84(18)$ $176.21(17)$ $-0.4(3)$ $1.4(3)$ $-0.8(3)$ $1.8(3)$ $-1.5(3)$ $1.6(3)$ $-177.46(18)$ $176.54(17)$ $-177.54(17)$ $-176.74(18)$ $-178.31(19)$ $-176.13(19)$ $3.1(3)$ $2.3(3)$ $4.7(3)$ $3.9(3)$ $3.6(3)$ $4.7(3)$ $-176.2(2)$ $-175.82(19)$ $-174.48(18)$ $-1.1(3)$ $-0.2(3)$ $-0.3(3)$ $178.15(18)$ $-178.20(18)$ $178.81(17)$ $-1.0(3)$ $2.0(3)$ $-1.7(3)$	Experimental (from four distinct molecules in unit cell) $-1.7(3)$ $0.3(3)$ $-1.1(3)$ $-2.5(3)$ $177.02(18)$ $-176.84(18)$ $176.21(17)$ $175.04(18)$ $-0.4(3)$ $1.4(3)$ $-0.8(3)$ $0.4(3)$ $1.8(3)$ $-1.5(3)$ $1.6(3)$ $1.6(3)$ $-177.46(18)$ $176.54(17)$ $-177.54(17)$ $-177.02(18)$ $-176.74(18)$ $-178.31(19)$ $-176.13(19)$ $-170.24(18)$ $3.1(3)$ $2.3(3)$ $4.7(3)$ $10.0(3)$ $3.9(3)$ $3.6(3)$ $4.7(3)$ $11.1(3)$ $-176.2(2)$ $-175.82(19)$ $-174.48(18)$ $-168.7(2)$ $-1.1(3)$ $-0.2(3)$ $-0.3(3)$ $-1.4(3)$ $178.15(18)$ $-178.20(18)$ $178.81(17)$ $177.22(18)$ $-1.0(3)$ $2.0(3)$ $-1.7(3)$ $-0.8(3)$

C(2)-C(1)-C(6)-C(5)	2.4(3)	-2.1(3)	2.5(3)	2.7(3)	0.4
C(7)-C(1)-C(6)-C(5)	-176.22(19)	174.99(19)	-174.72(19)	-174.68(19)	179.5
C(6)-C(1)-C(7)-O(2)	141.7(2)	-146.07(19)	147.34(19)	152.57(19)	-170.0
C(2)-C(1)-C(7)-O(2)	-37.0(3)	31.0(3)	-29.9(3)	-24.9(3)	9.1
C(6)-C(1)-C(7)-C(8)	-41.9(3)	35.5(3)	-34.0(3)	-28.7(3)	10.5
C(2)-C(1)-C(7)-C(8)	139.5(2)	-147.43(19)	148.79(19)	153.81(19)	-170.4
O(2)-C(7)-C(8)-C(9)	7.9(3)	-6.1(3)	4.6(3)	4.2(3)	0.6
C(1)-C(7)-C(8)-C(9)	-168.30(19)	172.26(18)	-173.96(18)	-174.42(18)	-179.9
C(10)-N(1)-C(9)-O(1)	0.8(3)	12.7(2)	-12.3(2)	-12.0(2)	11.0
C(10)-N(1)-C(9)-C(8)	177.3(2)	-165.1(2)	165.3(2)	165.3(2)	-168.7
C(11)-O(1)-C(9)-N(1)	15.2(3)	5.2(2)	-5.3(2)	-4.7(2)	5.7
C(11)-O(1)-C(9)-C(8)	-161.6(2)	-176.78(19)	176.87(19)	177.78(19)	-174.6
C(7)-C(8)-C(9)-N(1)	-7.1(4)	5.6(3)	-4.3(3)	-4.3(3)	3.8
C(7)-C(8)-C(9)-O(1)	169.1(2)	-172.12(18)	173.14(18)	172.79(18)	-175.8
C(9)-N(1)-C(10)-C(12)	-137.3(2)	-142.18(17)	-94.2(2)	-95.0(2)	-138.8
C(9)-N(1)-C(10)-C(11)	-15.4(2)	-23.3(2)	22.9(2)	21.8(2)	-20.9
C(9)-N(1)-C(10)-C(13)	99.5(2)	93.4(2)	141.94(18)	141.19(18)	96.6
C(9)-O(1)-C(11)-C(10)	-24.3(3)	-19.8(2)	19.7(2)	18.4(2)	-18.8
N(1)-C(10)-C(11)-O(1)	23.0(3)	24.67(19)	-24.37(19)	-23.07(19)	22.9
C(12)-C(10)-C(11)-O(1)	141.8(2)	142.77(17)	-141.87(17)	-140.91(17)	140.0
C(13)-C(10)-C(11)-O(1)	-90.6(3)	-90.25(19)	90.87(19)	91.99(19)	-93.7

<u>Differences between Experimental (Crystallographic) and Calculated (Gas, B3LYP/6-311G(d))</u> bond length and angles for Compound **3c**

Bond	Exp. – Calc. (Å)	Angle	Exp. – Calc. (°)
O(1)-C(9)	0.000	C(9)-O(1)-C(11)	-0.73
O(1)-C(11)	0.014	C(9)-N(1)-C(10)	-0.06
O(2)-C(7)	0.008	O(4)-N(2)-O(3)	-1.44
O(3)-N(2)	0.002	O(4)-N(2)-C(4)	1.08
O(4)-N(2)	-0.001	O(3)-N(2)-C(4)	0.45
N(1)-C(9)	-0.021	C(6)-C(1)-C(2)	0.75
N(1)-C(10)	0.004	C(6)-C(1)-C(7)	-0.93
N(2)-C(4)	-0.007	C(2)-C(1)-C(7)	0.13
C(1)-C(6)	-0.008	C(3)-C(2)-C(1)	-0.76
C(1)-C(2)	-0.005	C(4)-C(3)-C(2)	-0.09
C(1)-C(7)	-0.005	C(3)-C(4)-C(5)	1.02

C(2)-C(3)	-0.001	C(3)-C(4)-N(2)	-0.90
C(3)-C(4)	-0.011	C(5)-C(4)-N(2)	-0.13
C(4)-C(5)	-0.008	C(4)-C(5)-C(6)	-0.78
C(5)-C(6)	-0.002	C(5)-C(6)-C(1)	-0.19
C(7)-C(8)	-0.021	O(2)-C(7)-C(8)	0.80
C(8)-C(9)	0.007	O(2)-C(7)-C(1)	-0.63
C(10)-C(12)	-0.014	C(8)-C(7)-C(1)	-0.21
C(10)-C(11)	-0.021	C(9)-C(8)-C(7)	-0.43
C(10)-C(13)	-0.017	N(1)-C(9)-O(1)	0.35
		N(1)-C(9)-C(8)	0.32
		O(1)-C(9)-C(8)	-0.73
		N(1)-C(10)-C(12)	-0.69
		N(1)-C(10)-C(11)	0.36
		C(12)-C(10)-C(11)	0.69
		N(1)-C(10)-C(13)	-0.70
		C(12)-C(10)-C(13)	0.15
		C(11)-C(10)-C(13)	0.08
		O(1)-C(11)-C(10)	-0.53

Geometrical Optimization of Tautomers

For both amine-one (C) and imine-ol (A), hydrogen bonding between the amine hydrogen/carbonyl oxygen and imine nitrogen/hydroxy hydrogen stabilizes the conformation, making the torsion angle C(7)-C(8)-C(9)-N(1) nearly planar. This greatly reduces the number of possible conformers that must be considered in determining the lowest energy structure. In the case of the imine-one tautomer (B), there is no such constraint and a number of conformations must be considered.

The following procedure was followed to locate the lowest energy conformation for **3a** and assumed to be valid for **3b** and **3d**. Molecular mechanics calculations were used to conduct a search for the lowest energy conformer, generating the structure shown below.

Lowest energy conformation of **3a**, as determined by a molecular mechanics conformational search

Next, the C(2)-C(1)-C(7)-O(1) torsion angle was incrementally changed, with a B3LYP/6-31G(d) geometrical optimization of all other angles and bonds in the structure and subsequent energy calculation at each incremental angle. The results are shown in the graph below. Not surprisingly, the phenyl ring prefers a conformation in which it is in the same plane as the carbonyl group, thus extending the conjugation of the pi electrons. The highest energy conformations (about 26.8 kJ mol⁻¹ higher at this level of theory) correspond to 90° and 270° changes (the plane of the phenyl ring made perpendicular to the plane defined by atoms C(1), C(7), and O(1)).

Change in Torsional Angle C(2)-C(1)-C(7)-O(1),°

Using the same procedure, the C(1)-C(7)-C(8)-C(9) torsion angle was incrementally varied from -180° to 180° by 15.65° steps. The results are shown in the graph below. A lower energy conformer is observed at -70.43° .

Torsional Angle C(1)-C(7)-C(8)-C(9),°

The energy difference at the 6-311G(d) level (optimized geom.) between the starting and lowest E conformation is 1.8 kJ mol^{-1} .

Finally, using the same procedure again, the C(7)-C(8)-C(9)-N(1) torsion angle was incrementally varied from -77.64° to 282.36° by 15.65° steps. The results are shown in the graph below. A lower energy conformer is observed at 63.23° . This conformer has the same energy as that identified in the previous torsional angle study. The two conformers are mirror images of each other.

Torsional Angle C(7)-C(8)-C(9)-N(1),°

The lowest energy isomer has the structure shown here. One of the CH_2 hydrogen atoms eclipses the carbonyl oxygen (O(1)) while the other eclipses the oxazoline nitrogen atom (N(1)).

This conformation was used for the initial guess in geometrically optimizing ligands **3a-d**. In the case of **3d**, the effect of rotation of the *tert*-butyl group on the energy was examined. In each case, geometrical optimization at the B3LYP/6-31G(d) level led to the same final conformer. This molecule was then used for geometrical optimization at the B3LYP/6-311G(d) level.

Energies of Tautomers

Calculated Energies (B3LYP/6-311G(d))

Tautomer	Energy (kJ mol ⁻¹)	Energy difference (enamine-enol)	Energy difference (enamine-keto)
Enamine-3a	-1863536.82	_	_
Enol-3a	-1863519.45	17.37	-
Keto-3a	-1863518.76	_	18.06
Enamine-3c	-2164294.87	_	_
Enol-3c	-2164277.78	17.09	_
Keto-3c	-2164279.81	_	15.06
Enamine-3b	-2400605.91	_	_
Enol-3b	-2400585.70	20.21	- .
Keto-3b	-2400579.85	_	26.06
Enamine-3d	-1669739.92	_	_
Enol-3d	-1669725.17	14.8	_
Keto-3d	-1669714.13	_	25.8
Enamine-3e	-1360025.17	_	_
Enol-3e	-1360011.32	13.85	_
Keto-3e	-1360005.00	_	20.17

Calculated Zero-Point Energies (B3LYP/6-311G(d)) in kJmol⁻¹

Tautomer	ZPE (kJ mol ⁻¹)	ZPE Difference (enol- enamine)	ZPE Difference (keto- enamine)
3a-enamine	674.88	-	-
3a-enol	674.29	-0.59	-
3a-keto	674.05	-	-0.83
3b-enamine	760.70	-	-
3b-enol	759.92	-0.78	-
3a-keto	759.51	-	-1.19
3c-enamine	681.50	-	-
3c-enol	680.95	-0.55	-
3a-keto	680.28	-	-1.22
3d-enamine	757.16	-	-

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

3d-enol	757.15	-0.01	-
3a-keto	756.45	-	-0.71
3e-enamine	535.30	-	-
3e-enol	535.29	-0.01	-
3a-keto	532.29	-	-3.01

Tautomer	Energy (kJ mol ⁻¹)	Energy difference (enamine-enol)	Energy difference (enamine-keto)
Enamine-3a	-1863745.93	_	
Enol-3a	-1863738.14	+7.79	_
Keto-3a	-1863717.39	_	+28.54
Enamine-3b	-2164537.42	_	-
Enol-3b	-2164528.92	+8.50	-
Keto-3b	-2164512.51	_	+24.91
Enamine-3c	-2400862.27	_	-
Enol-3c	-2400851.47	+10.80	-
Keto-3c	-2400824.01		+38.26
Enamine-3d	-1669933.50	_	_
Enol-3d	-1669928.50	+5.00	_
Keto-3d	-1669905.44	_	+28.06
Enamine-3e	-1360185.59	_	_
Enol-3e	-1360180.28	+5.31	_
Keto-3e	-1360157.63	_	+27.96

Calculated Energies (B3LYP/6-311++G[2df, 2p]) in kJ mol⁻¹

Calculated Zero-Point Energies (B3LYP/6-311++G[2df, 2p]) in kJmol⁻¹

Tautomer	ZPE ^a (kJ mol ⁻¹)	ZPE Difference ^b (enol-enamine)	ZPE Difference ^b (keto-enamine)
3a-enamine	673.88 (665.59)	-	-
3a-enol	674.33 (666.04)	+0.45	-
3a-keto	671.78 (663.52)	-	-2.07
3b-enamine	758.97 (749.63)	-	-
3b-enol	758.12 (748.80)	-0.83	-
3a-keto	756.84 (747.53)	-	-2.10
3c-enamine	680.26 (671.89)	-	-
3c-enol	679.94 (671.58)	-0.31	-
3a-keto	677.63 (669.30)	-	-2.59
3d-enamine	754.81 (745.53)	-	-
3d-enol	755.28 (745.99)	+0.46	-
3a-keto	752.78 (743.52)	-	-2.01

3e-enamine	532.95 (526.39)	-	
3e-enol	533.95 (527.38)	+0.99	-
3a-keto	530.42 (523.90)	-	-2.49

^a Values in parentheses are modified by the scaling factor of 0.9877 as suggested in: M. P. Andersson and P. Uvdal, *J. Phys. Chem. A*, 2005, **109**, 2937.

^b Scaled values used.

Calculated Energies (B3LYP/cc-pVTZ) in kJ mol⁻¹

Tautomer	Energy (kJ mol ⁻¹)	Energy difference (enamine-enol)	Energy difference (enamine-keto)
Enamine-3a	-1863788.09	_	_
Enol-3a	-1863780.72	7.37	_
Keto-3a	-1863759.72	-	28.37
Enamine-3b	-2164584.30	_	-
Enol-3b	-2164577.10	7.20	_
Keto-3b	-2164560.00	-	24.30
Enamine-3c	-2400910.36	_	-
Enol-3c	-2400899.91	10.45	_
Keto-3c	-2400872.42	· _	37.94
Enamine-3d	-1669971.43	-	-
Enol-3d	-1669966.86	4.57	-
Keto-3d	-1669942.63	_	28.80
Enamine-3e	-1360213.20	_	_
Enol-3e	-1360208.45	4.75	-
Keto-3e	-1360185.47	-	27.73

Calculated Zero-Point Energies	(B3LYP/cc-pVTZ)) in kJmol ⁻¹

Tautomer	ZPE ^a (kJ mol ⁻¹)	ZPE Difference ^b (enol-enamine)	ZPE Difference ^b (keto-enamine)
3a-enamine	673.17 (664.89)	-	-
3a-enol	673.74 (665.45)	+0.56	-
3a-keto	671.64 (663.38)	-	-1.51
3b-enamine	758.43. (749.10)	-	-
3b-enol	757.46 (748.14)	-0.96	-

3a-keto	756.82. (747.14)	-	-1.96
3c-enamine	680.08 (671.72)	-	-
3c-enol	679.22 (670.87)	-0.85	-
3a-keto	677.44 (669.11)	-	-2.61
3d-enamine	754.36 (745.08)	-	-
3d-enol	754.87 (745.59)	+0.51	-
3a-keto	752.24 (742.99)	-	-2.09
3e-enamine	532.53 (525.98)	-	-
3e-enol	532.81 (526.26)	+0.28	-
3a-keto	530.05 (523.53)	-	-2.79

^a Values in parentheses are modified by the scaling factor of 0.9877 as suggested in: M. P. Andersson and P. Uvdal, *J. Phys. Chem. A*, 2005, **109**, 2937. Recent work (S. G. Andrade, L. C. S. Gonçalves and F. E. Jorge, *J. Molec. Struct. THEOCHEM*, 2008, **864**, 20; P. L. Barbieri, P. A. Fantin and F. E. Jorge, *Mol. Phys.* 2006, **104**, 2945) has suggested a 0.9887 scaling factor for the B3LYP/TZP basis set but this was deemed to be not statistically significant in terms of the energies involved here.

^b Scaled values used.

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond lengths between three tautomeric forms of **3a** (Å)

Numbering schemes: enamine (left), enol (center) and keto (right) forms.

Bond	Enamine	Enol	keto
O(2)-C(7)	1.25	1.34	1.21
O(1)-C(4)	1.45	1.45	1.45
O(1)-C(5)	1.35	1.36	1.36
N(1)-C(3)	1.47	1.48	1.48
N(1)-C(5)	1.35	1.29	1.27
C(3)-C(4)	1.54	1.56	1.56
C(1)-C(3)	1.54	1.54	1.53
C(2)-C(3)	1.53	1.53	1.53
C(5)-C(6)	1.37	1.44	1.50
C(6)-C(7)	1.44	1.37	1.54
C(7)-C(8)	1.51	1.48	1.50
C(8)-C(9)	1.40	1.40	1.40
C(9)-C(10)	1.39	1.39	1.39
C(10)-C(11)	1.39	1.40	1.40
C(11)-C(12)	1.40	1.39	1.39
C(12)-C(13)	1.39	1.39	1.39
C(13)-C(8)	1.40	1.40	1.40

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond angles between three tautomeric forms of **3a** (°)

Angle	Enamine	Enol	Keto
C(5)-O(1)-C(4)	108.0	106.0	105.7
C(5)-N(1)-C(3)	111.5	108.4	107.4
O(1)-C(5)-N(1)	110.4	117.1	118.8
N(1)-C(3)-C(4)	98.1	102.3	103.1

C(3)-C(4)-O(1)	105.4	105.0	104.5
N(1)-C(3)-C(1)	111.0	109.2	109.6
N(1)-C(3)-C(2)	111.5	110.3	108.7
C(1)-C(3)-C(2)	111.2	110.8	110.9
C(1)-C(3)-C(4)	112.0	111.8	112.2
C(2)-C(3)-C(4)	112.4	112.2	111.9
N(1)-C(5)-C(6)	127.5	125.4	126.3
O(1)-C(5)-C(6)	122.1	117.5	114.8
C(5)-C(6)-C(7)	120.1	120.8	113.9
O(2)-C(7)-C(6)	122.6	122.0	119.4
O(2)-C(7)-C(8)	118.2	113.7	121.3
C(6)-C(7)-C(8)	119.2	124.2	119.2
C(7)-C(8)-C(9)	123.9	122.1	117.8
C(7)-C(8)-C(13)	117.6	119.3	123.0
C(13)-C(8)-C(9)	118.6	118.6	119.2
C(8)-C(9)-C(10)	120.7	120.7	120.5
C(9)-C(10)-C(11)	120.2	120.3	120.0
C(10)-C(11)-C(12)	119.6	119.6	120.0
C(11)-C(12)-C(13)	120.1	120.3	120.2
C(12)-C(13)-C(8)	120.9	120.6	120.2

<u>Comparison of Calculated (Gas, B3LYP/6-311G(d)) torsion angles between three tautomeric</u> forms of **3a** (°)

Angle	Enamine	Enol	Keto
C(3)-N(1)-C(5)-O(1)	13.0	2.6	-1.5
C(3)-N(1)-C(5)-C(6)	-166.5	-177.1	178.2
C(4)-O(1)-C(5)-N(1)	4.8	4.7	-3.4
C(4)-O(1)-C(5)-C(6)	-175.7	-175.7	176.8
C(7)-C(6)-C(5)-N(1)	4.7	1.4	119.8
C(7)-C(6)-C(5)-O(1)	-174.8	-178.2	-60.5
C(5)-N(1)-C(3)-C(1)	94.4	110.5	125.1
C(5)-N(1)-C(3)-C(2)	-140.9	-127.5	-113.6
C(5)-N(1)-C(3)-C(4)	-23.0	-8.0	5.3
C(5)-O(1)-C(4)-C(3)	-19.2	-9.3	6.4
N(1)-C(3)-C(4)-O(1)	24.4	10.4	-7.1
C(2)-C(3)-C(4)-O(1)	141.6	128.6	109.6
C(1)-C(3)-C(4)-O(1)	-92.2	-106.3	-125.0

O(2)-C(7)-C(6)-C(5)	0.1	-1.2	113.1
C(8)-C(7)-C(6)-C(5)	179.2	179.8	-68.2
O(2)-C(7)-C(8)-C(13)	8.7	-12.8	176.6
O(2)-C(7)-C(8)-C(9)	-170.6	166.7	-2.8
C(6)-C(7)-C(8)-C(13)	-170.5	166.3	-2.0
C(6)-C(7)-C(8)-C(9)	10.2	-14.2	178.6
C(9)-C(8)-C(13)-C(12)	-0.7	0.7	0.0
C(7)-C(8)-C(13)-C(12)	-179.9	-179.8	-179.3
C(8)-C(13)-C(12)-C(11)	0.4	-0.3	-0.2
C(13)-C(12)-C(11)-C(10)	0.1	-0.2	0.1
C(12)-C(11)-C(10)-C(9)	-0.4	0.2	0.0
C(13)-C(8)-C(9)-C(10)	0.4	-0.7	0.1
C(7)-C(8)-C(9)-C(10)	179.7	179.8	179.5
C(11)-C(10)-C(9)-C(8)	0.1	0.2	-0.1

<u>Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond lengths between three tautomeric forms of **3b** (\AA) </u>

Numbering schemes: enamine (left), enol (center) and keto (right) forms.

Bond	Enamine	Enol	Keto
O(2)-C(7)	1.25	1.34	1.22
O(1)-C(4)	1.44	1.45	1.45
O(1)-C(5)	1.35	1.36	1.36
N(1)-C(3)	1.47	1.48	1.48
N(1)-C(5)	1.35	1.29	1.27
C(3)-C(4)	1.55	1.56	1.56
C(1)-C(3)	1.54	1.53	1.53
C(2)-C(3)	1.53	1.54	1.53
C(5)-C(6)	1.37	1.44	1.50
C(6)-C(7)	1.44	1.37	1.54
C(7)-C(8)	1.50	1.47	1.49
C(8)-C(9)	1.40	1.41	1.40
C(9)-C(10)	1.38	1.38	1.39
C(10)-C(11)	1.40	1.40	1.40
C(11)-C(12)	1.40	1.40	1.40
C(12)-C(13)	1.39	1.39	1.38
C(13)-C(8)	1.40	1.40	1.41
C(11)-O(3)	1.36	1.36	1.36
O(3)-C(14)	1.42	1.42	1.42

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond angles between three tautomeric forms of **3b** (°)

Angle	Enamine	Enol	Keto
C(5)-O(1)-C(4)	108.1	106.2	105.8

_

_

C(5)-N(1)-C(3)	111.6	108.5	107.4
O(1)-C(5)-N(1)	110.4	117.1	118.8
N(1)-C(3)-C(4)	98.1	102.4	103.2
C(3)-C(4)-O(1)	105.4	105.1	104.6
N(1)-C(3)-C(1)	111.2	110.2	109.5
N(1)-C(3)-C(2)	111.3	109.4	108.8
C(1)-C(3)-C(2)	111.3	110.8	110.8
C(1)-C(3)-C(4)	111.8	112.0	112.1
C(2)-C(3)-C(4)	112.4	111.8	112.1
N(1)-C(5)-C(6)	127.6	125.6	126.3
O(1)-C(5)-C(6)	122.1	117.4	114.9
C(5)-C(6)-C(7)	120.1	120.9	114.1
O(2)-C(7)-C(6)	122.3	121.9	119.2
O(2)-C(7)-C(8)	118.4	113.9	121.6
C(6)-C(7)-C(8)	119.3	124.2	119.1
C(7)-C(8)-C(9)	124.3	122.3	118.1
C(7)-C(8)-C(13)	118.0	119.8	123.6
C(13)-C(8)-C(9)	117.7	117.9	118.4
C(8)-C(9)-C(10)	121.2	121.1	121.5
C(9)-C(10)-C(11)	120.3	120.4	119.5
C(10)-C(11)-C(12)	119.4	119.3	119.6
C(11)-C(12)-C(13)	119.6	119.8	120.3
C(12)-C(13)-C(8)	121.9	121.5	120.7
C(12)-C(11)-O(3)	124.8	124.9	115.8
C(10)-C(11)-O(3)	115.8	115.8	124.6
C(11)-O(3)-C(14)	118.6	118.6	118.8

<u>Comparison of Calculated (Gas, B3LYP/6-311G(d)) torsion angles between three tautomeric</u> forms of **3b** (°)

<u>1011115 01 50 ()</u>			
Angle	Enamine	Enol	Keto
C(3)-N(1)-C(5)-O(1)	12.6	-2.0	-1.1
C(3)-N(1)-C(5)-C(6)	-166.9	177.9	178.7
C(4)-O(1)-C(5)-N(1)	4.8	-4.1	-2.5
C(4)-O(1)-C(5)-C(6)	-175.6	176.0	177.7
C(7)-C(6)-C(5)-N(1)	4.5	-0.9	120.4
C(7)-C(6)-C(5)-O(1)	-175.0	179.0	-59.8
C(5)-N(1)-C(3)-C(1)	94.8	125.9	123.4
C(5)-N(1)-C(3)-C(2)	-140.5	-122.1	-115.3

C(5)-N(1)-C(3)-C(4)	-22.5	6.6	3.9
C(5)-O(1)-C(4)-C(3)	-19.0	7.9	4.7
N(1)-C(3)-C(4)-O(1)	24.0	-8.7	-5.2
C(2)-C(3)-C(4)-O(1)	141.1	108.2	111.7
C(1)-C(3)-C(4)-O(1)	-92.8	-126.8	-122.9
O(2)-C(7)-C(6)-C(5)	0.0	1.0	113.5
C(8)-C(7)-C(6)-C(5)	179.5	179.7	-67.8
O(2)-C(7)-C(8)-C(13)	3.5	15.1	176.5
O(2)-C(7)-C(8)-C(9)	-176.1	-164.8	-2.8
C(6)-C(7)-C(8)-C(13)	-176.1	-163.7	-2.2
C(6)-C(7)-C(8)-C(9)	4.3	16.4	178.5
C(9)-C(8)-C(13)-C(12)	-0.3	-1.0	-0.1
C(7)-C(8)-C(13)-C(12)	-180.0	179.1	-179.4
C(8)-C(13)-C(12)-C(11)	0.2	0.5	-0.1
C(13)-C(12)-C(11)-C(10)	0.1	0.2	0.2
C(12)-C(11)-C(10)-C(9)	-0.2	-0.5	-0.1
C(13)-C(8)-C(9)-C(10)	0.2	0.8	0.2
C(7)-C(8)-C(9)-C(10)	179.8	-179.3	179.6
C(11)-C(10)-C(9)-C(8)	0.1	0.0	-0.1
C(13)-C(12)-C(11)-O(3)	-180.0	179.9	-179.8
C(9)-C(10)-C(11)-O(3)	179.9	179.8	179.9
C(12)-C(11)-O(3)-C(14)	0.1	-0.1	180.0
C(10)-C(11)-O(3)-C(14)	-180.0	179.6	0.0

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond lengths between three tautomeric forms of 3c (Å)

Numbering schemes: enamine (left), enol (center) and keto (right) forms.

Bond	Enamine	Enol	Keto
O(2)-C(7)	1.25	1.34	1.21
O(1)-C(4)	1.45	1.45	1.45
O(1)-C(5)	1.35	1.36	1.36
N(1)-C(3)	1.47	1.48	1.48
N(1)-C(5)	1.34	1.29	1.27
C(3)-C(4)	1.55	1.56	1.56
C(1)-C(3)	1.54	1.53	1.53
C(2)-C(3)	1.53	1.53	1.53
C(5)-C(6)	1.38	1.44	1.50
C(6)-C(7)	1.43	1.36	1.54
C(7)-C(8)	1.51	1.48	1.50
C(8)-C(9)	1.40	1.40	1.40
C(9)-C(10)	1.39	1.39	1.39
C(10)-C(11)	1.39	1.39	1.39
C(11)-C(12)	1.39	1.39	1.39
C(12)-C(13)	1.39	1.39	1.39
C(13)-C(8)	1.40	1.40	1.40
C(11)-N(2)	1.48	1.48	1.48
N(2)-O(4)	1.22	1.22	1.22
N(2)-O(5)	1.22	1.22	1.22

<u>Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond angles between three tautomeric forms</u> of 3c (°)

Angle	Enamine	Enol	Keto
C(5)-O(1)-C(4)	108.0	106.2	105.6
C(5)-N(1)-C(3)	111.9	108.5	107.3

O(1)-C(5)-N(1)	110.7	117.5	119.0
N(1)-C(3)-C(4)	98.1	102.4	103.1
C(3)-C(4)-O(1)	105.5	105.1	104.5
N(1)-C(3)-C(1)	110.9	110.0	109.7
N(1)-C(3)-C(2)	111.3	109.4	108.6
C(1)-C(3)-C(2)	111.4	110.8	110.9
C(1)-C(3)-C(4)	112.1	112.0	112.2
C(2)-C(3)-C(4)	112.4	112.0	112.0
N(1)-C(5)-C(6)	127.4	125.0	126.2
O(1)-C(5)-C(6)	121.9	117.5	114.8
C(5)-C(6)-C(7)	119.9	120.6	113.8
O(2)-C(7)-C(6)	123.2	122.6	120.0
O(2)-C(7)-C(8)	117.7	113.7	120.7
C(6)-C(7)-C(8)	119.1	123.7	119.2
C(7)-C(8)-C(9)	123.8	121.9	117.6
C(7)-C(8)-C(13)	117.4	119.2	122.9
C(13)-C(8)-C(9)	118.8	118.9	119.5
C(8)-C(9)-C(10)	120.9	120.8	120.7
C(9)-C(10)-C(11)	118.8	118.9	118.5
C(10)-C(11)-C(12)	121.8	121.8	122.2
C(11)-C(12)-C(13)	118.6	118.8	118.8
C(12)-C(13)-C(8)	121.1	120.8	120.3
C(12)-C(11)-N(2)	119.2	119.2	118.8
C(10)-C(11)-N(2)	119.0	119.0	118.9
C(11)-N(2)-O(4)	117.6	117.6	117.5
C(11)-N(2)-O(5)	117.6	117.6	117.5
O(4)-N(2)-O(5)	124.7	124.8	125.0

<u>Comparison of Calculated (Gas, B3LYP/6-311G(d)) torsion angles between three tautomeric</u> forms of 3c (°)

Angle	Enamine	Enol	Keto
C(3)-N(1)-C(5)-O(1)	11.0	-1.2	-1.8
C(3)-N(1)-C(5)-C(6)	-168.7	178.9	178.1
C(4)-O(1)-C(5)-N(1)	5.7	-2.6	-3.2
C(4)-O(1)-C(5)-C(6)	-174.6	177.3	176.9
C(7)-C(6)-C(5)-N(1)	3.8	-0.2	117.7
C(7)-C(6)-C(5)-O(1)	-175.8	179.9	-62.3
C(5)-N(1)-C(3)-C(1)	96.6	123.2	125.3

C(5)-N(1)-C(3)-C(2)	-138.8	-114.9	-113.4
C(5)-N(1)-C(3)-C(4)	-20.9	4.0	5.5
C(5)-O(1)-C(4)-C(3)	-18.8	4.9	6.3
N(1)-C(3)-C(4)-O(1)	22.9	-5.4	-7.1
C(2)-C(3)-C(4)-O(1)	140.0	111.7	109.4
C(1)-C(3)-C(4)-O(1)	-93.7	-123.2	-125.1
O(2)-C(7)-C(6)-C(5)	0.6	0.7	113.9
C(8)-C(7)-C(6)-C(5)	-179.9	178.9	-67.5
O(2)-C(7)-C(8)-C(13)	9.1	17.2	176.4
O(2)-C(7)-C(8)-C(9)	-170.0	-162.6	-3.0
C(6)-C(7)-C(8)-C(13)	-170.4	-161.2	-2.3
C(6)-C(7)-C(8)-C(9)	10.5	19.0	178.4
C(9)-C(8)-C(13)-C(12)	-0.6	-1.2	0.0
C(7)-C(8)-C(13)-C(12)	-179.7	179.0	-179.4
C(8)-C(13)-C(12)-C(11)	0.3	0.5	-0.2
C(13)-C(12)-C(11)-C(10)	0.2	0.4	0.2
C(12)-C(11)-C(10)-C(9)	-0.4	-0.5	0.0
C(13)-C(8)-C(9)-C(10)	0.4	1.0	0.2
C(7)-C(8)-C(9)-C(10)	179.5	-179.2	179.6
C(11)-C(10)-C(9)-C(8)	0.1	-0.2	-0.2
C(13)-C(12)-C(11)-N(2)	180.0	179.9	-179.7
C(9)-C(10)-C(11)-N(2)	179.8	179.9	180.0
C(12)-C(11)-N(2)-O(4)	-0.1	0.5	178.8
C(10)-C(11)-N(2)-O(4)	179.7	-179.9	-1.2
C(12)-C(11)-N(2)-O(5)	179.9	-179.6	-1.1
C(10)-C(11)-N(2)-O(5)	-0.4	0.0	178.9
C(12)-C(11)-N(2)-O(5) C(10)-C(11)-N(2)-O(5)	179.9 -0.4	-179.6 0.0	-1.1 178.9

Numbering schemes: enamine (left), enol (right) and keto (centre) forms.

H. (1 C2		C(1 _C2	н	C(1 _C2
02 N1-C3	Q2	N1-C3	02	N1-C3
C15_C8_C/_C=C3_Q	C15 C8 C/ C	~ ⁰⁵ ~ó	C15 C8 C/	c
C16 6 1	6	1	C16	6 1
C1/	C17		C1/	

Bond	Enamine	Enol	Keto
O(2)-C(7)	1.24	1.34	1.21
O(1)-C(4)	1.45	1.45	1.45
O(1)-C(5)	1.35	1.36	1.36
N(1)-C(3)	1.47	1.48	1.48
N(1)-C(5)	1.35	1.29	1.27
C(3)-C(4)	1.54	1.56	1.56
C(1)-C(3)	1.54	1.54	1.53
C(2)-C(3)	1.53	1.53	1.53
C(5)-C(6)	1.37	1.44	1.50
C(6)-C(7)	1.44	1.36	1.54
C(7)-C(8)	1.55	1.52	1.54
C(8)-C(15)	1.54	1.55	1.54
C(8)-C(16)	1.54	1.54	1.54
C(8)-C(17)	1.54	1.54	1.55

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond angles between three tautomeric forms of **3d** (°)

Angle	Enamine	Enol	Keto
C(5)-O(1)-C(4)	108.0	106.3	105.7
C(5)-N(1)-C(3)	111.4	108.6	107.3
O(1)-C(5)-N(1)	110.3	117.2	118.7
N(1)-C(3)-C(4)	98.0	102.5	103.1
C(3)-C(4)-O(1)	105.3	105.2	104.5
N(1)-C(3)-C(1)	111.1	109.5	109.9
N(1)-C(3)-C(2)	111.5	110.0	108.4
C(1)-C(3)-C(2)	111.3	110.6	110.8
C(1)-C(3)-C(4)	111.9	111.9	112.5

C(2)-C(3)-C(4)	112.4	112.0	111.8
N(1)-C(5)-C(6)	127.4	125.5	126.6
O(1)-C(5)-C(6)	122.3	117.3	114.7
C(5)-C(6)-C(7)	120.3	120.8	115.7
O(2)-C(7)-C(6)	122.6	122.2	118.8
O(2)-C(7)-C(8)	119.3	112.5	121.3
C(6)-C(7)-C(8)	118.1	125.3	119.9
C(7)-C(8)-C(15)	109.4	108.3	108.7
C(7)-C(8)-C(16)	110.3	108.2	111.8
C(7)-C(8)-C(17)	108.9	112.3	107.7
C(15)-C(8)-C(16)	109.2	109.4	110.0
C(15)-C(8)-C(17)	109.3	109.3	109.0
C(16)-C(8)-C(17)	109.7	109.2	109.5

Comparison of Calculated (Gas, B3LYP/6-311G(d)) torsion angles between three tautomeric forms of **3d** (°)

Angle	Enamine	Enol	Keto
C(3)-N(1)-C(5)-O(1)	13.9	1.0	-2.2
C(3)-N(1)-C(5)-C(6)	-165.6	-178.8	176.0
C(4)-O(1)-C(5)-N(1)	4.4	2.6	-3.7
C(4)-O(1)-C(5)-C(6)	-176.1	-177.6	177.8
C(7)-C(6)-C(5)-N(1)	4.7	0.1	118.8
C(7)-C(6)-C(5)-O(1)	-174.7	-179.8	-62.8
C(5)-N(1)-C(3)-C(1)	93.3	115.1	126.8
C(5)-N(1)-C(3)-C(2)	-141.9	-123.0	-112.0
C(5)-N(1)-C(3)-C(4)	-24.0	-3.8	6.7
C(5)-O(1)-C(4)-C(3)	-19.5	-4.7	7.5
N(1)-C(3)-C(4)-O(1)	25.2	5.1	-8.5
C(2)-C(3)-C(4)-O(1)	142.4	123.0	107.7
C(1)-C(3)-C(4)-O(1)	-91.5	-112.1	-126.9
O(2)-C(7)-C(6)-C(5)	-1.0	0.0	116.4
C(8)-C(7)-C(6)-C(5)	177.9	-179.7	-64.7
O(2)-C(7)-C(8)-C(15)	-5.8	58.6	22.6
O(2)-C(7)-C(8)-C(16)	-126.0	-59.9	144.2
O(2)-C(7)-C(8)-C(17)	113.6	179.4	-95.4
C(6)-C(7)-C(8)-C(15)	175.3	-121.7	-156.3
C(6)-C(7)-C(8)-C(16)	55.1	119.8	-34.7
C(6)-C(7)-C(8)-C(17)	-65.3	-0.9	85.7

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond lengths between three tautomeric forms of **3e** (Å)

Numbering schemes: enamine (left), enol (right) and keto (centre) forms.

		, , ,
C1 C2	C1 C2	C1 C2
Η \/	\ /	Н \/
NUL C3	63	··· C3
$02 N1^{-00}$	02 N1-00	02 N1-00
		ĭ ⁻ Πμ \
		C_7 C_5 $\sqrt{C_7}$
0 70 80		0 70 80
		Č 1
6 '	0	6

Bond	Enamine	Enol	Keto
O(2)-C(7)	1.24	1.33	1.21
O(1)-C(4)	1.45	1.45	1.45
O(1)-C(5)	1.35	1.36	1.37
N(1)-C(3)	1.47	1.48	1.48
N(1)-C(5)	1.35	1.29	1.27
C(3)-C(4)	1.55	1.56	1.56
C(1)-C(3)	1.54	1.54	1.53
C(2)-C(3)	1.53	1.53	1.53
C(5)-C(6)	1.37	1.44	1.49
C(6)-C(7)	1.44	1.36	1.54
C(7)-C(8)	1.52	1.50	1.51

Comparison of Calculated (Gas, B3LYP/6-311G(d)) bond angles between three tautomeric forms of **3e** (°)

<u>0150()</u>			
Angle	Enamine	Enol	keto
C(5)-O(1)-C(4)	108.0	106.1	105.8
C(5)-N(1)-C(3)	111.6	108.4	107.5
O(1)-C(5)-N(1)	110.5	117.2	118.7
N(1)-C(3)-C(4)	98.1	102.4	103.3
C(3)-C(4)-O(1)	105.4	105.0	104.5
N(1)-C(3)-C(1)	111.1	109.2	109.6
N(1)-C(3)-C(2)	111.5	110.3	108.7
C(1)-C(3)-C(2)	111.2	110.8	110.8
C(1)-C(3)-C(4)	112.0	111.7	112.3
C(2)-C(3)-C(4)	112.4	112.1	111.9
N(1)-C(5)-C(6)	126.9	125.2	126.6
O(1)-C(5)-C(6)	122.6	117.6	114.7
C(5)-C(6)-C(7)	120.1	120.7	115.3
O(2)-C(7)-C(6)	123.7	123.3	120.2

O(2)-C(7)-C(8)	118.3	113.0	122.6
C(6)-C(7)-C(8)	117.9	123.7	117.2

Comparison of Calculated (Gas, B3LYP/6-311G(d)) torsion angles betwee	en three tautomeric
forms of 3e (°)		_	

Angle	Enamine	Enol	Keto
C(3)-N(1)-C(5)-O(1)	13.0	2.2	-1.6
C(3)-N(1)-C(5)-C(6)	-166.5	-177.3	178.5
C(4)-O(1)-C(5)-N(1)	4.4	4.5	-1.9
C(4)-O(1)-C(5)-C(6)	-176.2	-176.0	178.1
C(7)-C(6)-C(5)-N(1)	4.7	0.6	114.9
C(7)-C(6)-C(5)-O(1)	-174.7	-178.8	-65.0
C(5)-N(1)-C(3)-C(1)	94.8	111.2	123.9
C(5)-N(1)-C(3)-C(2)	-140.5	-126.8	-114.9
C(5)-N(1)-C(3)-C(4)	-22.6	-7.3	4.1
C(5)-O(1)-C(4)-C(3)	-18.6	-8.6	4.2
N(1)-C(3)-C(4)-O(1)	23.8	9.6	-5.0
C(2)-C(3)-C(4)-O(1)	141.1	127.8	111.7
C(1)-C(3)-C(4)-O(1)	-92.9	-107.2	-122.9
O(2)-C(7)-C(6)-C(5)	-0.7	-0.2	143.3
C(8)-C(7)-C(6)-C(5)	179.0	179.8	-38.6

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

(blank page)

-

.

.

.

Spectroscopic Characterisation of Compounds 2f, 3f and 5.

IR (KBr) spectrum of compound 2f	S-31
¹ H NMR (CDCl ₃) spectrum of compound 2f	8-32
¹³ C{ ¹ H} NMR spectrum (CDCl ₃) of compound 2f	S-33
IR (KBr) spectrum of compound 3f	S-34
¹ H NMR (CDCl ₃) spectrum of compound 3f	8-35
¹³ C{ ¹ H} NMR spectrum (CDCl ₃) of compound 3f	8-36
IR (KBr) spectrum of compound 5	S-37

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

==

ZH

0

450.0

1000

%T

ZH

C

÷....

Tautomer	Solvent	Calculated Relative Energy Differences to enamine form (kJmol ⁻¹): SM8	Calculated Relative Energy Differences to enamine form (kJmol ⁻¹): SMD	Energy Difference (kJmol ⁻¹) from NMR (298K) data
3d-enamine	acetone	0	0	0
3d-enol	acetone	+16.1	+17.2	—
3d-keto	acetone	+32.9	+30.4	+8.2
3d-enamine	CCl ₄	0	0	0
3d-enol	CCl ₄	+9.6	+9.6	_
3d-keto	CCl ₄	+33.0	+32.7	+6.8
3d-enamine	C ₆ H ₆	0	0	0
3d-enol	C_6H_6	+9.7	+10.0	
3d-keto	C_6H_6	+33.1	+24.9	+7.9
3d-enamine	CHCl ₃	0	0	0
3d-enol	CHCl ₃	+12.6	+14.4	_
3d-keto	CHCl ₃	+32.3	+31.8	+6.0
3d-enamine	dmso	0	0	0
3d-enol	dmso	+16.7	+17.7	_
3d-keto	dmso	+32.9	+29.1	+9.2
3d-enamine	MeOH	0	0	0
3d-enol	MeOH	+16.5	+24.4	_
3d-keto	MeOH	+33.4	+31.9	+4.6
3e-enamine	CHCl ₃	n/c ^b	n/c ^b	0
3e-enol	CHCl ₃	n/c ^b	n/c ^b	_
3e-keto	CHCl ₃	n/c ^b	n/c ^b	+5.4 ^a

<u>Table S-2. Observed and Calculated Energies Including Solvation (DFT: B3LYP/6-311G(d)/SM08 or SMD) for 3d-e in various solvents</u>

^a Value calculated from data from reference 7c; ^b n/c = not calculated.

Table S-3

Calculated Energies (B3LYP/6-311G*) of protonated 3a-3e (i.e. 4a-4e)

Lautomer	Relative Energy
	difference to keto
	isomer (kJ mol ⁻)
4a-enamine	+44.57
4a-enol	+44.34
4a-keto	0
4b-enamine	+41.12
4b-enol	+41.09
4b-keto	0
4c-enamine	+45.90
4c-enol	+46.11
4c-keto	0
	· · · · ·
4d-enamine	+45.16
4d-enol	+45.17
4d-keto	0
4e-enamine	+44.03
4e-enol	+43.84
4e-keto	· 0

.

.

LUMO (top) and HOMOs (TD-DFT) Associated with the LMCT transition of complex 5

(C = grey spheres, Cu = light blue sphere, O = red spheres, N = blue spheres)

For an excellent discussion on TD-DFT, see [S-1].

[S-1] C. Adamo and D. Jacquemin, Chem. Soc. Rev., 2013, 42, 845.