Supplementary information

Imaging mRNA expression levels in living cells with PNA·DNA binary FRET probes delivered by cationic shell-crosslinked nanoparticles

Zhenghui Wang^a, Ke Zhang^{a,d}, Yuefei Shen,^a Jillian Smith,^a Sharon Bloch^c, Samuel Achilefu^c, Karen L. Wooley^{a,b}, John-Stephen Taylor^a*

^aDepartment of Chemistry, Washington University, St. Louis, MO 63130
^bDepartment of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012
^cDepartment of Radiology, Optical Radiology Laboratory, Washington University School of Medicine, 4525 Scott Avenue, Saint Louis, MO 63108, USA.

Contents	Pg
Experimental Section. Dissociation constant of PNA261 for iNOS mRNA.	2
Table S1. BLAST of PNA-Cy5	4
Table S2. BLAST of FAM-PNA	4
Table S3. BLAST of PNA-Cy5 + FAM-PNA	5
Figure S1. Antisense ODN-261 binding curves.	6
Figure S2. PNA-261 competition experiment.	7
Figure S3. The five lowest energy structures predicted for the iNOS mRNA	8
sequence by MFOLD.	
Figure S4. Complete folded structure of the lowest energy -1326.30 kcal/mol iNOS	9
mRNA structure.	
Figure S5. Effect of cSCK binding on FRET between PNA-Cy5•DNA and FAM-	10
PNA•DNA.	

Experimental

Dissociation constant of PNA-261 for iNOS mRNA. This procedure follows the two step procedure described in *Bioconjugate Chemistry* 2012, 23, 574-585 involving the binding constant determination of an antisense ODN for the mRNA site in question (the actual site targeted by PNA-Cy5 is underlined), and then determining the binding constant of the PNA for the mRNA target site by a competition assay with the ODN.

Dissociation constant of ODN-261 for iNOS mRNA by a Dynabead-based binding assay.

The radiolabeled ODN-261 d(GTTT<u>TCTTCACGTTGTTGT</u>TA) (100 pM) was incubated with biotinylated mRNA (0.01, 0.1, 1, 10, 100 nM) and 1 μ L of RNase inhibitor for 4 h at 37 °C in a total volume of 100 μ L. Streptavidin coated Dynabeads were added and mixed for 30 min and then separated by a magnet, washed twice and resuspended in 100 μ L of hybridization buffer (5 mM Tris-HCl, pH 7.0, 1 mM EDTA, 0.1 M NaCl). The bound and free solutions were then assayed by liquid scintillation counting. The dissociation constant was determined by non-linear fitting of the fraction bound versus RNA concentration to equation (1) using the Kaleidagraph program.

(1)
$$F_B = NSB + \frac{SB * (([L] + K_d + [RNA]) - \sqrt{([L] + K_d + [RNA])^2 - 4 * [RNA])}}{2 * [L]}$$

where FB is the fraction of bound ODN, NSB is the nonspecifically bound fraction, SB is the specifically bound fraction and was set equal to (1-NSB), [L] is total ODN concentration, K_d is dissociation constant of the ODN and [RNA] is total RNA concentration. The dissociation constants from three separate experiments were then averaged (Figure S1).

Dissociation constant of PNA-261 for iNOS mRNA by a competition assay.

Radiolabeled ODN (1000 pM) was incubated with biotinylated mRNA (10 pM) and 1 μ L of RNase inhibitor for 4 h at 37 °C, to which unlabeled competitor PNA-261 5'-GTTT<u>TCTTCACGTTGTTG</u>-3' (0, 0.001, 0.01, 0.1, 1, 10 nM) was added. Streptavidin coated Dynabeads were then added and incubated for another 30 min at 37 °C. Following incubation, the reaction mixture was separated with a magnet, washed twice and resuspended in hybridization buffer (5 mM Tris-HCl, pH 7.0, 1 mM EDTA, 0.1 M NaCl). The solutions containing bound and free ODN were counted by liquid scintillation. The fraction of bound ODN (B) was then plotted against the PNA concentration ([PNA]), and the IC₅₀ value was obtained by fitting the data to equation (2). The K_d for the PNA was then obtained using equation (3). The dissociation constants from three separate competition experiments were then averaged (Figure S2).

(2)
$$B = B_{min} + \frac{B_{max} - B_{min}}{1 + 10^{\log[PNA] - \log(IC_{50})}}$$

(3) $K_d(PNA) = \frac{IC_{50}}{1 + \frac{[ODN]}{K_d(ODN)}}$

 Table S1.
 BLAST of PNA-Cy5

mRNA	alignme	nent
Mus musculus nitric oxide synthase 2, inducible (Nos2), mRNA	Query	1 TCTTCACGTTGTTGT 15 15/15
	Sbjct	271 TCTTCACGTTGTTGT 257
Mus musculus G protein-coupled	Query	2 CTTCACGTTGTTG 14 14/15
receptor 107 (Gpr107), mRNA		
	Sbjct	739 CTTCACGTTGTTG 727
Mus musculus phosphoinositide-3-	Query	1 TCTTCACGTTGTT 13 13/15
kinase, catalytic, gamma polypeptide		
(Pik3cg), transcript variant 2, mRNA	Sbjct	6664 TCTTCACGTTGTT 6652
Mus musculus glucan (1,4-alpha-),	Query	3 TTCACGTTGTTGT 15 13/15
branching enzyme 1 (Gbel),		
mRNA	Sbjct	581 TTCACGTTGTTGT 569

Table S2. Blast of FAM-PNA

Mus musculus nitric oxide synthase	Query	1 ATGTCCTTTTCCTCT 15 15/15
2, inducible (Nos2), mRNA	Shiat	
Mus musculus dynein axonemal heavy	Ouerv	2 TGTCCTTTTCCTCT 15 14/1E
chain 10 (Dnahc10), mRNA	Query	
	Sbjct	9119 TGTCCTTTTCCTCT 9106
Mus musculus cDNA sequence BC005561	Query	19 TGTCCTTTTCCTCT 32 14/15
(BC005561), mRNA		
	Sbjct	4837 TGTCCTTTTCCTCT 4824
Mus musculus pleckstrin homology	Query	1 ATGTCCTTTTCCT 13 13/15
member 6 (Dlekha6) transcript	Shict	
variant 2, mRNA	50) C C	SU/S AIGICCITIICCI SUUS
Mus musculus SPARC related modular	Query	2 TGTCCTTTTCCTC 14 13/15
calcium binding 1 (Smocl),		
transcript variant 1, mRNA	Sbjct	2454 TGTCCTTTTCCTC 2442
Mus musculus sperm antigen with	Query	2 TGTCCTTTTCCTC 14 13/15
calponin homology and coiled-coil		
domains 1-like (Speccll), transcript	Sbjct	2457 TGTCCTTTTCCTC 2445
Variant I, MRNA	01107717	
demethylase 5C (Kdm5c) mRNA	Query	
achievityrabe se (namse), menn	Sbict	893 TGTCCTTTTCCTC 881
Mus musculus even skipped homeotic	Query	2 TGTCCTTTTCCTC 14 13/15
gene 1 homolog (Evx1), mRNA		
	Sbjct	2711 TGTCCTTTTCCTC 2699
Mus musculus laminin, alpha 5	Query	3 GTCCTTTTCCTCT 15 13/15
(Lama5), mRNA	~1 .	
	Sbjct	11300 GTCCTTTTCCTCT 11288
Mus musculus nucleoporin 160	Query	1 ATGREETTTTEET 13 13/15
(Napioo), many	Shict	4647 ATGTCCTTTTCCT 4635
Mus musculus sarcolemma associated	Ouerv	2 TGTCCTTTTCCTC 14 12/15
protein (Slmap), mRNA	21	
_	Sbjct	1905 TGTCCTTTTCCTC 1893

Table S3. Complete target site

Mus musculus nitric oxide	Query	1	TCTTCACGTTGTTGTNNATGTCCTTTTCCTCT	32	
synthase 2, inducible					
(Nos2), mRNA	Sbjct	271	TCTTCACGTTGTTGTTAATGTCCTTTTCCTCT	240	
No mRNA matches > 15/30					

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Figure S1. Antisense ODN-261 binding curves. Plots fraction iNOS mRNA bound vs free antisense ODN as a function of iNOS mRNA concentration and experimental fits to the equation described in the experimental section.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is o The Royal Society of Chemistry 2013

Figure S2. PNA-261 competition experiment. Plots fraction iNOS mRNA bound vs free antisense ODN as a function of PNA concentration in the competition experiment and experimental fits to the equation described in the experimental section.

#2 dG = -1326.30

#5 dG = -1323.56

Figure S3. The five lowest energy structures predicted for the iNOS mRNA sequence by MFOLD. The target site identified by the RT-ROL method is highlighted in yellow.

Figure S4. Complete folded structure of the lowest energy -1326.30 kcal/mol iNOS mRNA structure. The arrow points to the site experimentally determined to be accessible to an antisense PNA (in yellow in Figure S3). It is highly unlikely that this site would have been selected over any of the other possible accessible sites.

Figure S5. Effect of cSCK binding on FRET between PNA-Cy5•DNA and FAM-PNA•DNA. Probe concentration: 0.2 μ M for PNA•DNA and iNOS-DNA. Solution: Opti-MEM at an N/P ratio of 10. The donor and acceptor probes were at 0.2 uM each and preannealed with complementary DNA prior to a) mixing together with cSCK, or b) mixing separately with cSCK and then combining, or c) mixing first with iNOS-DNA and then mixing with the cSCK.