Supporting Information — X-Ray Crystallography

Manuscript:	Towards the Enantioselective Synthesis of (-)-Euonyminol –
	Preparation of a Fully Functionalised Lower-rim Model
Authors:	Matthew J. Webber, Sarah A. Warren, Damian M. Grainger,
	Matthew Weston, Stacy Clark, Steven J. Woodhead, Lyn Powell,
	Stephen Stokes, Alexander Alanine, Jeffrey P. Stonehouse,
	Christopher S. Frampton, Andrew J.P. White, and Alan C. Spivey

The X-ray crystal structure of 6

Crystal data for **6**: C₁₁H₁₃N₁O₁, M = 175.22, monoclinic, $P2_1/n$ (no. 14), a = 7.192(3), b = 14.069(4), c = 9.2117(16) Å, $\beta = 102.365(19)^\circ$, V = 910.4(4) Å³, Z = 4, $D_c = 1.278$ g cm⁻³, μ (Mo-K α) = 0.082 mm⁻¹, T = 123 K, colourless prism, 0.40 x 0.35 x 0.20mm, Rigaku AFC7R diffractometer; 2137 measured reflections, 1984 unique, ($R_{int} = 0.0200$), F^2 refinement,^[1] R_1 (obs) = 0.0413, wR_2 (all) = 0.1203, 1664 independent observed reflections [$|F_o| > 4\sigma$ ($|F_o|$), $2\theta_{max} = 53.94^\circ$], 122 parameters. CCDC 905361.

The OH hydrogen atom on O(1) was located from a ΔF map and refined freely.

The X-ray crystal structure of 17

Crystal data for **17**: C₂₃H₂₇N₁O₄, M = 381.46, monoclinic, $P2_1$ (no. 4), a = 6.2151(2), b = 16.8252(5), c = 9.7311(4) Å, $\beta = 90.176(1)^\circ$, V = 1017.58(6) Å³, Z = 2, $D_c = 1.245$ g cm⁻³, μ (Mo-K α) = 0.085 mm⁻¹, T = 120 K, colourless block, , 0.36 x 0.12 x 0.10mm, Nonius KappaCCD diffractometer; 12036 measured reflections, 4019 unique, ($R_{int} = 0.0658$), F^2 refinement,^[1] R_1 (obs) = 0.0518, wR_2 (all) = 0.1216, 3150 independent observed [$|F_o| > 4\sigma$ ($|F_o|$), 99.8% complete to $2\theta_{max} = 52.74^\circ$], 260 parameters. CCDC 905362.

The OH hydrogen atom on O(3) was located from a ΔF map and refined freely. The absolute stereochemistry was not determined.

The X-ray crystal structure of 18c

Crystal data for **18c**: C₄₀H₄₇N₁O₇, M = 653.79, triclinic, P1 (no. 2), a = 10.6749(8), b = 11.6338(9), c = 17.3660(11) Å, $\alpha = 108.132(3)$, $\beta = 103.266(3)$, $\gamma = 110.833(4)^{\circ}$, V = 1769.5(2) Å³, Z = 2, $D_c = 1.227$ g cm⁻³, μ (Mo-K α) = 0.083 mm⁻¹, T = 273 K, colourless prism , 0.50 x 0.25mm, Bruker Nonius Kappa Apex 2 CCD diffractometer; 36283 measured reflections, 8417 unique, ($R_{int} = 0.0248$), F^2 refinement,^[1] R_1 (obs) = 0.0455,

 $wR_2(all) = 0.1277, 7356$ independent observed $[|F_0| > 4\sigma(|F_0|), 98.6\%$ complete to $2\theta_{max} = 56.00^\circ], 439$ parameters. CCDC 905363.

The X-ray crystal structure of 28a

Crystal data for **28a**: C₁₇H₂₃NO₄·0.5(C₄H₈O₂), M = 349.42, tetragonal, $P4_3$ (no. 78), a = b = 16.17422(15), c = 7.32793(11) Å, V = 1917.03(5) Å³, Z = 4, $D_c = 1.211$ g cm⁻³, μ (Cu-K α) = 0.713 mm⁻¹, T = 173 K, colourless needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 3400 independent measured reflections ($R_{int} = 0.0454$), F^2 refinement,^[1] R_1 (obs) = 0.0374, wR_2 (all) = 0.0987, 3022 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta_{max} = 143^\circ$], 203 parameters. The absolute structure of **28a** could not be unambiguously determined either by *R*-factor tests [$R_1^+ = 0.0374$, $R_1^- = 0.0376$] or by use of the Flack parameter [$x^+ = 0.0(2)$, $x^- = 1.2(2)$], and so was assigned based on the known stereochemistries at C(2), C(3), C(8) and C(10).^[2] CCDC 905364.

The included solvent in the structure of **28a** was found to be highly disordered, and the best approach to handling this electron density was found to be the SQUEEZE routine of PLATON.^[3] This suggested a total of 102 electrons per unit cell, equivalent to 25.5 electrons per molecule. The crystal was grown from a mixture of ethyl acetate $[C_4H_8O_2, 48 \text{ electrons}]$ and hexane $[C_6H_{14}, 50 \text{ electrons}]$, and before the use of SQUEEZE the electron density distribution most resembled ethyl acetate; 0.5 ethyl acetate molecules equates to 24 electrons and so this was used as the solvent present. The atom list for the unit cell is thus low by 2 ethyl acetate molecules, *i.e.* $C_8H_{16}O_4$.

The OH hydrogen atom on O(12) was located from a ΔF map and refined freely subject to an O–H distance constraint of 0.90 Å.

The X-ray crystal structure of 31

Crystal data for **31**: C₁₉H₂₉NO₆, M = 367.43, monoclinic, $P2_1/c$ (no. 14), a = 10.6847(2), b = 12.1746(3), c = 14.6780(3) Å, $\beta = 95.328(2)^\circ$, V = 1901.09(7) Å³, Z = 4, $D_c = 1.284$ g cm⁻³, μ (Cu-K α) = 0.784 mm⁻¹, T = 173 K, colourless blocks, Oxford Diffraction Xcalibur PX Ultra diffractometer; 3756 independent measured reflections ($R_{int} = 0.0297$), F^2 refinement,^[1] R_1 (obs) = 0.0370, wR_2 (all) = 0.1021, 3397 independent observed absorption-corrected reflections [$|F_o| > 4\sigma$ ($|F_o|$), $2\theta_{max} = 145^\circ$], 243 parameters. CCDC 905365.

The OH hydrogen atom on O(14) was located from a ΔF map and refined freely subject to an O–H distance constraint of 0.90 Å.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figures:

Figure 1. A view of a molecule of compound **6** crystal structure showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50 % probability level and hydrogen atoms are displayed as spheres of arbitrary radius.

Figure 2. A view of a molecule of compound **17** crystal structure showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50 % probability level and hydrogen atoms are displayed as spheres of arbitrary radius.

Figure 3. A view of a molecule of compound **18c** crystal structure showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50 % probability level and hydrogen atoms are displayed as spheres of arbitrary radius.

Figure 4. The crystal structure of compound 28a (30% probability ellipsoids).

Figure 5. The crystal structure of compound 31 (50% probability ellipsoids).

References

- [1] G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- Webber, M. J.; Weston, M.; Grainger, D. M.; Lloyd, S.; Warren, S. A.; Powell, L.;
 Alanine, A.; Stonehouse, J. P.; Frampton, C. S.; White, A. J. P.; Spivey, A. C. Synlett
 2011, 18, 2693-2696
- [3] A.L. Spek (2008) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. See also A.L. Spek, *J. Appl. Cryst.*, 2003, 36, 7–13.