Supporting Information for

Vinyl sulfone-based ferrocenylation reagents: Applications in conjugation and bioconjugation

Alicia Megia-Fernandez, Fernando Hernández-Mateo, and Francisco Santoyo-Gonzalez*

Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología,

Universidad de Granada, E-18071-Granada, Spain

1. Voltammograms of different compounds	S2
2. Diffusion coefficient D_0 : plot of $I_{pa} vs v^{1/2}$	S 4
3. Copy of ¹ H- and ¹³ C-NMR spectra for compounds 3-5, 7-11, 15-20 and 23-26.	S 5

1. Voltammograms of different compounds

Figure S1. Cyclic voltammetry curves (5 scans) of the ferrocene derivative **2** (0.2 mM) in 50mM NaClO₄ acetonitrile solution at 25°C and different sweep rates (from 0.05 to 0.5 V/s).

Figure S2. Cyclic voltammetry curves (5 scans) of the ferrocene derivative **5** (0.2 mM) in 50mM NaClO₄ acetonitrile solution at 25°C and different sweep rates (from 0.05 to 0.5 V/s).

Figure S3. Cyclic voltammetry curves (5 scans; sweep rate = 0.2V/s) of the ferrocene derivatives 7 and 8 (0.2 mM) in 50mM NaClO₄ acetonitrile solution at 25°C.

Figure S4. Cyclic voltammetry curves (5 scans; sweep rate = 0.2V/s) of the ferrocene derivatives **15** and **17** (0.2 mM) in 50mM NaClO₄ acetonitrile solution at 25°C.

Figure S5. Cyclic voltammetry curves (5 scans; sweep rate = 0.2V/s) of the ferrocene derivatives **23** and **24** (0.2 mM) in 50mM NaClO₄ aqueous solution at 25°C.

2. Diffusion coefficient $D_0\colon plot$ of $I_{_{pa}} \textit{vs} v^{1/2}$

Figure S6. Representation of the anodic peak current (I_{pa}) versus square root of the sweep rate $(v^{1/2})$ for the ferrocene derivatives in acetonitrile. The diffusion coefficients were calculated by linear fitting of I_{pa} versus $v^{1/2}$ in accordance with the Randles-Sevcik equation [Eq. 1].

$$I_p = 0.4463 \left(\frac{r^3}{sr}\right)^{1/2} n^{3/2} A C_0 (D_0 v)^{1/2} \qquad \text{Eq (1)}$$

3. Copy of NMR spectra

¹³C NMR spectra of compound **3**

¹³C and DEPT-NMR spectra of compound **4**

¹³C NMR spectra of compound **5**

¹H-NMR spectra of compound 7

¹³C-NMR spectra of compound 7

HSQC spectra of compound 7

¹H-NMR spectra of compound **8**

¹³C-NMR spectra of compound **8**

HSQC spectra of compound 8

¹³C and DEPT-NMR spectra of compound **9**

¹H-NMR spectra of compound **10**

¹³C and DEPT-NMR spectra of compound **11**

¹H-NMR spectra of compound **15**

¹³C-NMR spectra of compound **15**

DEPT-NMR spectra of compound 15

¹H-NMR spectra of compound **16**

¹H-NMR spectra of compound **17**

¹³C-NMR spectra of compound **17**

HSQC spectra of compound 17

¹³C and DEPT NMR spectra of compound **18**

¹H-NMR spectra of compound **19**

¹H-NMR spectra of compound **20**

¹H-NMR spectra of compound **23**

¹³C-NMR spectra of compound **23**

HSQC spectra of compound 23

 $^{13}\mathrm{C}$ and DEPT-NMR spectra of compound $\mathbf{24}$

 $^{13}\mathrm{C}$ and DEPT-NMR spectra of compound $\mathbf{25}$

¹³C and DEPT-NMR spectra of compound **26**