Extending on C₂-Symmetric Organocatalysts – correlating catalytic activity with molecular architecture in the direct asymmetric aldol reaction

Joshua Delaneya, Hannah Brozinskia, Dr. Luke Henderson*a

ELECTRONIC SUPPLEMENTARY INFORMATION

- S2 General Experimental and Equipment
- S3 Experimental
- S21 Determination of reaction outcomes
- S23 HPLC of chiral products and racemic examples.
- S74 Evaluation of diprolinamides 1-5: Alternate aldehydes
- S75 Evaluation of diprolinamides 1-5: Alternate ketones
- S76 References

General Experimental

All ¹H and ¹³C NMR spectra were recorded on a Jeol JNM-EX 270 MHz, Jeol JNM-EX 400 MHz or Bruker Avance III 500 MHz as indicated. Samples were dissolved in deuterated chloroform (CDCl₃) or deuterated methanol (CD₃OD) with the residual solvent peak used as an internal reference (CDCl₃ : δ_H = 7.26 ppm; CD₃OD : δ_H = 3.31 ppm). Proton spectra are reported as or follows: chemical shift δ (ppm), [integral, multiplicity (s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets of doublets, t = triplet, dt = doublet of triplets, ddt = doublet of doublets of triplets, tt = triplet of triplets, q = quartet, m = multiplet), coupling constant *J* (Hz), assignment].

Thin Layer Chromatography (TLC) was performed using aluminium-backed Merck TLC Silica gel 60 F254 plates, and samples were visualised using 254 nm ultraviolet (UV) light, potassium permanganate/potassium carbonate oxidising dip (1:1:100 KMnO₄:K₂CO₃:H₂O w/w), or cerium-ammonium-molybdate (CAM) stain (1:2.5:100 Cerium ammonium sulphate dehydrate: Ammonium Molybdate: H₂SO₄ (10% w/w)).

Column Chromatography was performed using silica gel 60 (70-230 mesh). All solvents used were AR grade. Specialist reagents were obtained from Sigma-Aldrich Chemical Company and used without further purification. Petroleum spirits refers to the fraction boiling between 40-60 °C.

Chiral HPLC was performed with a 1200 series Agilent. Separation of stereoisomers was carried out with a Diacel Chiralpak AD-H chiral column (0.46 cm × 25 cm). Retention times were reported at ambient temp (24 °C) with an injection volume of 20 μ L at a flow rate of 1 mL/min. A mobile phase of 10% isopropanol/ 90% hexane was used.

HRMS was found via a 6210 MSD TOF mass spectrometer under the conditions: gas temperature (350 °C), vaporizer (28 °C), capillary voltage (3.0 kV), cone voltage (40 V), nitrogen flow rate (7.0L/min), nebuliser (15 psi). Samples were dissolved in MeOH.

Specific rotation [a_D] was obtained using a JASCO DIPP Digital Polarimeter. Compounds were dissolved in CHCl₃ where indicated. Rotation was measured at λ = 584 nm and reported with the units 10⁻¹ °C cm²g⁻¹.

ATR-FTIR measurements were conducted using an Alpha FTIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany) equipped with a deuterated triglycine sulfate (DTGS) detector and a single-reflection diamond ATR sampling module (Platinum ATR QuickSnap[™]). All absorption bands are reported in wavenumbers (cm⁻¹) and signals are reported as weak (w), medium (m), strong (s) and/or broad (br). Background spectra of a clean ATR surface were acquired prior to each sample measurement using the same acquisition parameters

Melting points were found on a Stuart Scientific Melting Point Apparatus SMP3, v. 5 and are uncorrected.

Experimental

trans-4-tertbutlydiphenylsiloxy-L-proline

TBDPSO N H O H

Trans-4-hydoxy-_L-proline (1.0 g, 0.763 mmol) was added to acetronitrile (20 mL) and stirred. TBDPS-CI (6.94 mL, 0.026 mol) was added to the stirring solution and the reaction was cooled to 0 °C. DBU (4.22 mL, 0.028 mol) was subsequently added to the stirring solution and the mixture was allowed to reach room temperature and stirred for 24 hrs. The resulting reaction mixture was then quenched with hexane and the product was extracted into hexane (3 × 30 mL). The combined hexane layers were combined and the solvent was removed *in vacuo*. The resulting oil was redissolved in a methanol (32 mL), THF (18 mL), water (16 mL) and 2M NaOH (24 mL) mixture and allowed to stir for 90 mins at room temperature. The solution was then titrated to a pH of 6 with 2M HCl before removing the organic solvents under reduced pressure. To the resulting in crystals forming in the organic phase. The solid was filtered and washed with cold Et₂O to give the silylated intermediate as white crystals (2.71 g, 0.733 mol, 96%). ¹H NMR (400 MHz, CD₃OD) δ 7.67-7.64 (m, 4H, aryl), 7.45-7.42 (m, 6H, aryl), 4.59 (s, *J* = 0.27, 1H, chiral), 4.23 (1H, chiral), 3.30 (dd, J = 10.8, 5.4 Hz, 1H, N-CH₂), 3.29 (dt, J = 13.5, 2.7 Hz, 1H, N-CH₂), 2.31 (ddt, *J* = 13.5, 7.56, 1.88 Hz, 1H, CH-CH₂-CH), 1.93 (ddd, *J* = 13.5, 9.99, 4.05 Hz, 1H, CH-CH₂-CH), 1.08 (9H, *t*-butyl). Compound was identified by ¹H NMR and was consistent with literature values.¹

trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline 7

TBDPSO

TBDPS-Proline (2.71 g, 0.7337 mmol) was dissolved in a 1:1 ratio of THF/H₂O (20 mL : 20 mL),. To this mixture was added NaOH (0.733 g, 0.018 mol) along with Boc₂O (2.08 g, 0.953 mmol) and the solution was stirred for 16 h at room temperature. The resulting solution was then acidified with 2M HCl and extracted into Diethyl Ether (3 x 20 mL). The combined organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to afford clear viscous oil. The crude mixture was purified *via* flash chromatography (1/4 EtOAc : Pet spirits) to give the pure monomer as a colourless oil (2.82 g, 0.6 mol, 82%). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.64 (m, 4H, Alkyl), 7.39 (m, 6H, Alkyl), 4.56 (t, *J* = 8 Hz, 1H, Chiral), 4.43 (m, 1H, Chiral), 3.59-3.29 (m, 2H, CH₂-NH), 2.28-2.04 (m, 2H, N-CH₂), 1.47 (m, 9H, t-butyl), 1.07 (m, 9H, *t*-butyl). Compound was identified by ¹H NMR and was consistent with literature values.¹

1,4-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) butane. 8

trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline **7** (0.295 g, 0.623 mmol) was dissolved in DCM (20 mL) and cooled to 0 °C. HOBt (0.02 g, 0.015 mmol) was added to the solution and the mixture was stirred for 5 min. EDCI (0.085 g, 0.074 mmol) was added to the mixture followed by 3 min additional stirring followed by the introduction of 1,4-diaminobutane (0.03 mL, 0.297 mmol) was introduced. The mixture was allowed to reach room temperature and stirred for 16 h. The final reaction mixture was diluted with additional DCM (30 mL) and washed with 10% citric acid (3 × 30 mL), saturated NaHCO₃ (3 × 30 mL) and brine (1 × 30 mL). The resulting organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to give the crude *N*-Boc protected diprolinamide **8** as a colourless oil. The crude mixture was purified *via* flash chromatography (1/3 EtOAc : Pet spirits) to give the pure dimer as a viscous colourless oil (0.292 g, 0.254 mmol, 85%). R_f = 8/33 (1:1 EtOAc : Pet spirits); 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.62 (m, 8H, aryl), 7.40 (m, 12H, aryl), 4.40 (br, 4H, chiral), 3.72 (br, 1H, CH₂-NH), 3.43 (br, 1H, CH₂-NH), 3.23 (br, 4H CO-NH-CH₂), 2.22 (br, 2H, CH₁-CH₂), 1.88 – 1.76 (br. m, 2H, CH₁-CH₂), 1.43 (br, 18H, O-*t*-butyl), 1.25 (br, 4H, alkyl), 1.03 (br, 18H, Si-*t*-butyl); 1³C NMR (400 MHz, CDCl₃) δ (ppm) = 172.04, 155.97, 135.70, 133.59, 129.94, 127.85, 71.03, 60.47, 59.07, 55.20, 40.22, 38.89, 37.66, 28.43, 26.91, 19.16; (α]_D^{22.2} = -30.8 ° (c = 0.00089, CHCl₃); IR υ_{max} = 2930 (m), 1660 (s), 1105 (s), 700 (s); HRMS calculated for [C₅₆H₇₉N₄O₈Si₂+] M = 991.5431 found 991.53809.

1,4-di(trans-4-tertbutlydiphenylsiloxy-L-prolinamide) butane 1

N-Boc protected diprolinamide **8** (0.394 g, 0.398 mmol) was solvated in DCM (18 mL) and stirred. To the stirring solution was added TFA (2 mL) to bring the solution to a 10 vol% concentration of acid/DCM. The solution was

stirred for 6h under an inert atmosphere at room temperature. The final mixture was basified with saturated NaHCO₃ (50 mL) and extracted into DCM (3 × 30 mL). The combined organic phase was then washed with additional NaHCO₃ (3 × 30 mL) and the organic phase was dried over MgSO₄. The solvent was removed in vacuo to give an opaque oil. Residual solvent was azeotroped with Et₂O to give the final organocatalyst **1** as an amorphous pale brown solid (0.309 g, 0.39 mmol, 98%). $R_f = 4/33$ (1:9 MeOH : EtOAc); Mp = 205.5 – 207 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.61 (m, 8H, aryl), 7.36 (m, 12H, aryl), 4.35 (br, 2H, CH₁-O), 4.00 (t, *J* = 8.4 Hz, 2H, CH₁-N), 3.14 (m, 4H, CO-NH-CH₂), 2.9 (d, *J* = 12.1 Hz, 2H, CH₂-NH), 2.58 (d, *J* = 12.1 Hz, 2H, CH₂-NH), 2.26 (m, 2H, CH₁-CH₂), 1.70 (ddd, *J* = 13.6, 8.4, 4.8 Hz, 2H, CH₁-CH₂), 1.45 (br, 4H, alkyl), 1.04 (br, 18H, *t*-butyl); ¹³C NMR (400 MHz, CDCl₃) δ (ppm) = 173.7, 135.8, 133.2, 129.9, 127.9, 71.8, 65.9, 59.4, 51.9, 38.9, 26.7, 19, 15.4; [α]_D^{23.3} = -37.6 ° (c = 0.0025, CHCl₃); IR υ max = 2925 (m), 1624 (s) 698 (s); HRMS calculated for [C₄₆H₆₃N₄O₈Si₂⁺] M = 791.4382 found 791.4395.

1,6-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) hexane 9

Trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline **7** (0.714 g, 1.52 mmol) was dissolved in DCM (20 mL) and cooled to 0 °C. HOBt (0.042 g, 0.36 mmol) was added to the solution and the mixture was stirred for 5 min. EDCI (0.218 g, 1.41 mmol) was added to the mixture followed by 3 min additional stirring followed by the introduction of 1,6-diaminohexane (0.084 g, 0.72 mmol) was introduced. The mixture was allowed to reach room temperature

and stirred for 16 h. The final reaction mixture was diluted with additional DCM (30 mL) and washed with 10% citric acid (3 × 30 mL), saturated NaHCO₃ (3 × 30 mL) and brine (1 × 30 mL). The resulting organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to give the crude *N*-Boc protected diprolinamide **8**. The crude mixture was purified *via* flash chromatography (1/3 EtOAc : Pet spirits) to give the pure dimer as a white amorphous solid (0.484 g, 0.475 mmol, 66%). ¹H NMR (270 MHz, CDCl₃) δ (ppm) = 7.59 – 7.25 (m, 20H aryl), 4.39 (m, 4H, chiral H), 3.69 – 3.42 (m, 4H, CH-CH₂-CH), 3.17 (br s, 4 H, CO-NH-CH₂), 2.39 – 1.97 (br m, 4H, N-CH₂), 1.43 (s, 18H, N-*t*-butyl), 1.40 (br, 4H, alkyl), 1.24 (br, 4H, alkyl), 1.02 (s, 18H, Si-*t*-butyl). The compound was confirmed by correlation to published ¹ H NMR spectra. ^{2,3}

1-6-di(trans-4-tertbutlydiphenylsiloxy-L-prolinamide) hexane 2

N-Boc protected diprolinamide **9** (0.318 g, 0.312 mmol) was solvated in DCM (18 mL) and stirred. To the stirring solution was added TFA (2 mL) to bring the solution to a 10 vol% concentration of acid/DCM. The solution was stirred for 6h under an inert atmosphere at room temperature. The final mixture was basified with saturated NaHCO₃ (50 mL) and extracted into DCM (3 × 30 mL). The combined organic phase was then washed with additional NaHCO₃ (3 × 30 mL) and the organic phase was dried over MgSO₄. The solvent was removed in vacuo to give an opaque oil. Residual solvent was azeotroped with Et₂O to give the final organocatalyst **1** as an amorphous pale brown solid (0.252 g, 0.31 mmol, 99%). ¹H NMR (270 MHz, CDCl₃) δ (ppm) = 7.608 (br m, 8H, aryl), 7.38 (br m, 12H, aryl), 4.35 (br, 2H, CH₁-O), 3.99 (t, *J* = 8.4 Hz, CH₁-N), 3.14 (tt, *J* = 19.2, 6.88, Hz, 4H, CH₂-N), 2.89 (d, *J* = 12.1 Hz, 2H, N-CH₂-CH), 2.56 (dd, *J* = 4.45, 7.7 Hz, 2H, CH₂-NH), 2.24 (m, 2H, CH₁-CH₂), 1.7 (ddd, *J* = 13.2, 8.8, 4.8 Hz, 2H, CH₁-CH₂), 1.41 (m, 4H, alkyl), 1.27 (m, 4H, alkyl), 1.03 (br s, 18H, *t*-butyl). The compound was confirmed by correlation to published ¹ H NMR spectra. ^{2.3}

1,8-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) octane 10

Trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline **7** (0.565 g, 0.120 mmol) was dissolved in DCM (15 mL) and cooled to 0 °C. HOBt (0.030 g, 0.022 mmol) was added to the solution and the mixture was stirred for 5 min. EDCI (0.241 g, 0.125 mmol) was added to the mixture followed by 3 min additional stirring followed by the introduction of 1,8-diaminooctane (0.082 g, 0.057 mmol). The mixture was allowed to reach room temperature and stirred for 16 h. The final reaction mixture was diluted with additional DCM (30 mL) and washed with 2M HCl

 $(2 \times 30 \text{ mL})$, saturated NaHCO₃ (2 × 30 mL) and brine (2 × 30 mL). The resulting organic phase was dried over MgSO₄ and the solvent removed *in vacuo* to give the crude *N*-Boc protected diprolinamide as a colourless oil. The crude mixture was purified *via* flash chromatography (1/9 EtOAc : Pet spirits) to give the pure dimer **10** as a viscous colourless oil (0.507 g, 0.0544 mmol, 45%). R_f = 11/31 (1/3 EtOAc : Pet. Spirits); ¹H NMR (270 MHz, CDCl₃) δ (ppm) = 7.69-7.36 (m, 20H, aryl), 4.52-4.36 (m, 4H, chiral H), 3.67-3.65 (m, 4H, CH-CH₂-CH), 3.52-3.37 (m, 4H, CH₂-NH), 2.29-1.79 (m, 4H, N-CH₂), 1.57 (s, 4H, Alkyl), 1.43 (s, 18H, O-*t*-buytl), 1.24 (s, 8H, Alkyl), 1.03 (s, 18H, Si-*t*-buytl); ¹³C NMR (400 MHz, CDCl₃) δ (ppm) = 173.7, 153.9, 135.7, 133.6, 123.0, 127.7, 71.6, 70.8, 58.3, 57.8, 54.9, 54.6, 52.2, 52.0, 39.7, 38.9, 28.5, 28.4, 26.9, 19.4; [α]_D^{21.2} = -89.2 ° (c = 0.001, CHCl₃); IR ν _{max} = 2928 (s), 1664 (s), 1162 (s); 702 (s); HRMS calculated for [C₆₀H₈₇N₄O₈Si₂⁺] M = 1047.6057 found 1047.6185.

1,8-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) octane 3

N-Boc protected diprolinamide **10** was solvated in DCM (18 mL) and stirred. To the stirring solution TFA (2 mL) was added to bring the solution to a 10 vol% concentration of acid/DCM. The solution was stirred for 7 h under an inert atmosphere at room temperature. The final mixture was basified with saturated NaHCO₃ (50 mL) and extracted into DCM (3 × 30 mL). The combined organic phase was then washed with additional NaHCO₃ (3 × 30 mL) and the organic phase was dried over MgSO₄. The solvent was removed *in vacuo* to give an opaque oil. Residual solvent was azeotroped with Et₂O to give the final organocatalyst **3** as pale brown oil (0.248 g, 0.029 mmol, 54%). R_f = 0.5; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.6 (m, 8H, aryl), 7.38 (m, 12H, aryl), 4.36 (br, 2H, Chiral), 4.08 (t, *J* = 8 Hz, 2H, chiral), 3.15 (q, *J* = 4 Hz, 4H, CH₂-NH), 2.95-2.91 (dt, *J* = 12, 1.6 Hz, NH-CH₂-CH), 2.62 (dd, *J* = 12, 3.2 Hz, 2H, NH-CH₂-CH), 2.29 (m, 2H, CH-CH₂-CH), 1.74 (ddd, *J* = 13.2, 8.4, 4.4 Hz, 2H, CH-CH₂-CH), 1.42 (m, 8H, Alkyl), 1.23 (m, 4H, Alkyl), 1.04 (m, 18H, *t*-butyl); ¹³C NMR (400 MHz, CDCl₃) δ (ppm) 174.37, 135.74, 135.69, 134.03, 133.73, 129.90, 129.86, 127.84, 127.82, 77.49, 77.17, 76.86, 74.81, 59.93, 55.62, 40.03, 38.86, 29.61, 29.15, 27.00, 26.82, 19.17; [α] $_D$ ^{22.5} = -16.0 ° (c = 0.001, CHCl₃); IR ν_{max} = 2929 (s), 1657 (s), 702 (s); HRMS calculated for [C₅₀H₇₁O₄Si₂+] M = 847.5008 found 847.5016.

1,10-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) decane 11

trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline 7 (0.296 g, 0.063 mmol) was dissolved in DCM (15 mL) and cooled to 0 °C. HOBt (0.016 g, 0.012 mmol) was added to the solution and the mixture was stirred for 5 min.

EDCI (0.127 g, 0.066 mmol) was added to the mixture followed by 3 min additional stirring followed by the introduction of 1,10-diaminodecane (0.051 g, 0.030 mmol). The mixture was allowed to reach room temperature and stirred for 16 h. The final reaction mixture was diluted with additional DCM (30 mL) and washed with 2M HCl (2 × 30 mL), saturated NaHCO₃ (2 × 30 mL) and brine (2 × 30 mL). The resulting organic phase was dried over MgSO₄ and the solvent removed *in vacuo* to give the crude *N*-Boc protected diprolinamide as a colourless oil. The crude mixture was purified *via* flash chromatography (1/4 EtOAc : Pet spirits) to give the pure dimer **11** as a viscous colourless oil (0.246 g, 0.023 mmol, 36%). R_f = 18/31 (1/3 EtOAc : Pet. Spirits); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (m, 8H, aryl), 7.37 (m, 12H, aryl), 4.39 (s, 4H, chiral), 3.64 – 3.44 (m, 4H, NH-CH₂-CH), 3.17 (br, 4H,alkyl), 2.60 (dd, 2H, *J* = 12, 4, CH₂NH), 2.28 (m, 2H, CH-CH₂-CH), 1.73 (m, 2H, CH-CH₂-CH), 1.43 (m, 4H, alkyl), 1.28 – 1.9 (m, 4H, CH-CH₂-CH), 1.44 (br, 18H, O-*t*-butyl), 1.4 (br, 4H, alkyl), 1.2 (br, 12H, alkyl), 1.02 (s, 18H, Si-*t*-butyl); ¹³C NMR (400MHz, CDCl₃) δ (ppm) = 173.66, 153.91, 135.69, 133.62, 129.99, 127.87, 70.85, 58.28, 57.78, 54.90, 54.56, 52.21, 52.01, 39.66, 38.88, 28.48, 28.35, 26.90, 19.14; [α] $_{D}$ ^{23.6} = -29.4 ° (c = 0.001, CHCl₃); IR ν_{max} = 2929 (s), 1700 (s), 1162 (s), 702 (s); HRMS calculated for [C₆₂H₉₁N₄O₈Si₂+] M = 1075.6370 found 1047.6435.

1,10-di(trans-4-tertbutlydiphenylsiloxy-L-prolinamide) decane 4

N-Boc protected diprolinamide **11** was solvated in DCM (18 mL) and stirred. To the stirring solution TFA (2 mL) was added to bring the solution to a 10 vol% concentration of acid/DCM. The solution was stirred for 6 h under an inert atmosphere at room temperature. The final mixture was basified with saturated NaHCO₃ (50 mL) and extracted into DCM (3 × 30 mL). The combined organic phase was then washed with additional NaHCO₃ (3 × 30 mL) and the organic phase was dried over MgSO₄. The solvent was removed *in vacuo* to give an opaque oil. Residual solvent was azeotroped with Et₂O to give the final organocatalyst **4** as pale brown oil (0.136 g, 0.015 mmol, 66%). R_f = 0.63 (1:9 MeOH/EtOAc); ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.62 (m, 8H, aryl), 2.38 (m, 12H, aryl), 4.36 (s, 2H, chiral), 4.03 (t, 2H, *J* = 8.4 Hz, chiral), 3.15 (m, 4H, CO-NH-CH₂), 2.92 (d, 2H, *J* = 12Hz, NH-CH₂-CH), 2.60 9dd, 2H, *J* = 12, 3.2 Hz, NH-CH₂-CH), 2.32 – 2.26 (m, 2H, CH-CH₂-CH), 1.73 (ddd, 2H, *J* = 12.8, 8, 4.4 Hz, CH-CH₂-CH), 4.13 (br. m, 4H, alkyl), 1.22 (br. s, 12H, alkyl), 1.04 (s, 18H, *t*-butyl); ¹³C NMR

1,12-di(trans-N-Boc-4-tertbutlydiphenylsiloxy-L-prolinamide) dodecane 12

trans-N-Boc-4-tertbutlydiphenylsiloxy-L-proline **7** (0.3 g, 0.64 mmol)) was dissolved in DCM (25 mL) and cooled to 0 °C. HOBt (0.021 g, 0.152 mmol) was added to the solution and the mixture was stirred for 5 min. EDCI (0.077 g, 0.67 mmol) was added to the mixture followed by 3 min additional stirring followed by the introduction of 1,12-diaminododecane (0.061 g, 0.305 mmol) was introduced. The mixture was allowed to reach room temperature and stirred for 16 h. The final reaction mixture was diluted with additional DCM (30 mL) and washed with 10% citric acid (3 × 30 mL), saturated NaHCO₃ (3 × 30 mL) and brine (1 × 30 mL). The resulting organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to give crude *N*-Boc protected diprolinamide as colourless oil. The crude compound was purified *via* flash chromatography (1/3 EtOAc : Pet spirits) to give the pure dimer **12** as a viscous colourless oil (0.14 g, 0.127 mmol, 42%). R_f =1/3 (1:1 EtOAc : Pet spirits); ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.62 (m, 8H, aryl), 7.38 (m, 12H aryl), 4.41 – 4.32 (br. m, 4H, chiral **H**), 3.71 (br, 2H, NH-CH₂), 3.44 (br, 2H, NH-CH₂), 3.16 (4H, NH-CH₂), 2.31 (br, 2H, CH-CH₂-CH), 2.06 – 1.94 (br. m, 2H, CH-CH₂-CH), 1.42 (br, 18H, O-*t*-butyl), 1.25 (br, 2OH, alkyl), 1.04 (br, 18H, Si-*t*-butyl); ¹³C NMR (400 MHz, CDCl₃) δ (ppm) = 171.44, 156.45, 135.67, 133.57, 129.94, 127.85, 70.99, 60.58, 58.85, 55.16, 40.20, 39.44, 36.98, 32.00, 29.76, 29.60, 29.35, 28.42, 26.91, 19.16.; [α]_D^{24.6} = -46.7 ° (c = 0.00033, CHCl₃); IR υ_{max} = 2927 (s), 11656 (s), 700 (s); HRMS calculated for [C₆₄H₉₅N₄O₈Si₂*] M = 1103.6683 found 1103.69985.

1,12-di(trans-4-tertbutlydiphenylsiloxy-L-prolinamide) dodecane 5

N-Boc protected diprolinamide **12** (0.16 g, 0.0145 mmol) was dissolved in (18 mL) and stirred. To the stirring solution was added TFA (2 mL) to bring the solution to a 10 vol% concentration of acid/DCM. The solution was

stirred for 6h under an inert atmosphere at room temperature. The final mixture was basified with saturated NaHCO₃ (50 mL) and extracted into DCM (3 × 30 mL). The combined organic phase was then washed with additional NaHCO₃ (3 × 30 mL) and the organic phase was dried over MgSO₄. The solvent was removed in vacuo to give a pale yellow oil. Residual solvent was azeotroped with Et₂O to give the final organocatalyst **5** as a viscous pale yellow oil (0.13 g, 0.144 mmol, 99%). $R_f = 20/33$ (1:9 MeOH : EtOAc); ¹H NMR (270 MHz, CDCl₃) δ (ppm) = 7.59 (br m, 8H, aryl), 7.38 (m, 12H, aryl), 4.36 (br, 1H, CH₁-O), 4.09 (t, *J* = 8.4 Hz, 1H, CH₁-N), 3.14 (m, 4H, NH-CH₂), 2.94 (d, 2H *J* = 11.9 Hz, CH₂-NH), 2.65 (dd, 2H, *J* = 11.9, 3.32 Hz, CH₂-NH), 2.27 (m, 2H, CH-CH₂-CH), 1.76 (ddd, 2H, *J* = 13.2, 8, 4.4 Hz,, CH-CH₂-CH), 1.41 (br, 4H, alkyl), 1.21 (br, 16H, alkyl), 1.03 (br, 18H, *t*-butyl); ¹³C NMR (400 MHz, CDCl₃) δ (ppm) = 173.9, 135.7, 133.9, 133.6, 129.1, 127.8, 74.6, 65.9, 59.8, 55.5, 39.7, 39.03, 29.78, 29.62, 29.52, 29.247, 26.7, 19.1, 15.4; [α]_D^{24.3} = -12.8 °(0.00113, CHCl₃); IR υ max = 2927 (s), 1658 (s), 1105 (s), 700 (s); HRMS calculated for [C₅₄H₇₉N₄O₈Si₂⁺] M = 903.5634 found 903.56196.

Determination of Reaction Outcomes: Conversion and dr

The conversion of of the initial aldehyde into the target compound was determined by the integration of key peaks within the 1H NMR spectra. The diasteremeric ratio was determined by integration of the chiral proton peaks for both the *syn* and the *anti* diastereomers.

The key ¹H NMR peaks that are integrated are determined from reported examples and lie in uncluttered regions of the NMR spectra.

Determination of Reaction Outcomes: Enantiomeric Excess.

Enantiomeric excess was determined by chiral HPLC, integrating the peak area of each enantiomer from the major diastereomer. The elution times were compared to racemic examples synthesised through one of two methods.

Representative Syntheses for Aldol Product Racemates (Benzaldehyde)

Procedure A: A stirred solution of water (15 mL) was charged with 10M NaOH (1 mL). Ketone (0.28 mL, 2.7 mol, 5 equival) was added and the solution was stirred for 1 min. To the mixture was added aryl aldehyde (0.6 mL, 0.54 mmol, 1 equiv.) and the solution was stirred for 3 h. The mixture was extracted into CHCl₃ (3×20 mL) and the combined organic phase was dried with MgSO₄. The racemic mixture was isolated via flash chromatography (1/3 EtOAc/Petroleum spirits).

Procedure B: Pyrrolidine (0.44 mL, 0.53 mmol, 1 equiv.) was added to a stirred solution of CHCl₃. To the stirred mixture was added ketone (0.223 mL, 2.65 mmol, 5 equiv.) and aldehyde (80 mg, 0.53 mmol, 1 equiv.). Benzoic acid (20 mg ,0.16 mmol, 0.3 equiv.) was added to the mixture and the reaction was stirred at room temperature for 16 h. The reaction mixture was taken up in additional CHCl₃ and washed with 2M HCl (2×20 mL). The organic phase was dried with MgSO₄. The racemic mixture was analysed by chiral HPLC without purification.

Structures of racemates were confirmed through correlation to reported ¹H NMR spectra.⁴

Table 1, Entry 1, Catalyst 1 (1 mol%)

Totals :

Table 1, Entry 2, Catalyst 2 (1 mol%)

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.613	BB	0.2673	725.07477	40.42458	12.2043
2	14.578	BB	0.3965	5216.06299	195.99823	87.7957
Total	ls :			5941.13776	236.42281	

Table 1, Entry 3, Catalyst 3 (1 mol%)

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.509	BB	0.2731	1.37054e4	743.31232	21.4271
2	14.407	BB	0.4044	5.02574e4	1841.45679	78.5729
Total	ls :			6.39628e4	2584.76910	

Table 1, Entry 4, Catalyst **4** (1 mol%)

Totals : 5.57717e4 2077.91147

1.27910e4

518.32371

Table 1, Entry 5, Catalyst 5 (1 mol%)

Totals :

Table 3, Entry 1, Catalyst **3** (neat)

Totals : 1307.54529 50.07759

Table 3, Entry 2, Catalyst 16 (neat)

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.671	MM	0.3326	2330.39014	116.76873	16.5788
2	14.645	BB	0.4004	1.17260e4	435.06998	83.4212
Total	ls :			1.40564e4	551.83871	

Table 3, Entry 3, Catalyst 16

#	[min]	TAPO	[min]	[mAU*s]	[mAU]	
1 2	10.691 14.690	BB VB	0.2957 0.4278	9078.38086 6.81466e4	449.28537 2382.12891	11.7558 88.2442
Total	ls :			7.72250e4	2831.41428	

Table 2, Entry 1, Catalyst 1

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.962	vv	0.3136	9076.65723	427.73917	87.1707
2	13.421	VB	0.3559	1335.85474	55.68472	12.8293
Total	ls :			1.04125e4	483.42389	

Table 2, Entry 1, Catalyst 2

Table 2, Entry 1, Catalyst 3

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.122	VV	0.3223	1.38806e4	636.76221	82.0942
2	13.606	VB	0.3598	3027.53003	125.34208	17.9058
Total	ls :			1.69081e4	762.10429	

Table 2, Entry 1, Catalyst 4

Totals : 6283.24847 289.50372

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.885	vv	0.3143	5959.23193	280.05145	85.0133
2	13.323	VB	0.3571	1050.53479	43.60067	14.9867
Total	ls :			7009.76672	323.65212	

Table 3, Entry 6, Catalyst 16

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.027	vv	0.3272	4.47521e4	2030.26294	80.6483
2	13.490	VB	0.3562	1.07383e4	443.96396	19.3517
Total	ls :			5.54904e4	2474.22690	

Table 2, Entry 2, Catalyst 1

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.954	BV	0.3481	1.76408e4	750.73376	85.7326
2	14.150	VB	0.3947	2935.73901	108.85099	14.2674
Total	ls :			2.05765e4	859.58475	

Table 2, Entry 2, Catalyst 2

Peak #	[min]	туре	[min]	Area [mAU*s]	Height [mAU]	Area %
1	12.249	BV	0.3212	3066.74878	142.41505	76.0788
2	13.157	VB	0.3614	964.26501	39.41864	23.9212
Total	ls :			4031.01379	181.83369	

Table 2, Entry 2, Catalyst 3

#	[min]	1100	[min]	[mAU*s]	[mAU]	8
1 2	13.065 14.177	BV VV	0.3551 0.4077	9039.16797 2293.65186	375.16849 82.15737	79.7610 20.2390
Total	ls :			1.13328e4	457.32586	

Table 2, Entry 2, Catalyst 4

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.159	BV	0.3551	1.22047e4	510.23578	76.5758
2	14.286	vv	0.3939	3733.36450	139.65157	23.4242
Total	ls :			1.59380e4	649.88734	

Table 2, Entry 2, Catalyst 5

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.120	BV	0.3521	1906.72095	80.57981	78.2213
2	14.162	VB	0.3765	530.87738	20.74697	21.7787
Totals :				2437.59833	101.32678	

Racemate

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.781	VB	0.2343	1574.88477	96.54327	37.7562
2	9.400	BB	0.2507	1298.56799	77.00474	31.1318
3	10.797	BB	0.2939	664.95892	32.89122	15.9417
4	11.950	BB	0.3191	632.78021	28.94192	15.1702
Totals :				4171.19189	235.38115	

Table 2, Entry 3, Catalyst 2

Signal 1: DAD1 A, Sig=256,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.800	BB	0.2783	220.50552	11.78294	73.8500
2	11.958	BB	0.3018	78.08017	3.86323	26.1500
Total	ls :			298.58569	15.64617	

Table 2, Entry 3, Catalyst 3

Table 2, Entry 3, Catalyst 4

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.644	BV	0.3091	2418.94678	115.12611	84.1014
2	13.024	VB	0.3276	457.28101	21.20150	15.8986
Total	ls :			2876.22778	136.32761	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.309	VV	0.3055	1.33005e4	642.58447	81.6356
2	12.628	VB	0.3472	2992.01196	126.82888	18.3644
Total	ls :			1.62925e4	769.41335	

Table 3, Entry 8, Catalyst 16

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.589	BB	0.3039	1118.12842	54.84337	85.4568
2	12.914	BB	0.3084	190.28459	9.38982	14.5432
Total	s:			1308.41301	64.23319	

Table 2, Entry 4, Catalyst 2

Table 2, Entry 4, Catalyst 3

Table 2, Entry 4, Catalyst 4

Table 2, Entry 4, Catalyst 5

Table 3, Entry 7, Catalyst 16

#	[min]	туре	[min]	[mAU*s]	[mAU]	%
1	14.055	BB	0.3887	757.66418	29.01055	59.6933
2	18.319	BV	0.4729	511.59760	16.26625	40.3067
Total	ls :			1269.26178	45.27680	

2-[Hydroxy-(3-nitro-phenyl]-cyclopentanone

Racemate

Peak #	[min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20.175	BB BB	0.5923	 1.43957e4 9647.44629	358.61813 179.53302	59.8745 40.1255
Total	ls :			2.40432e4	538.15115	

Table 2, Entry 5, Catalyst 1

2-[Hydroxy-(3-nitro-phenyl]-cyclopentanone

Table 2, Entry 5, Catalyst 2

Table 2, Entry 5, Catalyst 3

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.909	BB	0.5931	2.24732e4	566.13184	77.9149
2	29.880	BB	0.8589	6370.04297	111.10529	22.0851
Total	ls :			2.88432e4	677.23712	

2-[Hydroxy-(3-nitro-phenyl]-cyclopentanone

Table 2, Entry 5, Catalyst 4

Peak 1 #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.909	BB	0.5895	9061.52930	230.05556	72.8977
2	29.890	BB	0.8459	3368.94238	60.66157	27.1023
Total	s:			1.24305e4	290.71713	

Table 2, Entry 5, Catalyst 5

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.809	BB	0.5983	7370.71191	182.84116	75.0064
2	30.905	BB	0.8908	2456.06299	41.83992	24.9936
Total	ls :			9826.77490	224.68108	

2-[Hydroxy-(2-nitro-phenyl]-cyclopentanone

Table 2, Entry 6, Catalyst 1

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.086	VB	0.5339	1.53521e4	428.61487	99.7455
2	21.647	BV	0.2806	39.16740	2.10967	0.2545
Total	s:			1.53913e4	430.72454	

2-[Hydroxy-(2-nitro-phenyl]-cyclopentanone

Table 2, Entry 6, Catalyst 2

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.003	BV	0.5143	2766.39233	80.21597	88.6703
2	20.268	VV	0.5494	353.47192	10.17341	11.3297
Total	ls :			3119.86426	90.38937	

Table 2, Entry 6, Catalyst 3

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.681	BV	0.5020	2588.49976	75.87394	90.9397
2	20.099	VB	0.4483	257.89047	8.94585	9.0603
Tota	ls :			2846.39023	84.81979	

2-[Hydroxy-(2-nitro-phenyl]-cyclopentanone

Table 2, Entry 6, Catalyst 5

Signal 1: DAD1 G, Sig=280,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	18.576 19.921	BB BB BB	0.5046 0.4737	808.86017 152.44731	24.28157 4.65918	84.1417 15.8583
Tota	ls :			961.30748	28.94075	

ŌΗ

О

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.780	BV	0.4514	2052.36597	68.91732	10.2152
2	18.751	VB	0.5417	1.80388e4	492.11285	89.7848
Total	ls :			2.00912e4	561.03017	

Table 2, Entry 7, Catalyst 3

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.861	BV	0.4728	8931.35156	285.63715	24.6233
2	18.864	VB	0.5459	2.73406e4	735.07385	75.3767
Total	ls :			3.62720e4	1020.71100	

#	[min]	1100	[min]	[mAU*s]	[mAU]	8	
	30 611	8V	0.8416	8044 42188	144 02803	29 6980	
2	32.661	VB	0.9527	1.90430e4	295.16159	70.3020	
Total	ls :			2.70875e4	439.18962		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.346	BV	0.4843	2347.13037	73.15690	27.5070
2	19.352	VB	0.5658	6185.71680	161.16283	72.4930
Total	ls :			8532.84717	234.31973	

Racemate

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	0.677	BV	0.2188	18.99023	1.41325	0.2802
2	9.667	BB	0.3809	2985.45020	106.55878	44.0564
3	11.400	BB	0.3249	1582.24487	71.29802	23.3492
4	15.211	BB	0.4610	1208.03052	40.61239	17.8270
5	17.615	VB	0.5060	981.71234	29.22028	14.4872
Total	ls :			6776.42816	249.10273	

Table 2, Entry 8, Catalyst 1

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.159	VB	0.3803	402.20715	16.05486	6.0526
2	17.582	BB	0.4995	6243.01123	186.05635	93.9474
Total	ls :			6645.21838	202.11121	

Table 2, Entry 8, Catalyst 2

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.241	MM	0.4413	339.82904	12.83379	6.8395
2	17.655	BB	0.4927	4628.80664	140.37726	93.1605
Total	ls :			4968.63568	153.21105	

Table 2, Entry 8, Catalyst 3

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.570	BB	0.4513	2785.76172	91.47964	10.4978
2	17.987	BB	0.5194	2.37509e4	680.21094	89.5022
Total	ls :			2.65367e4	771.69058	

Table 2, Entry 8, Catalyst 4

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	15.591 18.010	 VV VB	0.5057 0.5083	1.01240e4 3.49988e4	285.47794 1025.06433	22.4365 77.5635
Total	ls :			4.51228e4	1310.54227	

Table 2, Entry 8, Catalyst 5

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.329	BB	0.4578	717.78943	23.01823	9.4042
2	17.746	BB	0.4982	6914.86963	205.68797	90.5958
Total	ls :			7632.65906	228.70620	

Racemate

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.412	VB	0.2505	233.07262	13.42521	7.9207
2	9.575	BB	0.3017	239.56458	11.37315	8.1413
3	12.529	BV	0.3286	1220.61682	54.63713	41.4810
4	13.760	VB	0.3695	1249.33508	50.33954	42.4570

Table 2, Entry 9, Catalyst 1

2-[Hydroxy-(4-fluoro-phenyl)-methyl]-cyclohexanone

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Table 2, Entry 9, Catalyst 3

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.690	BB	0.3497	103.81554	4.42519	8.7101
2	14.971	BB	0.4062	1088.08960	39.64024	91.2899
Total	ls :			1191.90514	44.06544	

Table 2, Entry 9, Catalyst 4

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.796	BB	0.3408	164.35617	7.29572	7.9173
2	15.098	BB	0.4082	1911.56091	69.65408	92.0827
Total	ls :			2075.91708	76.94980	

Table 2, Entry 9, Catalyst 5

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.543	BB	0.3411	411.32962	18.10303	6.9534
2	14.786	BV	0.3976	5504.14941	206.10719	93.0466
Total	ls :			5915.47903	224.21022	

Table 3, Entry 5, Catalyst 16

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	13.787 15.034	BB BB	0.3665 0.4038	64.43161 468.44385	2.53550 17.30833	12.0913 87.9087
Total	ls :			532.87546	19.84383	

Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] 용 ----|-----|----- | ----- | ------____ ----| 1 24.057 BB 1.6356 0.4382 150.81140 5.26504 2 31.461 BB 0.6101 9069.78125 231.00755 98.3644

Totals : 9220.59265 236.27259

#

Table 2, Entry 10, Catalyst 3

Table 2, Entry 10, Catalyst 4

Totals: 3345.39594 56.39073

Table 2, Entry 10, Catalyst 5

2.12326e4

327.93575

Totals :

2-[Hydroxy-(3-nitro-phenyl]-cyclohexanone

Table 2, Entry 11, Catalyst 1

2-[Hydroxy-(3-nitro-phenyl]-cyclohexanone

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Table 2, Entry 11, Catalyst 3

2-[Hydroxy-(3-nitro-phenyl]-cyclohexanone

Table 2, Entry 11, Catalyst 4

Totals : 1.96890e4 397.77096

Table 2, Entry 11, Catalyst 5

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.413	BV	0.4547	750.13171	24.81470	6.7444
2	21.799	BB	0.6110	1.03721e4	252.64702	93.2556
Total	ls :			1.11222e4	277.46172	

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.961	BB	0.2972	411.35648	20.40641	14.6775
2	13.609	BB	0.3616	933.15485	38.66509	33.2956
3	21.444	BB	0.5713	739.95465	19.12959	26.4021
4	23.277	BB	0.6492	718.16852	16.39021	25.6248
Total	ls :			2802.63449	94.59130	

Table 2, Entry 12, Catalyst 1

Table 2, Entry 12, Catalyst 2

Totals : 1.51529e4 366.62841

Table 2, Entry 12, Catalyst 3

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.404	BB	0.5517	1506.40381	40.70967	86.2284
2	22.240	BB	0.5745	240.58936	6.37213	13.7716
Total	ls :			1746.99316	47.08180	

Ο

QH NO2

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.084	BV	0.5854	5216.42627	133.06281	81.9128
2	22.829	VB	0.6352	1151.83899	26.49606	18.0872
Total	s:			6368.26526	159.55886	

Table 2, Entry 12, Catalyst 5

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.763	BV	0.6084	1.27194e4	311.51456	73.2370
2	23.725	vv	0.6807	4648.04541	101.04308	26.7630
Total	ls :			1.73674e4	412.55763	

Totals : 3.09969e5 1.06744e4

Table 2, Entry 13, Catalyst 1

T Carr	TOCITING	TIPC	Winden	11L OC	morgine	111.004
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.856	BB	0.4890	440.74829	13.85961	2.9750
2	21.136	BB	0.6226	1.43742e4	344.62250	97.0250
Tota:	ls :			1.48150e4	358.48211	

Table 2, Entry 13, Catalyst 2

геак #	[min]	туре	[min]	[mAU*s]	[mAU]	Area %	
1 2	19.216 21.558	BB BB	0.5768 0.6243	906.49841 7506.87402	22.85207 178.62817	10.7745 89.2255	
Total	ls :			8413.37244	201.48024		

Table 2, Entry 13, Catalyst 3

Table 2, Entry 13, Catalyst 4

Table 2, Entry 13, Catalyst 5

#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.481	BB	0.6091	413.47549	10.02655	9.5607
2	21.753	BB	0.6450	3911.26953	90.35899	90.4393
Total	ls :			4324.74503	100.38555	

2-[Hydroxy-(3-benzyloxy-phenyl]-4-tert-butyl-cyclohexanone

Table 5, Entry 4, Catalyst 1

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.825	BB	0.5270	403.42197	11.67810	9.0940
2	34.053	BB	1.0658	4032.69409	55.23366	90.9060
Total	ls :			4436.11606	66.91176	
Entry	Aldehyde	Conv (%)ª	dr s <i>yn/antiª</i>	ee ^b		
-------	------------------	-----------	-------------------------	-----------------		
1	O O O H	nr	-	-		
2	ОН	14	47/53	N.D.		
3		trace	-	-		
4	O O Br	nr	-	-		
5	O U	nr	-	-		

Table 4: Evaluation of diprolinamides 1-5 - Alternate aldehydes

[a] Determined by integration of key signals in the ¹H NMR spectrum.[b] Determined by Chiral HPLC, Chiralpak AD-H, 1mL/min, IPA/Hexane, 1:9.

Entry	Ketone	Conv (%)ª	dr s <i>yn/anti</i> ª	ee ^b
1	0	<1%	-	-
2		7%	41	N.D.
3		<1%	-	-
4 ⁵		34%	85	82
5	O OTMS			

Table 5: Evaluation of diprolinamides 1-5 - Alternate ketones

[a] Determined by integration of key signals in the ¹H NMR spectrum.
[b] Determined by Chiral HPLC, Chiralpak AD-H, 1mL/min, IPA/Hexane, 1:9.

References

- 1 Opalka SM, Steinbacher JL, Lambiris BA, McQuade DT. Thiourea/Proline Derivative-Catalyzed Synthesis of Tetrahydrofuran Derivatives: A Mechanistic View. *The Journal of Organic Chemistry* 2011; 76: 6503-6517.
- 2 Delaney JP, Henderson LC. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions. *International Journal of Molecular Sciences* 2011; 12: 9083-9094.
- 3 Delaney JP, Henderson LC. Direct Asymmetric Aldol Reactions in Water Catalysed by a Highly Active C2-Symmetrical Bisprolinamide Organocatalyst. *Advanced Synthesis & Catalysis* 2012; 354: 197-204.
- (a) Kanemitsu T, Umehara A, Miyazaki M, Nagata K, Itoh T. *European Journal of Organic Chemistry* 2011; 2011: 993-997. (b) Li S, Wu C, Long X, Fu X, Chen G, Liu Z. Simple proline derivatives as recoverable catalysts for the large-scale stoichiometric aldol reactions. *Catalysis Science & Technology* 2012; 2: 1068-1071. (c) Hayashi K, Kogiso H, Sano S, Nagao Y. Variable Stereoselectivity in the Imine Aldol Reactions Employing MgBr2 and Et3N. *Synlett* 1996; 1996: 1203-1205; (d) Gruttadauria M, Bivona LA, Lo Meo P, Riela S, Noto R. *European Journal of Organic Chemistry* 2012; 2012: 2635-2642.
- 5 Clegg W, Harrington RW, North M, Pizzato F, Villuendas P. Cyclic carbonates as sustainable solvents for proline-catalysed aldol reactions. *Tetrahedron: Asymmetry* 2010; 21: 1262-1271.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013