Supporting Information

Domino synthesis of protochromic "ON-OFF-ON" luminescent 2styryl quinolines

Rahime Cinar, Jan Nordmann, Elena Dirksen, Thomas J. J. Müller*

Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany Email: ThomasJJ.Mueller@uni-duesseldorf.de

Table of contents

1 ¹ H an	d ¹³ C NMR spectra of 2-styrylquinoline 3a-3c	2
1.1	(<i>E</i>)-2-(4-Dimethylamino)styryl)-quinoline (3a)	2
1.2	(E)-2-(4-Dimethylamino)styryl)-quinoline-6-trifluoromethane (3b)	4
1.3	(<i>E</i>)-2-(4-Dimethylamino)styryl)-quinoline-6-carbonitrile (3c)	6
2 Selec	ted UV/Vis and emission spectra of 2-styryl quinoline 3c	8
3 Deter	mination of the p <i>K</i> a Value of 3c	13
4 Com	outational details	15

1 ¹H and ¹³C NMR spectra of 2-styrylquinoline 3a-3c

1.1 (E)-2-(4-Dimethylamino)styryl)-quinoline (3a)

¹³C-DEPT 135 NMR (75 MHz) of **3a** (20 mg) in CDCl₃ at 298 K.

3

¹H NMR (300 MHz) of **3b** (20 mg) in DMSO-d₆ at 298 K.

 ^{13}C NMR (75 MHz) of 3c (20 mg) in DMSO-d_6 at 298 K.

 $^{13}\text{C}\text{-}$ DEPT 135 NMR (75 MHz) of 3c (20 mg) in DMSO-d_6 at 298 K.

5

1.3 (E)-2-(4-Dimethylamino)styryl)-quinoline-6-carbonitril (3c)

¹H NMR (300 MHz) of **3c** (20 mg) in DMSO-d₆ at 298 K.

 $^{13}\text{C}\text{-}$ DEPT 135 NMR (75 MHz) of 3c (20 mg) in DMSO-d_6 at 298 K.

2 Selected UV/Vis and emission spectra of 2-styryl quinoline 3c

Absorption and Emission Solvochromicity of Compound 3c

Figure 1: Normalized solvent dependent absorption and emission spectra of 2-styryl quinoline **3c** (recorded in DMSO, methanol, acetonitrile, acetone, CH_2Cl_2 , ethyl acetate, dioxane and toluene: T = 293 K, $\lambda_{exc} = \text{longest-wavelength } \lambda_{max}$).

Titration of 3c with Trifluoroacetic Acid in Dichloromethane

Solutions of **3c** were prepared using spectroscopic grade dichloromethane purchased from OmniSolv. All absorption spectra were collected using a Shimadzu UV-2401PC spectraphotometer; emission spectra were acquired using a Shimadzu RF-5301PC spectrofluorophotometer. Increasing equivalents of trifluoroacetic acid (purchased from Acros) were added to solutions of **3c** using Eppendorf Reference variable volume pipettors.

Figure 2: UV/Vis spectra of the titration of compound **3c** to the monoprotonated species **3c-H**⁺ with trifluoroacetic acid (TFA) in CH_2CI_2 (recorded at room temperature).

9

Figure 3: UV/Vis spectra of the titration of compound **3c-H**⁺ to the diprotonated species **3c-2** H⁺ with trifluoroacetic acid (TFA) in CH_2Cl_2 (recorded at room temperature). The black curve represents the free base **3c**.

Figure 4: Absorption (solid line) and emission (dashed line) spectra of compound **3c** in CH_2CI_2 , *T* = 293 K. Dependence of fluorescence emission spectra of gradually added TFA concentration.

Figure 5: Absorption (solid line) and emission (dashed line) spectra of compound **3c-2H**⁺ in CH₂Cl₂, T = 293 K.

3 Determination of the pKa-Value of 3c

Since trifluoroacetic acid is completely dissociated in dichloromethane the p*H*-Value of a solution could be easily calculated as $pH = -\log (cH^+)$. This allows calculating the p*H*-Value in the UV-cuvette at any point of the titration if the concentration of the TFA is known. Drawing the intensity of the longest absorption maximum of **3c** and **3c-H^+** and **3c-2H^+** against the p*H* value the p*K*a-value could be determined at the point of intersection of these two lines.

4 Computational details

Computed xyz-Coordinates for the quinolines (3), their monoprotonated (3-H⁺), and diprotonated species $(3-2H^+)$

The ground state geometries of the unprotonated **3**, the monoprotonated **3**- H^+ and double protonated quinolines **3**- $2H^+$ were optimized in by DFT calculation with the B3LYP functional and the 6-311G(d,p) basis set as implemented in the program package Gaussian09. The minima structures were confirmed by analytical frequency analysis.

XYZ-coordinates for 3a:

С	-6.683638	0.807221	0.012172
С	-5.831931	1.937894	0.020221
С	-4.465458	1.787144	0.017571
С	-3.879715	0.492424	0.006709
С	-4.744350	-0.647782	-0.001304
С	-6.148276	-0.459998	0.001630
Ν	-2.525566	0.386275	0.004624
С	-1.970186	-0.821212	-0.005346
С	-2.761106	-2.012395	-0.013650
С	-4.125729	-1.923863	-0.011750
С	-0.512691	-0.947113	-0.008334
С	0.340074	0.099821	-0.007737
С	1.792755	0.071756	-0.011030
С	2.506549	1.284407	-0.026882
С	3.890324	1.332308	-0.033125
С	4.658818	0.142982	-0.029450
С	3.943858	-1.083492	-0.000573
С	2.562222	-1.108891	0.005111
Ν	6.031667	0.171602	-0.056429
С	6.794942	-1.063341	0.062726
С	6.737014	1.443216	0.023305
Н	-7.758634	0.945392	0.014373
Н	-6.265770	2.931562	0.028560
Н	-3.800624	2.642978	0.023712
Н	-6.793809	-1.332295	-0.004526
Н	-2.266403	-2.976635	-0.021643
Н	-4.742046	-2.816958	-0.018197
Н	-0.135187	-1.964918	-0.012991
Н	-0.108341	1.090105	-0.006630
Н	1.952754	2.218073	-0.032140
Н	4.377348	2.297282	-0.040120
Н	4.479435	-2.022336	0.018920
Н	2.069538	-2.074611	0.027121

Н	6.628894	-1.564331	1.025193
Н	6.540649	-1.767154	-0.735802
Н	7.855165	-0.834195	-0.022393
Н	6.451005	2.108625	-0.797242
Н	6.545611	1.966554	0.969095
Н	7.806854	1.261205	-0.054226

SCF Done: E(RB3LYP) = -844.576185892 Hartrees	A.U. after	13 cycles
Sum of electronic and zero-point Energies=	-844.255087	Hartrees
Sum of electronic and thermal Energies=	-844.236788	Hartrees
Sum of electronic and thermal Enthalpies=	-844.235844	Hartrees
Sum of electronic and thermal Free Energies=	-844.303999	Hartrees

XYZ-coordinates for **3a-H**⁺:

С	6.715286	-0.720995	0.011675
С	5.907059	-1.873576	0.062121
С	4.529376	-1.777103	0.071498
С	3.934389	-0.505954	0.029280
С	4.730846	0.665337	-0.021053
С	6.135722	0.529208	-0.029029
Ν	2.561988	-0.365558	0.037842
С	1.899384	0.816062	-0.006596
С	2.697328	1.994103	-0.050455
С	4.060426	1.921672	-0.057974
С	0.475315	0.900103	-0.008559
С	-0.397008	-0.153414	-0.036976
С	-1.825836	-0.104536	-0.027150
С	-2.557715	-1.314611	-0.083622
С	-3.932975	-1.343224	-0.072590
С	-4.684750	-0.136991	-0.001705
С	-3.951804	1.086381	0.053911
С	-2.578462	1.094260	0.041312
Ν	-6.042026	-0.147174	0.013959
С	-6.773800	-1.411411	-0.037571
С	-6.796746	1.102778	0.087667
Н	7.793281	-0.821865	0.005028
Н	6.370966	-2.851860	0.093755
Н	3.911078	-2.666577	0.109627
Н	6.747124	1.422901	-0.067834
Н	2.020874	-1.219275	0.091821
Н	2.189452	2.948146	-0.081909
Н	4.651180	2.829740	-0.094157
Н	0.095050	1.913625	0.004744
Н	0.002271	-1.164996	-0.079281
Н	-2.014992	-2.252371	-0.138415
Н	-4.437711	-2.297112	-0.118462
Н	-4.477607	2.028421	0.109888

Н	-2.071637	2.050642	0.089258
Н	-6.561095	-1.958857	-0.961130
Н	-6.521907	-2.052596	0.812758
Н	-7.840146	-1.204575	-0.003203
Н	-6.579273	1.751308	-0.766318
Н	-7.859280	0.874507	0.078097
Н	-6.573570	1.651390	1.008010

SCF Done: E(RB3LYP) = -845.029471412 HartreesA.U. after13 cyclesSum of electronic and zero-point Energies=-844.693841 HartreesSum of electronic and thermal Energies=-844.675526 Hartrees

Sum of electronic and thermal Energies=-844.675526 HartreesSum of electronic and thermal Enthalpies=-844.674582 HartreesSum of electronic and thermal Free Energies=-844.741887 Hartrees

<u>19</u>

XYZ-coordinates for **3a-2H**⁺:

С	6.733309	-0.792140	0.034415
С	5.902589	-1.934166	-0.019624
С	4.530211	-1.817069	-0.049822
С	3.960046	-0.532380	-0.024569
С	4.777222	0.629560	0.028765
С	6.183023	0.467339	0.057850
Ν	2.595680	-0.364740	-0.052380
С	1.965319	0.825228	-0.027187
С	2.764863	1.986757	0.018140
С	4.134627	1.890085	0.046148
С	0.518645	0.925822	-0.044863
С	-0.354228	-0.100144	0.014626
С	-1.812293	-0.004401	-0.001050
С	-2.557806	-1.191120	0.106794
С	-3.946420	-1.176213	0.100717
С	-4.597603	0.044962	-0.015693
С	-3.892347	1.238213	-0.129418
С	-2.505671	1.211907	-0.121276
Ν	-6.080910	0.100677	-0.024953
С	-6.684067	-0.634074	-1.199190
С	-6.695674	-0.336673	1.284968
Н	7.808426	-0.916454	0.057206
Н	6.352142	-2.919196	-0.037297
Н	3.895816	-2.694712	-0.090636
Н	6.810313	1.349344	0.098918
Н	2.037529	-1.208981	-0.105598
Н	2.273861	2.949556	0.033945
Н	4.739007	2.788779	0.082924
Н	0.160136	1.946227	-0.096360
Н	0.011513	-1.120489	0.090776
Н	-2.043058	-2.139921	0.197535
Н	-4.490515	-2.107940	0.183555
Н	-4.414273	2.183275	-0.226368

Н	-1.971746	2.148070	-0.213207
Н	-6.330697	1.085526	-0.141661
Н	-7.755940	-0.450772	-1.196073
Н	-6.230798	-0.253205	-2.110731
Н	-6.481993	-1.695392	-1.085518
Н	-7.769913	-0.179014	1.220299
Н	-6.267030	0.264829	2.082315
Н	-6.478628	-1.390053	1.438915

SCF Done: E(RB3LYP) = -845.446092208 Hartrees	A.U. after	12 cycles
Sum of electronic and zero-point Energies=	-845.093934 Ha	rtrees
Sum of electronic and thermal Energies=	-845.076180 Ha	rtrees
Sum of electronic and thermal Enthalpies=	-845.075236 Ha	rtrees
Sum of electronic and thermal Free Energies=	-845.140363 Ha	rtrees

XYZ-coordinates for 3b:

С	-5.150602	-0.339111	-0.002791
С	-4.361148	-1.517872	0.006946
С	-2.993164	-1.433580	0.009497
С	-2.340270	-0.169476	0.002895
С	-3.145051	1.012060	-0.006139
С	-4.554320	0.900699	-0.008910
Ν	-0.985762	-0.134876	0.005201
С	-0.368359	1.044550	-0.000889
С	-1.098825	2.274755	-0.009267
С	-2.465218	2.257192	-0.012133
С	1.090119	1.096352	0.000398
С	1.886075	0.003455	0.001895
С	3.335555	-0.047188	0.002612
С	-6.642130	-0.480227	0.000276
F	-7.083849	-1.214465	-1.052412
F	-7.284501	0.705728	-0.052865
F	-7.088961	-1.118383	1.112280
С	3.982848	-1.297587	-0.007776
С	5.361138	-1.419819	-0.009714
С	6.192310	-0.272315	-0.000959
С	5.544547	0.992307	0.011581
С	4.167158	1.091481	0.012986
Ν	7.558801	-0.374751	-0.004292
С	8.388683	0.822523	0.010934
С	8.196392	-1.684302	-0.011523
Η	-4.846521	-2.486472	0.010751
Н	-2.375892	-2.323485	0.016084
Η	-5.156501	1.800841	-0.016523
Η	-0.555403	3.212118	-0.013704
Η	-3.035560	3.179923	-0.018880
Н	1.520450	2.092766	-0.001627
Н	1.383872	-0.960686	0.001339
Н	3.379273	-2.199794	-0.015002

Н	5.796602	-2.409068	-0.018060
Н	6.130340	1.900896	0.020561
Н	3.726374	2.081993	0.023516
Н	8.213796	1.427246	0.908102
Н	9.435855	0.528611	0.002286
Н	8.206981	1.453240	-0.866539
Н	7.928766	-2.271743	0.874409
Н	7.921422	-2.264322	-0.899880
Н	9.276255	-1.553971	-0.015732

SCF Done: E(RB3LYP) = -1181.71659528 Hartrees	;	A.U. after	13 cycles
Sum of electronic and zero-point Energies=	-1181	.391320 Ha	artrees
Sum of electronic and thermal Energies=	-1181	.369210 Ha	artrees
Sum of electronic and thermal Enthalpies=	-1181	.368266 Ha	artrees
Sum of electronic and thermal Free Energies=	-1181	.447615 Ha	artrees

XYZ-coordinates for **3b-H**⁺:

С	-5.180269	-0.321266	-0.021353
С	-4.427550	-1.512907	-0.074593
С	-3.050909	-1.473060	-0.081574
С	-2.398360	-0.228931	-0.033647
С	-3.141591	0.974044	0.018499
С	-4.548763	0.903287	0.024246
Ν	-1.023691	-0.151791	-0.040152
С	-0.307700	1.002146	0.007263
С	-1.055936	2.214779	0.053085
С	-2.418922	2.203637	0.059157
С	1.113419	1.024485	0.010356
С	1.939415	-0.070226	0.037218
С	3.364679	-0.086078	0.026781
С	-6.680524	-0.417818	-0.000191
F	-7.146278	-1.155969	-1.033934
F	-7.277147	0.788137	-0.068792
F	-7.124448	-1.018014	1.129158
С	4.041502	-1.329493	0.090133
С	5.412539	-1.419802	0.079819
С	6.218403	-0.247715	0.003147
С	5.541545	1.008621	-0.060243
С	4.171395	1.078568	-0.048850
Ν	7.571545	-0.319403	-0.011062
С	8.383711	0.894992	-0.086364
С	8.246347	-1.616061	0.036981
Η	-4.934192	-2.468922	-0.114356
Н	-2.475973	-2.390152	-0.124653
Η	-5.123230	1.819223	0.063049
Η	-0.520411	-1.028297	-0.094728
Η	-0.506396	3.145175	0.088431
Н	-2.970153	3.135858	0.097275
Н	1.539327	2.019599	0.000029
Н	1.493951	-1.062048	0.080077

Н	3.456649	-2.241342	0.150698
Н	5.873970	-2.394927	0.131702
Н	6.109651	1.925334	-0.122414
Н	3.708052	2.056257	-0.104790
Н	8.189179	1.556338	0.762810
Н	9.434343	0.618174	-0.067184
Н	8.191740	1.447000	-1.011415
Н	8.007334	-2.155647	0.958316
Н	7.966764	-2.241342	-0.816263
Н	9.320688	-1.456534	0.004804

SCF Done: E(RB3LYP) = -1182.16532240 Hartrees	A.U. after 13 cycle	es
Sum of electronic and zero-point Energies=	-1181.825489 Hartrees	
Sum of electronic and thermal Energies=	-1181.803489 Hartrees	
Sum of electronic and thermal Enthalpies=	-1181.802545 Hartrees	
Sum of electronic and thermal Free Energies=	-1181.879664 Hartrees	

XYZ-coordinates for **3b-2H**⁺:

С	-5.223084	-0.280779	0.007920
С	-4.493256	-1.489849	0.101493
С	-3.119680	-1.480703	0.131658
С	-2.444104	-0.247924	0.067109
С	-3.161261	0.972457	-0.023179
С	-4.574504	0.928301	-0.053194
Ν	-1.072015	-0.193517	0.095812
С	-0.347089	0.941436	0.040933
С	-1.049502	2.163812	-0.034123
С	-2.421068	2.179279	-0.069661
С	1.100911	0.922202	0.059522
С	1.881414	-0.168950	-0.083520
С	3.341147	-0.201669	-0.069973
С	-6.728078	-0.352835	-0.013337
F	-7.210133	-0.868299	1.139040
F	-7.165451	-1.152518	-1.010315
F	-7.298023	0.853727	-0.183222
С	3.981027	-1.416898	-0.360610
С	5.367545	-1.512968	-0.370524
С	6.120098	-0.384111	-0.080509
С	5.519098	0.836057	0.219839
С	4.136107	0.921903	0.222421
Ν	7.599521	-0.502521	-0.076780
С	8.272164	0.447821	-1.039690
С	8.184586	-0.402550	1.314119
н	-5.021696	-2.433663	0.147139
н	-2.564049	-2.407583	0.203607
Н	-5.130684	1.853173	-0.124648
Н	-0.582363	-1.076829	0.185442
н	-0.480156	3.081777	-0.072265
н	-2.950555	3.122439	-0.134175
Н	1.544530	1.903355	0.171712
Н	1.425817	-1.141191	-0.252104

Н	3.389075	-2.296035	-0.583860
Н	5.842969	-2.460092	-0.598858
Н	6.105957	1.715364	0.451497
Н	3.681460	1.873805	0.462315
Н	7.813827	-1.445159	-0.409712
Н	9.333770	0.212376	-1.055953
Н	7.831630	0.307392	-2.023231
Н	8.119109	1.465697	-0.692952
Н	9.250113	-0.610596	1.246922
Н	7.689721	-1.135423	1.946592
Η	8.016625	0.603086	1.689619

SCF Done: E(RB3LYP) = -1182.57956883 Hartrees	A.U. after	12 cycles
Sum of electronic and zero-point Energies=	-1182.223857 H	artrees
Sum of electronic and thermal Energies=	-1182.202252 H	artrees
Sum of electronic and thermal Enthalpies=	-1182.201308 H	artrees
Sum of electronic and thermal Free Energies=	-1182.276539 H	artrees

XYZ-coordinates for 3c:

С	-6.023045	-0.553202	-0.005658
С	-5.200086	-1.715448	-0.005515
С	-3.835729	-1.593364	-0.002872
С	-3.214152	-0.313460	-0.000230
С	-4.047600	0.850634	-0.000388
С	-5.449027	0.708549	-0.003123
Ν	-1.862574	-0.246586	0.002331
С	-1.272365	0.947903	0.004820
С	-2.032198	2.161787	0.004855
С	-3.396466	2.113117	0.002293
С	0.181986	1.034702	0.007590
С	1.003631	-0.040461	0.007751
С	2.452257	-0.058098	0.010391
С	3.127040	-1.294465	0.009818
С	4.507090	-1.386120	0.012186
С	5.312719	-0.220051	0.015320
С	4.637288	1.030504	0.016003
С	3.258502	1.099361	0.013596
Ν	6.680262	-0.292768	0.017583
С	7.346189	-1.588545	0.017389
С	7.484736	0.922232	0.021315
С	-7.444030	-0.693264	-0.008426
Ν	-8.594179	-0.814116	-0.010675
Н	-5.665310	-2.693213	-0.007515
Н	-3.195995	-2.467231	-0.002725
Н	-6.075246	1.593036	-0.003231
Н	-1.510280	3.111224	0.006931
Н	-3.988668	3.021772	0.002275
Н	0.588938	2.040619	0.009566
Н	0.523397	-1.015588	0.005621
Н	2.543273	-2.209587	0.007431
Н	4.964664	-2.365307	0.011611
Н	5.203352	1.951493	0.018462

Н	2.795842	2.079937	0.014269
Н	7.088715	-2.176692	-0.870832
Н	8.422906	-1.434933	0.019224
Н	7.085905	-2.178503	0.903608
Н	7.294539	1.537535	-0.865247
Н	7.291858	1.533981	0.909778
Н	8.537906	0.650545	0.022331

SCF Done: E(RB3LYP) = -936.845636114 Hartrees A.U. after 6 cycles Sum of electronic and zero-point Energies= -936.525941 Hartrees Sum of electronic and thermal Energies= -936.505744 Hartrees Sum of electronic and thermal Enthalpies= -936.504800 Hartrees

Sum of electronic and thermal Free Energies=

-936.578083 Hartrees

29

XYZ-coordinates for **3c-H**⁺:

С	1.386141	5.423241	4.175402
С	2.303936	5.069621	3.157213
С	2.053117	3.996932	2.331690
С	0.874309	3.251095	2.504883
С	-0.053941	3.590594	3.519766
С	0.221097	4.688327	4.351801
Ν	0.595979	2.174495	1.695012
С	-0.518793	1.399641	1.782145
С	-1.450046	1.736603	2.809514
С	-1.230001	2.788889	3.645193
С	-0.765060	0.307932	0.910203
С	0.017640	-0.072788	-0.152204
С	-0.191132	-1.168297	-1.036702
С	0.723505	-1.380851	-2.099121
С	0.588424	-2.420448	-2.986116
С	-0.493624	-3.340419	-2.869432
С	-1.420169	-3.130004	-1.801950
С	-1.268781	-2.085776	-0.926050
Ν	-0.638588	-4.373428	-3.732733
С	-1.757999	-5.306814	-3.601810
С	0.329008	-4.581982	-4.810061
С	1.662982	6.541146	5.022241
Ν	1.890587	7.445410	5.704045
Η	3.208650	5.649305	3.029133
Н	2.758537	3.730604	1.553939
Н	-0.482607	4.954870	5.129823
Н	1.286043	1.946385	0.990455
Η	-2.341024	1.130877	2.899732
Н	-1.950685	3.031143	4.417225
Н	-1.670467	-0.241201	1.134450
Н	0.907025	0.509952	-0.383257
Н	1.557325	-0.696753	-2.215647
Н	1.314896	-2.532774	-3.777314

Н	-2.255381	-3.802603	-1.672236
Н	-1.996069	-1.974323	-0.130935
Н	-1.726029	-5.835861	-2.644672
Н	-2.717865	-4.789278	-3.684670
Н	-1.698756	-6.042371	-4.399418
Н	1.336483	-4.737909	-4.413299
Н	0.044342	-5.465826	-5.374200
Н	0.351078	-3.729672	-5.495667

SCF Done: E(RB3LYP) = -937.292695466 Hartrees	A.U. after	5 cycles
Sum of electronic and zero-point Energies=	-936.958463 Har	trees
Sum of electronic and thermal Energies=	-936.938353 Har	trees
Sum of electronic and thermal Enthalpies=	-936.937409 Har	trees
Sum of electronic and thermal Free Energies=	-937.008912 Har	trees

XYZ-coordinates for **3c-2H**⁺:

С	6.082057	-0.548793	0.014105
С	5.281926	-1.720885	-0.050716
С	3.911709	-1.632845	-0.080634
С	3.304752	-0.363701	-0.044674
С	4.087524	0.818511	0.018723
С	5.492849	0.702043	0.047344
Ν	1.937837	-0.235651	-0.070969
С	1.274436	0.937692	-0.033741
С	2.043409	2.122019	0.021420
С	3.412711	2.065495	0.047739
С	-0.170925	1.002553	-0.048039
С	-1.016971	-0.047898	0.005065
С	-2.475368	0.008908	-0.004653
С	-3.186093	-1.198805	0.107210
С	-4.574228	-1.222610	0.106757
С	-5.259210	-0.019946	-0.008009
С	-4.588984	1.193355	-0.124766
С	-3.202222	1.206223	-0.122541
Ν	-6.743264	-0.008398	-0.012769
С	-7.327589	-0.749357	-1.193137
С	-7.339351	-0.482041	1.293250
С	7.507379	-0.669586	0.046013
Ν	8.656822	-0.773216	0.072051
Н	5.761171	-2.690596	-0.076174
Н	3.306218	-2.529581	-0.129425
Н	6.099312	1.596795	0.095638
Н	1.401761	-1.094114	-0.131171
Н	1.524586	3.069732	0.047121
Н	3.992105	2.979912	0.092647
Н	-0.555688	2.013635	-0.089079
Н	-0.623862	-1.058722	0.072133
Н	-2.643693	-2.131878	0.197832
Н	-5.092703	-2.168498	0.192645

Н	-5.137820	2.122970	-0.220464
Н	-2.694886	2.156834	-0.217974
Н	-7.023386	0.969381	-0.118462
Н	-8.404784	-0.600682	-1.182863
Н	-6.891242	-0.344066	-2.102306
Н	-7.090658	-1.804818	-1.092129
Н	-8.417001	-0.345930	1.238842
Н	-6.917251	0.111782	2.099274
Н	-7.098814	-1.533291	1.425415

SCF Done: E(RB3LYP) = -937.705878009 Hartrees	;	A.U. after	13 cycles
Sum of electronic and zero-point Energies=	-937	.355129 Ha	artrees
Sum of electronic and thermal Energies=	-937	.335570 Ha	artrees
Sum of electronic and thermal Enthalpies=	-937	.334626 Ha	artrees
Sum of electronic and thermal Free Energies=	-937	.403993 Ha	artrees

Computed UV/vis Spectrums of calculated Compounds by TD-DFT

The optimized structures **3** were used in TD-DFT calculations applying the hybrid exchange-correlation functional CAM-B3LYP.

First three computed transitions of the first excited state for 3a:

- 1) 387 nm, oscillator strength: 1.5168, orbitals involved: HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO, HOMO \rightarrow LUMO+1
- 2) 291 nm, oscillator strength: 0.0930, orbitals involved: HOMO-5 \rightarrow LUMO, HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2
- 3) 281 nm, oscillator strength: 0.0020, orbitals involved: HOMO-4 \rightarrow LUMO, HOMO-4 \rightarrow LUMO+4

First three computed transitions of the first excited state for **3a-H**⁺:

- 1) 509 nm, oscillator strength: 1.7179, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO
- 2) 304 nm, oscillator strength: 0.0122, orbitals involved: HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1
- 3) 298 nm, oscillator strength: 0.1322, orbitals involved: HOMO-2 \rightarrow LUMO, HOMO-2 \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO+1

First three computed transitions of the first excited state for **3a-2H**⁺:

- 1) 372 nm, oscillator strength: 1.3871, orbitals involved: HOMO \rightarrow LUMO
- 2) 320 nm, oscillator strength: 0.0436, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1
- 3) 267 nm, oscillator strength: 0.2934, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO+2, HOMO-1 \rightarrow LUMO+3, HOMO \rightarrow LUMO+1

First three computed transitions of the first excited state for 3b:

- 1) 402 nm, oscillator strength: 1.5644, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2
- 2) 294 nm, oscillator strength: 0.0889, orbitals involved: HOMO-5 \rightarrow LUMO, HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1
- 3) 283 nm, oscillator strength: 0.0019, orbitals involved: HOMO-4 \rightarrow LUMO, HOMO-4 \rightarrow LUMO+4

First three computed transitions of the first excited state for **3b-H**⁺:

- 1) 525 nm, oscillator strength: 1.7880, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO
- 2) 307 nm, oscillator strength: 0.0720, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1
- 3) 287 nm, oscillator strength: 0.0222, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-3 \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO+1

First three computed transitions of the first excited state for **3b-2H**⁺:

- 1) 373 nm, oscillator strength: 1.4302, orbitals involved: HOMO \rightarrow LUMO
- 2) 305 nm, oscillator strength: 0.0250, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1
- 3) 268 nm, oscillator strength: 0.0429, orbitals involved: HOMO-3 \rightarrow LUMO+3, HOMO-2 \rightarrow LUMO, HOMO-2 \rightarrow LUMO+1, HOMO-2 \rightarrow LUMO+2, HOMO \rightarrow LUMO+3

First three computed transitions of the first excited state for 3c:

- 1) 418 nm, oscillator strength: 1.6842, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO, HOMO \rightarrow LUMO+2
- 2) 298 nm, oscillator strength: 0.0696, orbitals involved: HOMO-5 \rightarrow LUMO, HOMO-2 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2
- 3) 286 nm, oscillator strength: 0.0016, orbitals involved: HOMO-4 \rightarrow LUMO, HOMO-4 \rightarrow LUMO+4,

First three computed transitions of the first excited state for **3b-H**⁺:

- 1) 536 nm, oscillator strength: 1.8978, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO
- 2) 310 nm, oscillator strength: 0.0788, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2
- 3) 294 nm, oscillator strength: 0.0396, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-3 \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO, HOMO \rightarrow LUMO+1

First three computed transitions of the first excited state for **3b-2H**⁺:

- 1) 382 nm, oscillator strength: 1.5331, orbitals involved: HOMO \rightarrow LUMO
- 2) 309 nm, oscillator strength: 0.0416, orbitals involved: HOMO-1 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1
- 3) 271 nm, oscillator strength: 0.2015, orbitals involved: HOMO-3 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1, HOMO-1 \rightarrow LUMO+2, HOMO \rightarrow LUMO+1, HOMO \rightarrow LUMO+2