Supporting Information

Three-Component Reaction of *C*,*N*-Cyclic *N*'-Acyl Azomethine Imines, Isocyanides, and Azide Compounds: Effective Synthesis of 1,5-Disubstituted Tetrazoles with Tetrahydroisoquinoline Skeletons

Takahiro Soeta*, Kaname Tamura, Shuhei Fujinami, Yutaka Ukaji *

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan. soeta@se.kanazawa-u.ac.jp, ukaji@staff.kanazawa-u.ac.jp,

List of Contents

1. General and materials	S2
2. ¹ H NMR of 5aa	S4
3. ¹³ C NMR of 5aa	\$5
4. H NMR of 5ab	S6
5. ¹³ C NMR of 5ab	S7
6. ¹ H NMR of 5ac	S8
7. ¹³ C NMR of 5ac	S9
8. ¹ H NMR of 5ad	S10
9. ¹³ C NMR of 5ad	S11
10. ¹ H NMR of 5ae	S12
11. ¹³ C NMR of 5ae	S13
12. ¹ H NMR of diastereomeric 5ae	S14
13. ¹³ C NMR of diastereomeric 5ae	S15
14. ¹ H NMR of 5af	S16
15. ¹³ C NMR of 5af	S17
16. ¹ H NMR of 5ag	S18
17. ¹³ C NMR of 5 ag	S19
18. ¹ H NMR of 5ah	S20
19. ¹³ C NMR of 5ah	S21

20. ¹ H NMR of 5ai	S22
21. ¹³ C NMR of 5ai	S23
22. ¹ H NMR of 5ba	S24
23. ¹³ C NMR of 5ba	S25
24. ¹ H NMR of 5ca	S26
25. ¹³ C NMR of 5ca	S27
26. ¹ H NMR of 5da	S28
27. ¹³ C NMR of 5da	S29
28. ¹ H NMR of 5fa	S30
29. ¹³ C NMR of 5fa	S 31
30. ¹ H NMR of 5ga	\$32
31. ¹³ C NMR of 5ga	\$33
32. ¹ H NMR of 5ha	S34
33. ¹³ C NMR of 5ha	\$35
34. ¹ H NMR of 5ia	S 36
35. ¹³ C NMR of 5 ia	\$37
36. ¹ H NMR of 5ja	S 38
37. ¹³ C NMR of 5 ja	S39
38. ¹ H NMR of 4aa	S40
39. ¹³ C NMR of 4aa	S41
40. X ray Structure report of 5aa	S42

General: ¹H NMR was recorded on a JEOL ECS 400 (400 MHz) NMR spectrometer. Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (*J*) and integration. ¹³C NMR spectra were recorded on JEOL ECS 400 (100 MHz) NMR spectrometer. The chemical shifts were determined in the δ -scale relative to CDCl₃ (δ = 77.0 ppm). The IR spectra were measured on JASCO FT/IR-230 spectrometers. The MS spectra was recorded with JEOL SX-102A mass spectrometers. All of the melting points were measured with YANAGIMOTO micro melting point apparatus. Toluene was dried and distilled over sodium. THF, Et₂O and 1,4-dioxane were freshly distilled from sodium diphenylketyl. All other solvents were distilled and stored over drying agents. Flash column chromatography was performed by using Cica silica gel 60N, spherical neutral (37563-84).

C,*N*-Cyclic *N*'-acyl azomethine imines $\mathbf{1}$ were prepared according to the reported procedure.¹

^{1 (}a) Hashimoto, T.; Omote, M.; Maruoka, K. *Angew. Chem. Int. Ed.* **2011**, *50*, 3489–3492. (b) Hashimoto, T.; Maeda, Y.; Omote, M.; Nakatsu, H.; Maruoka, K. J. Am. Chem. Soc. **2010**, *132*, 4076–4077.

X-ray Structure Report

Fri May 13 2011

Experimental

Data Collection

A Colorless Prism crystal of $H_{24}C_{21}N_6O$ having approximate dimensions of 0.25 x 0.20 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku/MSC Mercury diffractometer with graphite monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

 $\begin{array}{ll} a = & 10.2116(7) \mbox{ \AA} \\ b = & 19.269(1) \mbox{ \AA} \\ c = & 10.7192(7) \mbox{ \AA} \\ V = & 1935.4(2) \mbox{ \AA}^3 \end{array}$

For Z = 4 and F.W. = 376.46, the calculated density is 1.29 g/cm³. The systematic absences of:

h01: $1 \pm 2n$ 0k0: $k \pm 2n$

uniquely determine the space group to be:

The data were collected at a temperature of $-150 \pm 1^{\circ}$ C to a maximum 20 value of 55.0°. A total of 720 oscillation images were collected. A first sweep of data was done using ω

scans from -80.0 to 100.0° in 0.50° step, at χ =45.0° and ϕ =0.0°. The exposure rate was 50.0 [sec./°]. The detector swing angle was 10.1°. The crystal-to-detector distance was 34.96 mm. A second sweep of data was done using ω scans from -80.0 to 100.0° in 0.50° step, at χ =45.0° and ϕ =90.0°. The exposure rate was 50.0 [sec./°]. The detector swing angle was 10.1°. The crystal-to-detector distance was 34.96 mm.

Data Reduction

Of the 4503 reflections which were collected, 4367 were unique ($R_{int} = 0.024$); equivalent reflections were merged. Data were collected and processed using the CrystalClear program (Rigaku). The linear absorption coefficient, μ , for Mo-K α radiation is 0.8 cm⁻¹. was applied which resulted in transmission factors ranging from 0.81 to 0.98. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement³ was based on 3362 observed reflections (I > $3.00\sigma(I)$, $2\theta < 0.00$) and 253 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.049$

$$R_{W} = [(\Sigma \text{ w (IFol - IFcl})^{2} / \Sigma \text{ w Fo}^{2})]^{1/2} = 0.074$$
$$R_{W} = [(S \text{ w (Fo}^{2} - Fc^{2})^{2} / S \text{ w (Fo}^{2})^{2})]^{1/2} = 0.000 \text{ for all data}$$

The standard deviation of an observation of unit weight⁴ was 1.29. The weighting scheme was based on counting statistics and included a factor (p = 0.089) to downweight the intense reflections. Plots of Σ w (IFol - IFcl)² versus IFol, reflection order in data collection, sin

 θ/λ and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.34 and -0.17 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbel⁸. All calculations were performed using the teXsan⁹ crystallographic software package of Molecular Structure Corporation.

References

(1) <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A., Polidori, G., (1994). J. Appl. Cryst. 27, 435.

(2) <u>DIRDIF94</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(3) Least-Squares:

Function minimized: $\Sigma w(|F_0| - |F_c|)^2$ where $w = 1/[\sigma^2(F_0)] = [\sigma^2_c(F_0) + p^2F_0^2/4]^{-1}$ $\sigma_c(F_0) = e.s.d.$ based on counting statistics p = p-factor

(4) Standard deviation of an observation of unit weight:

 $[\Sigma w(|F_0| - |F_c|)^2 / (N_0 - N_V)]^{1/2}$ where: N₀ = number of observations

N_V = number of variables

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1999).

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	H ₂₄ C ₂₁ N ₆ O
Formula Weight	376.46
Crystal Color, Habit	Colorless, Prism
Crystal Dimensions	0.25 X 0.20 X 0.20 mm
Crystal System	monoclinic
Lattice Type	Primitive
No. of Reflections Used for Unit Cell Determination (2θ range)	7622 (6.1 - 55.00)
Lattice Parameters	$\begin{aligned} &a = 10.2116(7) \text{ Å} \\ &b = 19.269(1) \text{ Å} \\ &c = 10.7192(7) \text{ Å} \\ &\beta = 113.424(1)^{\text{O}} \\ &V = 1935.4(2) \text{ Å}^{3} \end{aligned}$
Space Group	P2 ₁ /c (#14)
Z value	4

D _{calc}	1.292 g/cm ³
F000	800.00
μ(ΜοΚα)	0.84 cm ⁻¹
B. Inter	nsity Measurements
Diffractometer	Rigaku/MSC Mercury CCD
Radiation	MoK α ($\lambda = 0.71070$ Å) graphite monochromated
Temperature	-150.0 °C
Detector Aperture	70 mm x 70 mm
Data Images	720 exposures
$ω$ oscillation Range (χ =45.0, ϕ =0.0) $ω$ oscillation Range (χ =45.0, ϕ =90.0)	-80.0 - 100.00 -80.0 - 100.00
Exposure Rate	50.0 sec./ ^o
Detector Swing Angle	10.070
Detector Position	34.96 mm

 $2\theta_{\text{max}}$

No. of Reflections Measured

55.00

Total: 4503 Unique: 4367 (R_{int} = 0.024)

Corrections

Lorentz-polarization Absorption (trans. factors: 0.8063 - 0.9833)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \le (Fo - Fc)^2$
Least Squares Weights	$1/\sigma^2(Fo) = 4Fo^2/\sigma^2(Fo^2)$
p-factor	0.0890
Anomalous Dispersion	All non-hydrogen atoms
No. of Observations (I> $3.00\sigma(I)$, $2\theta < 0.00^{\circ}$)	3362
No. Variables	253

Reflection/Parameter Ratio	13.29
Residuals: R; Rw	0.049;0.074
Goodness of Fit Indicator	1.29
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.34 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.17 e ⁻ /Å ³

atom	Х	У	Z	Beq	
O(1)	1.1059(2)	0.07405(7)	0.1174(1)	2.29(3)	
N(1)	0.8910(2)	0.05913(8)	0.2033(1)	1.55(3)	
N(2)	1.0168(2)	0.01856(8)	0.2539(1)	1.65(3)	
N(3)	1.0255(2)	0.08477(8)	0.5526(1)	1.58(3)	
N(4)	1.1402(2)	0.12239(8)	0.6327(1)	1.72(3)	
N(5)	1.1632(2)	0.17243(8)	0.5634(1)	1.68(3)	
N(6)	1.0619(1)	0.16882(7)	0.4351(1)	1.41(3)	
C(1)	0.8536(2)	0.08068(9)	0.3164(2)	1.45(3)	
C(2)	0.7191(2)	0.12449(9)	0.2646(2)	1.51(3)	
C(3)	0.6889(2)	0.1677(1)	0.3542(2)	1.93(4)	
C(4)	0.5656(2)	0.2073(1)	0.3096(2)	2.19(4)	
C(5)	0.4707(2)	0.2037(1)	0.1749(2)	2.20(4)	
C(6)	0.4988(2)	0.1601(1)	0.0860(2)	2.04(4)	
C(7)	0.6233(2)	0.11996(9)	0.1291(2)	1.70(3)	
C(8)	0.6545(2)	0.0742(1)	0.0295(2)	2.12(4)	
C(9)	0.7706(2)	0.02137(10)	0.1014(2)	1.91(4)	
C(10)	0.9783(2)	0.11349(9)	0.4298(2)	1.38(3)	
C(11)	1.0717(2)	0.22559(9)	0.3408(2)	1.50(3)	
C(12)	1.2140(2)	0.21462(10)	0.3272(2)	1.86(3)	
C(13)	0.9477(2)	0.22110(10)	0.2025(2)	1.88(3)	
C(14)	1.0684(2)	0.29487(10)	0.4088(2)	2.03(4)	
C(15)	1.1173(2)	0.02986(9)	0.2025(2)	1.63(3)	
C(16)	1.2470(2)	-0.01536(9)	0.2612(2)	1.62(3)	
C(17)	1.3788(2)	0.0138(1)	0.2810(2)	2.19(4)	
C(18)	1.5013(2)	-0.0260(1)	0.3332(2)	2.65(4)	
C(19)	1.4933(2)	-0.0956(1)	0.3626(2)	2.74(4)	
C(20)	1.3632(2)	-0.1250(1)	0.3424(2)	2.53(4)	
C(21)	1.2399(2)	-0.08483(10)	0.2928(2)	1.99(4)	
H(1)	0.8394	0.0366	0.3673	7.2	

Table 1. Atomic coordinates and $B_{iso}\!/B_{eq}$

H(2)	0.7600	0.1705	0.4524	7.2
H(3)	0.5517	0.2374	0.3817	7.2
H(4)	0.3874	0.2329	0.1434	7.2
H(5)	0.4322	0.1546	-0.0090	7.2
H(6)	0.6893	0.1031	-0.0282	7.2
H(7)	0.5675	0.0513	-0.0321	7.2
H(8)	0.8078	0.0050	0.0350	7.2
H(9)	0.7393	-0.0166	0.1529	7.2
H(10)	1.2166	0.1682	0.2786	7.2
H(11)	1.2301	0.2546	0.2676	7.2
H(12)	1.2901	0.2160	0.4136	7.2
H(13)	0.9685	0.2651	0.1443	7.2
H(14)	0.8556	0.2340	0.2201	7.2
H(15)	0.9428	0.1782	0.1543	7.2
H(16)	0.9681	0.3016	0.4159	7.2
H(17)	1.0693	0.3318	0.3438	7.2
H(18)	1.1466	0.2991	0.5032	7.2
H(19)	1.0242	-0.0192	0.3163	7.2
H(20)	1.3814	0.0661	0.2561	7.2
H(21)	1.5901	0.0041	0.3491	7.2
H(22)	1.5837	-0.1184	0.3973	7.2
H(23)	1.3545	-0.1708	0.3730	7.2
H(24)	1.1504	-0.1059	0.2808	7.2

$$\begin{split} B_{eq} &= 8/3 \ \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + \\ & 2U_{23}(bb^*cc^*)\cos \end{split}$$

atom	U ₁₁	U22	U33	U12	U13	U23
0(1)	0.0342(7)	0.0273(7)	0.0331(7)	0.0077(6)	0.0213(6)	0.0087(6)
N(1)	0.0168(7)	0.0230(7)	0.0186(7)	0.0044(6)	0.0065(6)	-0.0004(6)
N(2)	0.0201(7)	0.0215(8)	0.0233(7)	0.0050(6)	0.0107(6)	0.0040(6)
N(3)	0.0191(7)	0.0221(7)	0.0184(7)	0.0022(6)	0.0070(6)	0.0021(6)
N(4)	0.0215(7)	0.0233(8)	0.0197(7)	0.0017(6)	0.0073(6)	0.0014(6)
N(5)	0.0205(7)	0.0239(8)	0.0174(7)	0.0018(6)	0.0055(6)	0.0022(6)
N(6)	0.0153(7)	0.0207(7)	0.0169(7)	0.0013(5)	0.0056(6)	0.0012(5)
C(1)	0.0168(8)	0.0205(8)	0.0182(8)	0.0006(6)	0.0074(7)	0.0006(6)
C(2)	0.0156(8)	0.0207(8)	0.0223(8)	-0.0007(6)	0.0088(7)	0.0022(6)
C(3)	0.0196(9)	0.0290(10)	0.0244(9)	0.0019(7)	0.0083(7)	-0.0007(7)
C(4)	0.0247(9)	0.031(1)	0.0303(10)	0.0047(8)	0.0139(8)	-0.0003(8)
C(5)	0.0190(9)	0.032(1)	0.033(1)	0.0056(7)	0.0109(8)	0.0074(8)
C(6)	0.0191(9)	0.0312(10)	0.0259(9)	0.0006(7)	0.0075(7)	0.0053(8)
C(7)	0.0181(8)	0.0243(9)	0.0217(8)	-0.0012(6)	0.0076(7)	0.0025(7)
C(8)	0.0231(9)	0.034(1)	0.0202(9)	0.0045(7)	0.0053(7)	-0.0012(7)
C(9)	0.0246(9)	0.0254(9)	0.0204(8)	0.0013(7)	0.0065(7)	-0.0037(7)
C(10)	0.0163(8)	0.0188(8)	0.0190(8)	0.0031(6)	0.0089(7)	0.0014(6)
C(11)	0.0203(8)	0.0193(8)	0.0188(8)	0.0000(6)	0.0091(7)	0.0043(6)
C(12)	0.0204(9)	0.0277(9)	0.0240(9)	0.0019(7)	0.0104(7)	0.0029(7)
C(13)	0.0221(9)	0.0265(9)	0.0202(8)	-0.0003(7)	0.0057(7)	0.0040(7)
C(14)	0.0306(10)	0.0209(9)	0.0251(9)	0.0029(7)	0.0108(8)	0.0016(7)
C(15)	0.0233(9)	0.0200(8)	0.0208(8)	0.0010(7)	0.0111(7)	-0.0016(6)
C(16)	0.0208(9)	0.0240(9)	0.0185(8)	0.0014(7)	0.0098(7)	-0.0020(7)
C(17)	0.0242(9)	0.030(1)	0.0298(10)	-0.0033(8)	0.0121(8)	-0.0011(8)
C(18)	0.0218(9)	0.044(1)	0.035(1)	-0.0020(8)	0.0115(8)	0.0019(9)
C(19)	0.0246(10)	0.047(1)	0.034(1)	0.0123(9)	0.0126(9)	0.0104(9)
C(20)	0.033(1)	0.030(1)	0.040(1)	0.0080(8)	0.0212(9)	0.0102(8)
C(21)	0.0225(9)	0.0231(9)	0.0333(10)	0.0011(7)	0.0145(8)	0.0007(8)

Table 2. Anisotropic Displacement Parameters

The general temperature factor expression:

 $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table 3. Bond Lengths(Å)

atom	atom	distance	atom	atom	distance
01	C15	1.220(2)	N1	N2	1.415(2)
N1	C1	1.469(2)	N1	С9	1.472(2)
N2	C15	1.361(2)	N3	N4	1.355(2)
N3	C10	1.329(2)	N4	N5	1.294(2)
N5	N6	1.355(2)	N6	C10	1.352(2)
N6	C11	1.520(2)	C1	C2	1.517(2)
C1	C10	1.506(2)	C2	C3	1.394(2)
C2	C7	1.395(2)	C3	C4	1.385(3)
C4	C5	1.385(3)	C5	C6	1.385(3)
C6	C7	1.400(2)	C7	C8	1.513(3)
C8	С9	1.519(3)	C11	C12	1.532(2)
C11	C13	1.522(2)	C11	C14	1.528(2)
C15	C16	1.499(2)	C16	C17	1.395(3)
C16	C21	1.390(3)	C17	C18	1.383(3)
C18	C19	1.386(3)	C19	C20	1.380(3)
C20	C21	1.391(3)			

Table 4. Bond Angles(⁰)

atom	atom	atom	angle	atom	atom	atom	angle
N2	N1	C1	109.5(1)	N2	N1	С9	112.0(1)
C1	N1	С9	109.7(1)	N1	N2	C15	118.2(1)
N4	N3	C10	106.6(1)	N3	N4	N5	110.1(1)
N4	N5	N6	107.7(1)	N5	N6	C10	107.3(1)
N5	N6	C11	114.4(1)	C10	N6	C11	138.3(1)
N1	C1	C2	110.5(1)	N1	C1	C10	111.8(1)
C2	C1	C10	114.5(1)	C1	C2	C3	119.7(1)
C1	C2	C7	120.3(1)	C3	C2	C7	119.9(2)
C2	C3	C4	120.7(2)	C3	C4	C5	119.7(2)
C4	C5	C6	119.8(2)	C5	C6	C7	121.2(2)
C2	C7	C6	118.6(2)	C2	C7	C8	120.9(2)
C6	C7	C8	120.5(2)	C7	C8	С9	111.9(1)
N1	С9	C8	107.3(1)	N3	C10	N6	108.2(1)
N3	C10	C1	118.8(1)	N6	C10	C1	133.0(1)
N6	C11	C12	106.3(1)	N6	C11	C13	111.0(1)
N6	C11	C14	107.0(1)	C12	C11	C13	110.6(1)
C12	C11	C14	111.6(1)	C13	C11	C14	110.3(1)
01	C15	N2	123.4(2)	01	C15	C16	121.7(1)
N2	C15	C16	114.8(1)	C15	C16	C17	117.9(2)
C15	C16	C21	122.6(2)	C17	C16	C21	119.5(2)
C16	C17	C18	120.0(2)	C17	C18	C19	120.2(2)
C18	C19	C20	120.1(2)	C19	C20	C21	120.0(2)
C16	C21	C20	120.1(2)				

atom	atom	distance	atom	atom	distance
01	C14 ¹⁾	3.293(2)	01	C9 ²⁾	3.581(2)
N2	N33)	3.028(2)	N3	N33)	3.427(3)
N3	C1 ³)	3.505(2)	N5	C12 ⁴)	3.440(2)
N5	C19 ⁵)	3.594(2)	C3	C20 ³⁾	3.594(3)

Table 5. Non-bonded Contacts out to 3.60 A	

Symmetry operations

(1)	X,-Y+1/2,Z-1/2	(2)	-X+2,-Y,-Z
(3)	-X+2,-Y,-Z+1	(4)	X,-Y+1/2,Z+1/2
(5)	-X+3,-Y,-Z+1		