Electronic Supplementary Information (ESI)

"Optically pure γ-butyrolactones and epoxy esters via two stereocentered HKR of 3-substitued epoxy esters: a formal synthesis of (-)-paroxetine, Ro 67-8867 and (+)-eldanolide"

Dattatray A. Devalankar, Pratibha U. Karabal and Arumugam Sudalai*

Chemical Engineering \& Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India.

Tel.: +91 20 25902565; Fax: +91 20 25902676; e-mail: a.sudalai@ncl.res.in

Table of Contents

Sr.No. Description

1 General information

2 Experimental section

3 References

4 Spectra

1. General Information

Solvents were purified and dried by standard procedures before use. Optical rotations were measured using sodium D line on a JASCO-181 digital polarimeter. IR spectra were recorded on a Perkin-Elmer model 683 B and absorption is expressed in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR
and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brucker AC-200 spectrometer unless mentioned otherwise. Elemental analysis was carried out on a Carlo Erba CHNS-O analyzer. Purification was done using column chromatography (60-120 mesh). Enantiomeric excesses were determined on Agilent HPLC instrument equipped with a chiral column. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump.

2. Experimental Section

2.1 A general experimental procedure for Hydrolytic Kinetic Resolution (HKR) of

3-substituted epoxy esters (7a-h \& 10 a-d):

To a solution of (R, R) - or (S,S)-(salen)Co(II)complex ($0.024 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) in toluene $(1 \mathrm{~mL})$, acetic acid $(0.014 \mathrm{~g}, 0.24 \mathrm{mmol})$ was added. It was allowed to stir at $25{ }^{\circ} \mathrm{C}$ in open air for 30 min . during which time the color changed from orange-red to a dark brown and it was then concentrated under reduced pressure to get the $\mathrm{Co}(\mathrm{III})$-salen complex-6 as brown colored solid. To this racemic 3-substituted epoxy esters 7/10 (4.85 $\mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.043 \mathrm{~g}, 2.42 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 12 h . After completion of reaction (monitored by TLC). The crude product was purified by column chromatography over silica gel to give chiral epoxy esters 9a-g and 12a-d [solvent system; petroleum ether: ethyl acetate (9:1)] and chiral γ-butyrolactones 8a-g and 11a-d [solvent system; petroleum ether: ethyl acetate (1:1)] in pure form.

(R)-methyl 3-(4-fluorophenyl)-3-((S)-oxiran-2-yl)propanoate (9b)

Yield: 49\%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-7.47\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1736$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{dd}, J=2.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.86$ $(\mathrm{dd}, J=5.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.20,43.97,46.74,51.66,55.11,115.81(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, $129.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 135.51(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 162.00(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 171.74$; HRMS $(\boldsymbol{m} / \mathbf{z})$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FO}_{3}: 225.0921$ found: 225.0921 ; Optical purity: 99\% ee determined by HPLC analysis (Chiral OJ-H column, n-hexane/ 2-propanol (90:10), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {major }}=23.61$ and $\mathrm{t}_{\text {minor }}=29.29 \mathrm{~min}$.
(4S, 5R)-4-(4-chlorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8c)

Yield: 45%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-26.6\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 1777, $3438 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=9.6,17.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{dd}, J=9.1,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.92-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 7.21$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.17$, 41.37, 61.63, 86.94, 128.59, 129.37, 133.70, 137.85, 175.88; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClO}_{3}: 227.0469$ found: 227.0470; Optical purity: 98\% ee determined
by HPLC analysis (Chiral OJ-H column, n-hexane/ 2-propanol ($50: 50$), $0.5 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm})$ Retention time: $\mathrm{t}_{\text {minor }}=11.21$ and $\mathrm{t}_{\text {major }}=11.64 \mathrm{~min}$.

(R)-methyl 3-(4-chlorophenyl)-3-((S)-oxiran-2-yl)propanoate (9c)

Yield: 48%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-11.8\left(с 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1736$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.56(\mathrm{dd}, J=2.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-3.09(\mathrm{~m}, 5 \mathrm{H}), 3.60(\mathrm{~s}$, 3H), $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.93,44.03,46.65$, 51.64, $54.89,128.85,129.01,133.14,138.29,171.59 ;$ HRMS (\mathbf{m} / \mathbf{z}): calculated $[\mathrm{M}+\mathrm{H}]^{+}$ for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClO}_{3}$: 241.0626 found: 241.0626; Optical purity: 98% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (90:10), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=12.79$ and $\mathrm{t}_{\text {major }}=13.53 \mathrm{~min}$.
(4S, 5R)-4-(4-bromophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8d)

Yield: 46%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-21.2\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1775$, 3440; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=9.6,17.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{dd}, J=9.1,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 7.15$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.04$,
41.35, 61.48, 86.94, 121.55, 128.93, 132.19, 138.31, 176.16; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{3}: 270.9964$ found: 270.9965; Optical purity: 96% ee determined by HPLC analysis (Chiral OJ-H column, n-hexane/ 2-propanol ($50: 50$), $0.5 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm})$ Retention time: $\mathrm{t}_{\text {minor }}=11.91$ and $\mathrm{t}_{\text {major }}=12.47 \mathrm{~min}$.

(R)-methyl 3-(4-bromophenyl)-3-((S)-oxiran-2-yl)propanoate (9d)

Yield: 48%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-8.8\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathbf{I R}:\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1734 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.55(\mathrm{dd}, J=2.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-3.09(\mathrm{~m}, 5 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 36.76, 43.99, 46.52, 51.54, 54.71, 121.12, 129.33, 131.70, 138.79, 171.45; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrO}_{3}$: 285.0121 found: 285.0121; Optical purity: 96% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (95:5), $0.5 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm})$ Retention time: $\mathrm{t}_{\text {minor }}=13.54$ and $\mathrm{t}_{\text {major }}=14.33 \mathrm{~min}$.
(4S, 5R)-5-(hydroxymethyl)-4-(4-methoxyphenyl)dihydro- furan-2(3H)-one (8e)

Yield: 48%, colorless solid m.p.: $93{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-26.6\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$
1764, 3449; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}) $\delta 2.17-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=10.2,17.8$
$\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=8.9,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.97(\mathrm{~m}$, $1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.33,41.25,55.19,61.67,87.33,114.51,128.23,131.06,159.05$, 176.15; HRMS (\mathbf{m} / \mathbf{z}): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}: 223.0965$ found: 223.0964;

Optical purity: 97\% ee determined by HPLC analysis (Chiral OJ-H column, n-hexane/ 2-propanol (50:50), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=13.27$ and $\mathrm{t}_{\text {major }}=14.03$ min.
(R)-methyl 3-(4-methoxyphenyl)-3-((S)-oxiran-2-yl)propano- ate (9e)

Yield: 47%, colorless liquid; $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-25.0\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1735 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.56(\mathrm{dd}, J=2.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-3.08(\mathrm{~m}, 5 \mathrm{H}), 3.6(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 37.41,44.04,46.82,51.48,55.00,55.30,114.03,128.54,131.70,158.68$, 171.86; HRMS (\mathbf{m} / \mathbf{z}): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4}: 237.1121$ found: 237.1119;

Optical purity: 96\% ee determined by HPLC analysis (OD-H column, n-hexane/ 2propanol ($90: 10$), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=14.90$ and $\mathrm{t}_{\text {major }}=15.54$ min.
(4R, 5R)-5-(hydroxymethyl)-4-methyldihydrofuran-2(3H)-one (8f)

Yield: 46%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-51.0\left(c 1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{1}[\alpha]_{\mathrm{D}}+49.4$ for its antipode \}; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1770,3419 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, 2.16 (br s, 1H), 2.21 (dd, $J=8.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=8.5$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 17.67,30.88,36.80,62.10,87.46,177.07$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, 55.37; H, 7.74; found C, 55.39; H, 7.80\%. Optical purity: 97\% determine from Mosher's ester.

Synthesis of Mosher's Ester

(2R)-((2R,3R)-tetrahydro-3-methyl-5-oxofuran-2-yl)methyl 3,3,3-trifluoro-2-methoxy-2phenylpropanoate:

To a stirred solution of $\mathbf{8 f}(50 \mathrm{mg}, 0.38 \mathrm{mmol})$, DCC ($95 \mathrm{mg}, 0.46 \mathrm{mmol}$) and catalytic N,N-diaminopyridine ($5 \mathrm{mg}, 10 \mathrm{~mol} \%$), Mosher's acid [(R)-(+)- α-Methoxy- α-trifluoromethylphenyl acetic acid] ($108 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and allowed to stir for 2 h at same tempreture. After the completion of reaction (monitored by TLC), it was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product corresponding Mosher's ester. Column chromatographic purification with silica gel using petroleum ether: ethyl acetate (7:3) as eluent gave to give pure corresponding Mosher's ester.

Yield: 68%, colorless liquid, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.16(\mathrm{dd}, J=8.3,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=8.5,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, $3 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=5.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=2.8,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}\right) \delta-72.17$ (minor diasteromer, integral $=1 \%),-72.27($ major diastereomer, integral $=58.46 \%)[$ Ratio of diasteromer major : minor, 98.32 : 1.68]

(S)-methyl 3-((S)-oxiran-2-yl)butanoate (9f)

Yield: 48%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=+3.5\left(c 1, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $^{2}[\alpha]_{\mathrm{D}}{ }^{25}+3.8\left(\right.$ c $\left.\left.2, \mathrm{CHCl}_{3}\right)\right\}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1737 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{dd}, J=8.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.66,33.24,38.05,46.11,51.33,55.43$, 172.35; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 58.32; $\mathrm{H}, 8.39$; found $\mathrm{C}, 58.28 ; \mathrm{H}, 8.42 \%$.

Optical purity: 96\% determine from Mosher's ester (Note: epoxide 9 f was opened with water using non-chiral way then corresponning lactone is used for the preparation of corresponding Mosher's ester).
(2R)-((2S,3S)-tetrahydro-3-methyl-5-oxofuran-2-yl)methyl
3,3,3-trifluoro-2-methoxy-2-phenylpropanoate:

Yield: 56%, colorless liquid, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.13(\mathrm{dd}, J=7.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=8.5,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}$, $3 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=4.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=2.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{COOH}$) $\delta-72.26$ (major diastereomer, integral $=51.56 \%),-72.36($ minor diasteromer, integral $=1 \%)[$ Ratio of diasteromer major : minor, $98.10: 1.90]$.

(4R, 5R)-4-benzyl-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8g)

Yield: 47%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-38.0\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1773$, 3421; ${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.12(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.86(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.83(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.36 (m, 3H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 34.90,37.50,39.19,62.83,85.33$, 126.70, 128.68, 138.10, 176.80; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}$: 207.1016 found: 207.1014; Optical purity: 99% ee determined by HPLC analysis (Chiral OD-H column, n-hexane/ 2-propanol (50:50), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {major }}=9.94$ and $\mathrm{t}_{\text {minor }}=11.41 \mathrm{~min}$.

(S)-methyl 3-((S)-oxiran-2-yl)-4-phenylbutanoate (9g)

Yield: 48%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-3.0\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1737 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=2.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.56(\mathrm{~m}$, $2 \mathrm{H}), 2.60-2.89(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.14-7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $35.89,37.55,40.47,47.01,51.42,54.20,126.28,128.31,129.01,138.89,172.37$; HRMS $(\mathbf{m} / \mathbf{z})$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}: 221.1172$ found: 221.1172; Optical purity: 97\% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (90:10), 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=13.08$ and $\mathrm{t}_{\text {major }}=13.56 \mathrm{~min}$.

(4R, 5R)-5-(hydroxymethyl)-4-phenethyldihydrofuran-2(3H)-one (8h)

Yield: 48%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-54.8\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1772$, 3440; ${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl_{3}) 1.69-2.00 (m, 2H), 2.19-2.31 (m, 2H), 2.36-2.54 (m, $1 \mathrm{H}), 2.62-2.81(\mathrm{~m}, 3 \mathrm{H}), 3.57-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.33$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.71,35.14,35.21,35.85,62.89,85.93,126.26$, 128.19, 128.57, 140.68, 176.77; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}$: 221.1172 found: 221.1169; Optical purity: 96% ee determined by HPLC analysis (Chiral OD-H column, n-hexane/ 2-propanol (50:50), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {major }}=13.45$ and $\mathrm{t}_{\text {minor }}=14.48 \mathrm{~min}$.
(S)-methyl 3-((S)-oxiran-2-yl)-5-phenylpentanoate (9h)

Yield: 48%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-5.9\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1743 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.87(\mathrm{~m}, 7 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 7.14-7.30(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.01,33.25,36.48,38.18,47.18,51.42,54.52$, 125.91, 128.11, 128.33, 141.42, 172.43; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}$: 235.1329 found: 235.1329; Optical purity: 96% ee determined by HPLC analysis (ODH column, n-hexane/ 2-propanol ($90: 10$), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=$ 14.79 and $\mathrm{t}_{\text {major }}=15.35 \mathrm{~min}$.

(4S, 5S)-4-(4-fluorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11b)

Yield: 46%, colorless solid m.p.: $113{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-156.12\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-}\right.$ ${ }^{1}$) 1774,$3415 ;{ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=9.1,17.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01(\mathrm{dd}, J=8.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 34.81,42.82,61.94,83.12,115.81(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 129.38(\mathrm{~d}, J=7.7 \mathrm{~Hz})$, $132.16(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 162.26(\mathrm{~d}, J=247.4 \mathrm{~Hz}), 176.34 ;$ HRMS $(\mathrm{m} / \mathrm{z})$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FO}_{3}: 211.0765$ found: 211.0766; Optical purity: 98% ee determined by HPLC (OJ-H column, n-hexane/ 2-propanol (50:50), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {major }}=10.83$ and $\mathrm{t}_{\text {minor }}=18.58 \mathrm{~min}$.
(R)-methyl 3-(4-fluorophenyl)-3-((R)-oxiran-2-yl)propanoate (12b)

Yield: 48%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+10.4\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1736 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43(\mathrm{dd}, J=2.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.82(\mathrm{~m}, 3 \mathrm{H}), 3.09-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.24-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 6.95-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 36.71,42.22,45.69,51.63,54.36,115.60(\mathrm{~d}, \mathrm{~J}=21.2 \mathrm{~Hz})$, $129.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 135.04(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 162.00(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 171.62$; HRMS $(\mathbf{m} / \mathbf{z})$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FO}_{3}: 225.0921$ found: 225.0921; Optical purity: 98\% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (90:10), 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=12.77$ and $\mathrm{t}_{\text {major }}=13.11 \mathrm{~min}$.

(4S, 5S)-4-(4-chlorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11c)

Yield: 47%, colorless solid m.p.: $108{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-110.11\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right) 1775,3436 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=9.1$, $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=8.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 34.53,42.74,61.66,83.28,128.95,129.15,133.55,134.92,176.87$;

HRMS ($\boldsymbol{m} / \mathbf{z}$): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClO}_{3}: 227.0469$ found: 227.0470; Optical
purity: 99\% ee determined by (OJ-H column, n-hexane/ 2 -propanol ($50: 50$), $0.5 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm})$ Retention time: $\mathrm{t}_{\text {major }}=10.99$ and $\mathrm{t}_{\text {minor }}=12.08 \mathrm{~min}$.
(R)-methyl 3-(4-chlorophenyl)-3-((R)-oxiran-2-yl)propanoate (12c)

Yield: 46%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+9.4\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1736 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.44(\mathrm{dd}, J=2.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.83(\mathrm{~m}, 3 \mathrm{H}), 3.10-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.23-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.56,42.40,45.76,51.71,54.25,128.71,129.30$, 133.11, 137.79, 171.58; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClO}_{3}: 241.0626$ found: 241.0626; Optical purity: 97\% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (90:10), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=13.15$ and t ${ }_{\text {major }}=13.54 \mathrm{~min}$.
(4S, 5S)-4-(4-bromophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11d)

Yield: 46%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-108.8\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1773$, 3440; ${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=9.0,17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{dd}, J=8.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$
$(\mathrm{m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 34.54,43.03,61.85,82.92,121.88,129.54,132.08,135.48,176.27$; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{3}: 270.9964$ found: 270.9965 ; Optical purity: 98% ee determined by HPLC analysis (OJ-H column, n-hexane/ 2-propanol ($50: 50$), $0.5 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm})$ Retention time: $\mathrm{t}_{\text {major }}=12.33$ and $\mathrm{t}_{\text {minor }}=13.41 \mathrm{~min}$.

(R)-methyl 3-(4-bromophenyl)-3-((R)-oxiran-2-yl)propanoate (12d)

Yield: 48%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+8.8\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) \mathbf{1 7 3 5 ;}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{dd}, J=2.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.82(\mathrm{~m}, 3 \mathrm{H}), 3.10-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.21-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 36.50,42.47,45.74,51.69,54.17,121.24,129.68$, 131.67, 138.34, 171.52; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrO}_{3}: 285.0121$ found: 285.0121; Optical purity: 97\% ee determined by HPLC analysis (OD-H column, n-hexane/ 2-propanol (90:10), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=14.36$ and t major $=15.09 \mathrm{~min}$.
(4S, 5S)-4-benzyl-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8i)
(Synthesized using $(R, R)-\mathrm{Co}(\mathrm{III})$-salen complex)

Yield: 48%, colorless thick liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+38.2\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$; Optical purity: 99% ee determined by HPLC analysis (Chiral OD-H column, n-hexane/ 2-propanol (50:50), 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathrm{t}_{\text {minor }}=9.82$ and $\mathrm{t}_{\text {major }}=11.34 \mathrm{~min}$.

(R)-methyl 3-((R)-oxiran-2-yl)-4-phenylbutanoate (9i)

(Synthesized using (R,R)-Co(III)-salen complex)

Yield: 45%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+3.1$ (c 1, CHCl_{3}); Optical purity: 98% ee determined by (OD-H column, n-hexane/ 2-propanol (90:10), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$) Retention time: $\mathfrak{t}_{\text {major }}=13.01$ and $\mathrm{t}_{\text {minor }}=13.50 \mathrm{~min}$.

2.2 ((2R, 3S)-3-(4-fluorophenyl)-5-oxotetrahydrofuran-2-yl)methyl

methanesulfonate (17)

To a solution of lactone $\mathbf{8 b} / \mathbf{8 i}(4.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, triethyl amine (0.86 mL , $6.19 \mathrm{mmol})$ and Mesyl chloride ($0.44 \mathrm{~mL}, 5.71 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The resulting solution was stirred at same temperature for 1 h . After the completion of the reaction (monitored by TLC), it was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product $\mathbf{1 7 / 1 7}$ a. Column chromatographic purification with silica gel using petroleum ether: ethyl acetate (7:3) as eluent gave 17/17a in pure form.

((2S, 3S)-3-benzyl-5-oxotetrahydrofuran-2-yl)methyl methanesulfonate (17a)

Yield: 93%, colorless solid m.p.: $78^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+26.0\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 1782; ${ }^{1} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 2.27-2.42 (m, 1H), 2.63-2.85 (m, 4H), $2.99(\mathrm{~s}, 3 \mathrm{H})$, $4.05(\mathrm{dd}, J=4.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=2.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.35$ (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 34.29,37.45,38.02,38.95,69.01,81.05,127.05$, 128.67, 128.91, 137.48, 174.82; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~S}$: 285.0791 found: 285.0790 .

2.3 (4S, 5R)-5-(azidomethyl)-4-(4-fluorophenyl)dihydrofuran-2(3H)-one (18)

To a stirred mixture of crude $\mathbf{1 7} / \mathbf{1 7 a}(3.47 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$, sodium azide (0.27 $\mathrm{g}, 4.16 \mathrm{mmol}$) was added. Reaction mixture was stirred for 8 h at $80{ }^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC), it was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude azido lactone 18/18a, which was purified by column chromatography with silica gel using petroleum ether: ethyl acetate (8:2) as eluent gave pure $\mathbf{1 8} / \mathbf{1 8}$ a as colorless oil.

(4S, 5S)-5-(azidomethyl)-4-benzyldihydrofuran-2(3H)-one (18a)

Yield: 95%, colorless liquid; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+78.5\left(c 1, \mathrm{CHCl}_{3}\right)$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1781,2104$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.26-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.86(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{dd}, J=4.6$, $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=3.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.37$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 34.52,38.91,39.11,53.06,82.40,126.99$, 128.59, 128.85, 137.66, 174.83; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$: 232.1081 found: 232.1080 .

2.4 (4S, 5R)-4-(4-fluorophenyl)-5-hydroxypiperidin-2-one (19)

To a solution of 18/18a (4.25 mmol) in dry methanol $\mathrm{Pd}(\mathrm{OH})_{2}(0.05 \mathrm{~g})$ was added and the reaction mixture was stirred under an atmosphere of $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 24 h at $25^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC), the reaction mixture was filtered over
celite and the filtrate was concentrated under reduced pressure to provide the 19/19a, which was purified by column chromatography using ethyl acetate: methanol (9:1) to obtain pure 19/19a.
(4S, 5S)-4-benzyl-5-hydroxypiperidin-2-one (19a)

Yield: 92%, colorless solid m.p.: $213{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+7.3(c 1, \mathrm{MeOH})$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 1642, 3440; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}+\mathrm{CDCl}_{3}$) $\delta 2.03-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{dd}, \mathrm{J}=$ $6.8,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=7.013 .0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.20$ (m, 5H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): δ 33.54, 38.92, 40.36, 49.99, 64.66, 127.38, 129.61, $130.30,141.08,174.68$; HRMS (m/z): calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}$: 206.1176 found: 206.1177 .

2.5 (3R, 4S)-1-benzyl-4-(4-fluorophenyl)piperidin-3-ol (20)

To a solution of lactum $19(0.5 \mathrm{~g}, 2.39 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL}), \mathrm{BH}_{3} \mathrm{SMe}_{2}(0.45 \mathrm{~mL}$, 4.78 mmol) was added dropwise at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and the mixture was then refluxed for 6 h . After the completion of the reaction (monitored by TLC), the solvent (THF) was removed under reduced pressure. Without purification, the crude amino alcohol was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(1: 1,10 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}, 7.71 \mathrm{mmol})$ was added, followed by dropwise addition of benyl bromide ($0.34 \mathrm{~mL}, 2.87 \mathrm{mmol}$). The reaction mixture was refluxed for 8 h . After the completion of the reaction (monitored by TLC), it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, washed with water, brine and dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude 20, which was purified by column chromatographic purification with silica gel using petroleum ether: ethyl acetate (7:3) as eluent gave $\mathbf{2 0}$ in pure form.

(3S, 4S)-4-benzylpiperidin-3-ol (4)

To a solution of lactum $\mathbf{1 9 a}(0.49 \mathrm{~g}, 2.39 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL}), \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(0.45$ $\mathrm{mL}, 4.78 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere and the mixture was then refluxed for 6 h . After the completion of the reaction (monitored by TLC), the solvent (THF) was removed under reduced pressure to give the crude product 4 , which was purified by column chromatography with silica gel using petroleum ether: ethyl acetate (6:4) as eluent gave pure $\mathbf{4}$ as colorless solid.

2.6 (S)-1-benzyl-4-(4-fluorophenyl)piperidin-3-one (21)

To a stirred solution of oxalyl chloride $(0.15 \mathrm{~mL}, 1.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, DMSO ($0.2 \mathrm{~mL}, 2.63 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was stirred for 20 min . followed by the addition of a solution of alcohol $20(0.25 \mathrm{~g}, 0.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, triethyl amine $(0.5 \mathrm{~mL}, 3.5 \mathrm{mmol})$ was added and reaction mixture was stirred at room temperature for additional 15 min , after which it was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$, the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding crude aldehyde 21, which was used for next reaction without purification.

2.7 (S)-1-benzyl-4-(4-fluorophenyl)-3-(methoxymethylene)piperidine (22)

To a stirred solution of methoxymethyltriphenylphoshonium chloride ($0.48 \mathrm{~g}, 1.41$ mmol) in dry THF (3 mL), n-butyl lithium (1.6 M in hexane, $0.5 \mathrm{~mL}, 0.84 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The resulting red solution was stirred at this temperature for 1 h , after which solution of $21(0.2 \mathrm{~g}, 0.7 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was allowed to stirred for another 48 h at 0 ${ }^{\circ} \mathrm{C}$ After the completion of the reaction (monitored by TLC), it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude 22, which upon column chromatographic purification with silica gel using petroleum ether: ethyl acetate (8:2) as eluent gave pure $\mathbf{2 2}$ as colorless oil
(Spectral data is in good agreement with reported values, ref. 3)

2.8 ((3S, 4R)-1-benzyl-4-(4-fluorophenyl)piperidin-3-yl)methanol (2)

To a solution of enol ether $22(0.06 \mathrm{~g}, 0.19 \mathrm{mmol})$ in THF (3 mL), 0.1 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(2.8 \mathrm{~mL}, 0.28 \mathrm{mmol})$ was added. The solution was refluxed for 12 h , after which it was allowed to cool to room temperature and a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The resulting mixture was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$), washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the corresponding crude aldehyde, which was used for next reaction without further purification.

To the solution of this crude aldehyde in methanol $(2 \mathrm{~mL}), \mathrm{NaBH}_{4}(0.007 \mathrm{~g}, 0.21 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the stirred reaction mixture stirred for 1 h at $25^{\circ} \mathrm{C}$. After the completion of the reaction (monitored by TLC), it was treated with 2 N aq. Sodium hydroxide (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, washed with water, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was concentrated under reduced pressure to give the crude 2, which was purified by column chromatography with silica gel using petroleum ether: ethyl acetate (8:2) as eluent gave pure $\mathbf{2}$ as colorless oil.
(Spectral data and optical rotation are in good agreement with reported values, ref. 3, 4)

2.9 (+)-Eldanolide (1)

To a stirred solution of $\mathrm{CuBr} . \mathrm{SMe}_{2}(0.128 \mathrm{~g}, 0.62 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ in THF (5 mL), 2-methyl-1-propenylmagnesium bromide (0.5 M in THF, $10 \mathrm{~mL}, 5.2 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere and stirring was continued for 30 min . The solution of epoxide $9 \mathrm{f}(0.39 \mathrm{~g}, 2.08 \mathrm{mmol})$ in THF (5 mL) was added dropwise and the stirring continued for 3 h at $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. Then the mixture was quenched with saturated aq. ammonium chloride solution (5 mL) and the product extracted with ethyl acetate (3 x 10 $\mathrm{mL})$. The combined organic layers were washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude product $\mathbf{1}$ which upon column chromatographic purification with silica gel using petroleum ether: ethyl acetate (9:1) as eluent gave pure $\mathbf{1}$ as colorless oil.
(Spectral data and optical rotation are in good agreement with reported values, ref. 5)

2.10 General procedure for the synthesis of acyclic olefinic acid (14)

A mixture of allylic alcohol 13 (37.31 mmol), triethyl orthoacetate $(37.31 \mathrm{mmol})$ and hexanoic acid ($0.23 \mathrm{~mL}, 1.85 \mathrm{mmol}$) was placed in a round-bottomed flask equipped with thermometer, Claisen head and condenser. The solution was heated with distillation of ethanol (upto $70-150{ }^{\circ} \mathrm{C}$). After 3 h distillation of ethanol slows and another $0.1-\mathrm{mL}$ portion of hexanoic acid was added. Additional portions (0.1 mL) of hexanoic acid were added again after at $3^{\text {rd }}$ and $4^{\text {th }} \mathrm{h}$ followed by continued heating for next the next 6 h . After which it was allowed to cool and aq. solution of potassium hydroxide ($2.9 \mathrm{~g}, 52.2$ $\mathrm{mmol}, 20 \mathrm{ml})$, methanol (60 mL) was added. The resulting mixture was refluxed for 4 h and then allowed to cool to room temperature. After that the resulting solution washed with diethyl ether and acidified with dil HCl . The acidic solution was extracted with diethyl ether and the organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product 14 . The crude material was used as such for next reaction without any further purification.

3-phenylpent-4-enoic acid (14a)

Yield: 90%, colorless solid m.p.: $48{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1638,1708,3028 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.69(\mathrm{dd}, J=7.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=7.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.89-6.06(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.33$
$(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 40.00,45.13,115.03,126.80,127.51,128.63$,
139.93, 142.07, 178.37; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, 74.98; H, 6.86; found C, 74.70; H, 6.80\%.

3-(4-fluorophenyl)pent-4-enoic acid (14b)

Yield: 88%, colorless solid m.p.: $82^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1509,1710,2912,2987,3035$, 3076; ${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.66(\mathrm{dd}, J=7.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=7.7$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.86-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.94-7.02$ (m, 2H), 7.13-7.20(m, 2H); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.06,44.34,115.18(\mathrm{~d}, \mathrm{~J}=$ $4.7 \mathrm{~Hz}), 129.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 137.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 139.81,164.16(\mathrm{~d}, J=245.0 \mathrm{~Hz})$, 178.23; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~F}$ requires C, 68.03 ; H, 5.71 ; found C, 68.11 ; H, 5.75\%.

3-(4-chlorophenyl)pent-4-enoic acid (14c)

Yield: 85%, colorless solid m.p.: $100{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1496,1707,2610,2905 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.70(\mathrm{dd}, J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=7.6,14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.85-6.02(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 39.83,44.46,115.45$, 128.83, 128.95, 139.50, 140.48, 178.07; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Cl}$ requires C , 62.72; H, 5.26; found C, 62.65 ; H, 5.18%.

3-(4-bromophenyl)pent-4-enoic acid (14d)

Yield: 84%, colorless solid m.p.: $108{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1706,3044 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.70(\mathrm{dd}, J=7.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=7.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.84-6.01(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 39.75,44.51,115.52,120.78,129.34$, 131.78, 139.41, 140.99, 178.03; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}$ requires C, 51.79; H, 4.35; found C, 51.68; H, 4.32\%.

3-(4-methoxyphenyl)pent-4-enoic acid (14e)

Yield: 88%, colorless solid m.p.: $78{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1512,1610,1708,2836,2956$;
${ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.69(\mathrm{dd}, J=7.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=7.7,15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.86-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.11 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.13,44.31,55.13$, 114.02, 114.68, 128.49, 134.10, 140.29, 158.38, 178.37; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.88$; $\mathrm{H}, 6.84$; found $\mathrm{C}, 69.74 ; \mathrm{H}, 6.94 \%$.

3-methylpent-4-enoic acid (14f)

Yield: 78%, colorless liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1711,2967,3083 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=7.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=6.8,15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.62-2.76(\mathrm{~m}, 1 \mathrm{H}), 4.95-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.70-5.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 19.68,34.09,41.11,113.66,142.08,179.24$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, $63.14 ; \mathrm{H}, 8.83$; found C, $63.20 ; \mathrm{H}, 8.75 \%$.

3-benzylpent-4-enoic acid (14g)

Yield: 92%, colorless liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) \mathbf{1 4 9 5}, 1641,1693,2675,3071 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.33(\mathrm{dd}, J=8.2,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=5.7,15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.67-2.95 (m, 3H), 4.96-5.05 (m, 2H), 5.64-5.82(m, 1H), 7.12-7.31 (m, 5H) ; ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 38.56,40.87,41.32,115.42,126.27,128.30,129.28,139.16,139.93$, 179.19; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, $75.76 ; \mathrm{H}, 7.42$; found C, $75.72 ; \mathrm{H}, 7.50 \%$.

3-phenethylpent-4-enoic acid (14h)

Yield: 85%, colorless liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1603,1641,1708,3025 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.68(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.74(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 33.31,36.15,39.84,39.91,116.05,125.84,128.35,140.25,141.88,178.96$;

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 76.44; H, 7.90; found C, 76.45; H, 7.95\%.

2.11 General procedure for the synthesis of trans-iodolatone product (15)

To a solution of olefinic acid $14(5.68 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$, solid $\mathrm{I}_{2}(4.6 \mathrm{~g}$, 18.17 mmol) was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, the reaction mixture was protected from light and stirred for 24 h . After the completion of the reaction (monitored by TLC), it was quenched by addition of saturated solution of aq. NaHCO_{3} followed by extraction with diethyl ether. Organic layer was separated and washed with 20% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until colorless, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product 15. Column chromatographic purification with silica gel using petroleum ether: ethyl acetate (8:2) as eluent gave $\mathbf{1 5}$ in pure form.

5-(iodomethyl)-4-phenyldihydrofuran-2(3H)-one (15a)

Yield: 89%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1780 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2. $82(\mathrm{dd}, J=9.6,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=9.01,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=4.4,11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45-3.59(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.42(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$,
CDCl_{3}): $\delta 6.33,36.86,47.19,83.99,127.13,128.01,129.25,138.36,174.08$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{I}$ requires $\mathrm{C}, 43.73 ; \mathrm{H}, 3.67$; found $\mathrm{C}, 43.72 ; \mathrm{H}, 3.70 \%$.

4-(4-fluorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15b)

Yield: 82%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) \mathbf{1 7 8 1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.76(\mathrm{dd}, J=9.2,17.81 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=9.1,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.60(\mathrm{~m}, 3 \mathrm{H})$, $4.27(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.14$, 37.10, 43.36, 82.62, $116.17(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 129.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.28(\mathrm{~d}, J=3.3$
$\mathrm{Hz}), 162.0(\mathrm{~d}, \mathrm{~J}=248.1 \mathrm{~Hz}), 175.19$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{FI}$ requires $\mathrm{C}, 41.27 ; \mathrm{H}$, 3.15; found C, $41.30 ; \mathrm{H}, 3.12 \%$.

4-(4-chlorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15c)

Yield: 80%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1789 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.75(\mathrm{dd}, J=9.1,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=9.2,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.59(\mathrm{~m}, 3 \mathrm{H}), 4.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 5.99,36.82,46.62,83.84,128.52,129.53,134.05,137.11,173.73$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClO}_{2} \mathrm{I}$ requires C, $39.26 ; \mathrm{H}, 2.99$; found $\mathrm{C}, 39.28 ; \mathrm{H}, 3.02 \%$.

4-(4-bromophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15d)

Yield: 82%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1782 ;{ }^{1} \mathbf{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta\right.$ $2.75(\mathrm{dd}, J=9.1,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=9.1,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.58(\mathrm{~m}, 3 \mathrm{H}), 4.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 6.20,36.65,46.52,83.60,121.69,128.86,132.15,137.29,173.75$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{2}$ I requires C, $34.68 ; \mathrm{H}, 2.65$; found C, $34.70 ; \mathrm{H}, 2.68 \%$.

5-(iodomethyl)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (15e)

Yield: 85%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) \mathbf{1 7 8 3} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.64-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.25$, 36.93, 46.55, 55.16, 84.13, 114.55, 128.16, 130.00, 159.21, 174.07; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{I}$ requires C, $43.39 ; \mathrm{H}, 3.95$; found C, $43.45 ; \mathrm{H}, 3.88 \%$.

5-(iodomethyl)-4-methyldihydrofuran-2(3H)-one (15f)

Yield: 80%, colorless liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1778 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{dd}, J=7.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ 8.3, 17.1 Hz, 1H), $3.37(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.00,18.19,35.75,36.55,84.45,174.70$; Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{I}$ requires C, 30.02; H, 3.78; found C, 30.10 ; H, 3.82\%.

4-benzyl-5-(iodomethyl)dihydrofuran-2(3H)-one (15g)

Yield: 85%, colorless solid m.p.: $62{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1782 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 2.31-2.44(m, 1H), 2.64-2.89(m, 4H), $3.08(\mathrm{dd}, J=4.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}$, $J=5.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.26,34.48,39.25,42.16,82.24,126.89,128.61,128.75,137.58,174.50 ;$

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{I}$ requires C, 45.59; H, 4.14; found C, 45.62; H, 4.20\%.

5-(iodomethyl)-4-phenethyldihydrofuran-2(3H)-one (15h)

Yield: 82%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1778 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.64-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.88(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.42(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}$
$=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26,34.48,39.25$, 42.16, 82.24, 126.89, 128.61, 128.75, 137.58, 174.50; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{I}$ requires C, $47.29 ; \mathrm{H}, 4.58$; found C, 47.22 ; H, 4.50\%.

2.12 General procedure for the synthesis of cis-iodolatone product (16)

To a solution of olefinic acid $14(5.68 \mathrm{mmol})$ in chloroform $(20 \mathrm{~mL})$, aq. $\mathrm{NaHCO}_{3}(0.95$ $\mathrm{g}, 11.36 \mathrm{mmol})$ in 20 mL of water, solid $\mathrm{I}_{2}(2.88 \mathrm{~g}, 11.36 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere, the reaction mixture protected from light and stirred for 6 h . After the completion of the reaction (monitored by TLC), organic layer was separated and washed with 20% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until colorless, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product 16. Column chromatographic purification with silica gel using petroleum ether: ethyl acetate (9:1) as eluent gave 16 in pure form.

5-(iodomethyl)-4-phenyldihydrofuran-2(3H)-one (16a)

Yield: 80%, colorless solid m.p.: $104{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1782 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.65-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.51,36.82,44.05$, 82.83, 128.02, 128.10, 128.96, 136.45, 175.37; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{I}$ requires C, 43.73; H, 3.67; found C, 43.82; H, 3.75\%.

4-(4-fluorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (16b)

Yield: 76%, colorless solid m.p.: $99{ }^{\circ} \mathrm{C}$; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1785 ;{ }^{1} \mathbf{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.60-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.10$ (m, 2H), 7.17-7.26 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (50 MHz, CDCl_{3}): $\delta 1.13,37.08,43.36,86.62$, $115.75(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 129.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.23(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 162.33(\mathrm{~d}, J=$ 248.1 Hz), 175.17; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ FI requires $\mathrm{C}, 41.27 ; \mathrm{H}, 3.15$; found C , 41.18; H, 3.27\%.

4-(4-chlorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (16c)

Yield: 75%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) \mathbf{1 7 8 0} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.60-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.06,36.95,43.50,82.47$, 129.17, 129.41, 134.12, 134.96, 175.07; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClO}_{2} \mathrm{I}$ requires C , 39.26; H, 2.99; found C, 3.28; H, 2.84\%.

4-(4-bromophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (16d)

Yield: 71%, colorless thick liquid; IR: $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1782 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.60-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19,36.79,43.51,82.34$, 122.12, 129.68, 132.05, 135.43, 175.07; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{2} \mathrm{I}$ requires $\mathrm{C}, 34.68$; H, 2.65; found C, 3.58; H, 2.74\%.

2.13 General procedure for the synthesis of anti and syn epoxy esters (7a-h \& 10 a-d)

To a solution of iodolactone $\mathbf{1 5}$ or $\mathbf{1 6}(3.3 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ finely powdered anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.38 \mathrm{~g}, 3.63 \mathrm{mmol})$ was added and the reaction mixture refluxed for 8 h under nitrogen atmosphere. After the completion of the reaction (monitored by TLC), the resulting reaction mixture was concentrated under reduced pressure and partitioned between 50 mL water and 50 mL diethyl ether. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the corresponding crude product 7 or $\mathbf{1 0}$. Column chromatographic purification with silica gel using petroleum ether: ethyl acetate (9:1) as eluent gave $\mathbf{7}$ or $\mathbf{1 0}$ pure in form.

3. Referances releveant to supporting information:

1. H.-J. Ha, K.-N. Yoon, S.-Y. Lee, Y.-S. Park, M.-S. Lim and Y.-G. Yim, J. Org. Chem., 1998, 63, 8062.
2. J. S. Yadav and P. S. R. Reddy, Synthesis, 2007, 1070.
3. Koech, P. K.; Krische, M. J. Tetrahedron, 2006, 62, 10594.
4. Bower, J. F.; Riis-Johannessen, T.; Szeto, P.; Whitehead, A. J.; Gallagher, T. Chem. Commun., 2007, 728.
5. Kong, L.; Zhuang, Z.; Chen, Q.; Deng, H.; Tang, Z.; Jia, X.; Li, Y.; Zhai, H. Tetrahedron: Asymmetry, 2007, 18, 451.

4. Spectra

(4S,5R)-5-(hydroxymethyl)-4-phenyldihydrofuran-2(3H)-one (8a)

Carbon tetrachloride

(4S,5R)-4-(4-fluorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8b)

(4S,5R)-4-(4-chlorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8c)

(4S,5R)-4-(4-bromophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8d)

(4S,5R)-5-(hydroxymethyl)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (8e)

(4R,5R)-5-(hydroxymethyl)-4-methyldihydrofuran-2(3H)-one (8f)

(4R,5R)-4-benzyl-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8g)

(4R,5R)-5-(hydroxymethyl)-4-phenethyldihydrofuran-2(3H)-one (8h)

(4S,5S)-5-(hydroxymethyl)-4-phenyldihydrofuran-2(3H)-one (11a)

(4S,5S)-4-(4-fluorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11b)

(4S,5S)-4-(4-chlorophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11c)

Carbon tetrachloride

(4S,5S)-4-(4-bromophenyl)-5-(hydroxymethyl)dihydrofuran-2(3H)-one (11d)

(R)-methyl 3-((S)-oxiran-2-yl)-3-phenylpropanoate (9a)

(R)-methyl 3-(4-fluorophenyl)-3-((S)-oxiran-2-yl)propanoate (9b)

(R)-methyl 3-(4-chlorophenyl)-3-((S)-oxiran-2-yl)propanoate (9c)

Carbon tetrachloride

(R)-methyl 3-(4-bromophenyl)-3-((S)-oxiran-2-yl)propanoate (9d)

(R)-methyl 3-(4-methoxyphenyl)-3-((S)-oxiran-2-yl)propanoate (9e)

(S)-methyl 3-((S)-oxiran-2-yl)butanoate (9f)

(2R)-((2S,3S)-tetrahydro-3-methyl-5-oxofuran-2-yl)methyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate

(S)-methyl 3-((S)-oxiran-2-yl)-4-phenylbutanoate (9g)

(S)-methyl 3-((S)-oxiran-2-yl)-5-phenylpentanoate (9h)

(R)-methyl 3-((R)-oxiran-2-yl)-3-phenylpropanoate (12a)

(R)-methyl 3-(4-fluorophenyl)-3-((R)-oxiran-2-yl)propanoate (12b)

(R)-methyl 3-(4-chlorophenyl)-3-((R)-oxiran-2-yl)propanoate (12c)

(R)-methyl 3-(4-bromophenyl)-3-((R)-oxiran-2-yl)propanoate (12d)

((2R,3S)-3-(4-fluorophenyl)-5-oxotetrahydrofuran-2-yl)methyl methanesulfonate (17)

((2S,3S)-3-benzyl-5-oxotetrahydrofuran-2-yl)methyl methanesulfonate (17a)

(4S,5R)-5-(azidomethyl)-4-(4-fluorophenyl)dihydrofuran-2(3H)-one (18)

(4S,5S)-5-(azidomethyl)-4-benzyldihydrofuran-2(3H)-one (18a)

100

(4S,5S)-4-benzyl-5-hydroxypiperidin-2-one (19a)

2.6 (3R,4S)-1-benzyl-4-(4-fluorophenyl)piperidin-3-ol (20)

(3S,4S)-4-benzylpiperidin-3-ol (4)

(S)-1-benzyl-4-(4-fluorophenyl)piperidin-3-one (21)

(+)-Eldanolide (1)

3-phenylpent-4-enoic acid (14a)

3-(4-fluorophenyl)pent-4-enoic acid (14b)

3-(4-chlorophenyl)pent-4-enoic acid (14c)

3-(4-bromophenyl)pent-4-enoic acid (14d)

3-(4-methoxyphenyl)pent-4-enoic acid (14e)

Chloroform-d

Carbon tetrachloride

3-methylpent-4-enoic acid (14f)

3-benzylpent-4-enoic acid (14g)

3-phenethylpent-4-enoic acid (14h)

Carbon tetrachloride

5-(iodomethyl)-4-phenyldihydrofuran-2(3H)-one (15a)

4-(4-fluorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15b)

Carbon tetrachloride

4-(4-chlorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15c)

4-(4-bromophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (15d)

5-(iodomethyl)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (15e)

Carbon tetrachloride

5-(iodomethyl)-4-methyldihydrofuran-2(3H)-one (15f)

4-benzyl-5-(iodomethyl)dihydrofuran-2(3H)-one (15g)

5-(iodomethyl)-4-phenethyldihydrofuran-2(3H)-one (15h)

5-(iodomethyl)-4-phenyldihydrofuran-2(3H)-one (16a)

Carbon tetrachloride

4-(4-fluorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (16b)

(4S,5S)-4-(4-chlorophenyl)-dihydro-5-(iodomethyl)furan-2(3H)-one (16c)

4-(4-bromophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (16d)

HPCL Chromatogram

VWD: Signal
A, 254 nm
Results

Retention Time	Area	Area \%	Height	Height \%
9.940	514230213	99.44	19588723	97.40
11.413	2897113	0.56	522812	2.60
Totals	517127326	100.00	20111535	100.00

Column \quad :Chiracel OD-H (4.6X250 nm)

Mobile Phase :IPA:n-Hexane(50:50)
Wavelength :254 nm
Flow rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$
(4R, 5R)-4-benzyl-5-(hydroxymethyl)dihydrofuran-2(3H)-one (8g)

VWD: Signal
A, 254 nm
Results

| Retention Time | Area | Area $\%$ | Height | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 10.283 | 2605821 | 1.31 | 150721 | 2.29 |
| 11.247 | 195852243 | 98.69 | 6430035 | 97.71 |
| Totals | 198458064 | 100.00 | 6580756 | 100.00 |

Column :Chiracel OD-H (4.6X250 nm)
Mobile Phase :IPA:n-Hexane (10:90)
Wavelength $\quad: 254 \mathrm{~nm}$
Flow rate $\quad: 0.5 \mathrm{ml} / \mathrm{min}$
(R)-methyl 3-((S)-oxiran-2-yl)-3-phenylpropanoate (9a)

HRMS

(3S, 4S)-4-benzylpiperidin-3-ol (4)

