Electronic Supplementary Information

Note: In all Tables the non-revised output of the XD program (ref. 9) was used. With respect to the significance of the given data we refer to ref. 30, where transferability indices were derived as 0.09 e Å⁻³ and 2.8 e Å⁻⁵ for the ED's and Laplacians at the bond critical points and 0.7 Å³ and 0.11 e for the atomic volumes and charges. These quantities can serve as an estimate of the significance of the listed data.

TABLE S1. BOND CRITICAL POINT SEARCH FOR 1a

```
Quantities are in e/Ang^x
using ANALYTICAL derivatives
```

Searching internuclear distances between 1.200 and 1.600 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
0(1)	-C(22)	2.890	-32.160	1.2382 0.7518 0.4864
				-25.90 -23.75 17.49 0.09
0(2)	-C(22)	2.355	-29.186	1.3001 0.8126 0.4875
				-21.83 -19.73 12.37 0.11
C(01)	-C(3)	1.621	-10.210	1.5403 0.7699 0.7704
				-11.19 -11.12 12.10 0.01
C(01)	-C(1)	1.614	-10.110	1.5378 0.7720 0.7657
~ (01)	~ ())	1 (1)		-11.06 -11.05 12.00 0.00
C(UI)	-C(2)	1.616	-10.15/	1.53/1 0.//14 0./65/
Q (01)	a (0)	1 (1)	10 005	-11.09 -11.08 12.01 0.00
C(UI)	-0(8)	1.643	-10.035	1.5329 0.7584 0.7745
C (0 2)	C(C)	1 (00	10 105	-11.54 -11.09 12.60 0.04
C(UZ)	-0(6)	1.022	-10.185	$1.5352 \ 0.7701 \ 0.7651$
C(02)	-C(5)	1 610	-10 220	-11.12 -11.10 12.03 0.00
C(UZ)	-0(3)	1.010	-10.220	
C(02)	-C(A)	1 629	-10 3/3	1 5374 0 7686 0 7688
C(UZ)	-0(4)	1.029	-10.545	
C(02)	-C(7)	1 670	-10 529	1 5237 0 7538 0 7700
0(02)	0(1)	1.070	10.025	-11.78 -11.33 12.57 0.04
C(4)	-C(3)	1.681	-11.383	1.5172 0.7586 0.7586
0(1)	0(0)	1.001	11.000	-11.71 -11.63 11.96 0.01
C(8)	-C(7)	2.086	-16.516	1.4059 0.7049 0.7010
· ,	. ,			-16.16 -13.37 13.01 0.21
C(8)	-C(9)	2.080	-16.460	1.4042 0.7011 0.7031
				-16.08 -13.43 13.05 0.20
C(7)	-C(12)	2.106	-16.865	1.3981 0.7002 0.6980
				-16.39 -13.51 13.04 0.21
C(12)	-C(11)	2.139	-17.775	1.3880 0.6920 0.6961
				-16.77 -13.79 12.78 0.22
C(11)	-C(10)	2.058	-16.029	1.4129 0.7063 0.7067
				-15.83 -13.26 13.07 0.19
C(11)	-C(13)	1.696	-10.802	1.5086 0.7638 0.7447
				-11.94 -11.48 12.62 0.04
C(10)	-C(9)	2.117	-17.249	1.3948 0.6995 0.6952
				-16.55 -13.61 12.91 0.22
C(10)	-C(14)	1.778	-11.933	1.4905 0.7440 0.7465

				-12.80	-12.11	12.98	0.06
C(14)	-C(15)	2.329	-19.719	1.3440	0.6741	0.6699	
				-18.43	-14.16	12.87	0.30
C(14)	-C(16)	1.793	-12.230	1.4849	0.7436	0.7413	
				-13.07	-12.12	12.96	0.08
C(16)	-C(17)	2.107	-16.966	1.3997	0.7004	0.6993	
				-16.32	-13.66	13.01	0.20
C(16)	-C(21)	2.103	-16.743	1.4014	0.7020	0.6994	
				-16.33	-13.51	13.10	0.21
C(17)	-C(18)	2.127	-17.612	1.3891	0.6948	0.6943	0 01
a (1 0)	a (1 0)	0 100	17 000	-16.64	-13.79	12.83	0.21
C(18)	-C(19)	2.120	-17.226	1.3955	12 (7	0.6995	0 01
a (1 0)	G ()))	0 1 1 4	17 120	-16.54	-13.6/	12.99	0.21
C(19)	-0(20)	2.114	-17.130	1.39/8	12 70	0.69/3	0 20
C(10)	C ()))	1 000	1/ 070	-10.40	-13.70	12.97	0.20
C(19)	-C(22)	1.909	-14.070	_15 02	-12 99	13 13	0 16
C(20)	-C(21)	2 1 4 3	-17 821	1 3858	0 6939	13.13 0 6918	0.10
0(20)	$\bigcirc (2 \pm)$	2.110	I, • 02 I	-16 74	-13 92	12 84	0 20
				± • • / 1		±2.01	0.20

TABLE S2. BOND CRITICAL POINT SEARCH FOR 1b

Quantities are in e/Ang^x using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.900 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
SI(1)	-C(1)	0.853	-2.945	1.8668 0.7828 1.0840
				-4.73 -4.56 6.34 0.04
SI(1)	-C(2)	0.836	-2.563	1.8702 0.7833 1.0869
				-4.48 -4.44 6.35 0.01
SI(1)	-C(3)	0.875	-1.766	1.8750 0.7669 1.1081
				-4.84 -4.78 7.86 0.01
SI(1)	-C(8)	0.842	-1.992	1.8886 0.7772 1.1114
. ,	. ,			-4.50 -4.48 6.99 0.00
ST(2)	-C(4)	0.868	-1.710	1.8787 0.7679 1.1108
01(2)	0(1)		1,110	-4 79 -4 69 7 77 0 02
ST(2)	-C(5)	0 858	-2 781	1 8632 0 7797 1 0835
01(2)	0(0)	0.000	2.701	
ST(2)	-C(6)	0 837	-2 549	1 8716 0 7833 1 0882
51(2)	0(0)	0.037	2.343	
GT (2)	-C(7)	0 940	_2 022	
SI (Z)	-0(7)	0.849	-2.022	
O(1)	C ()))	2 026	22 271	-4.61 -4.49 7.08 0.03
O(1)	-C(ZZ)	2.920	-33.3/1	1.2293 0.7541 0.4752
e (0)	~ (0 0)	0 0 0 1	00 400	-26.56 -24.37 17.57 0.09
0(2)	-C(22)	2.331	-28.489	1.3070 0.8095 0.4974
				-21.49 -19.34 12.34 0.11
C(3)	-C(4)	1.576	-9.079	1.5429 0.7712 0.7717
				-10.39 -10.15 11.46 0.02
C(7)	-C(8)	2.017	-15.746	1.4135 0.7071 0.7064
				-14.98 -13.10 12.33 0.14
C(7)	-C(12)	2.060	-16.375	1.4052 0.6947 0.7105
				-15.61 -13.34 12.58 0.17
C(8)	-C(9)	2.055	-16.228	1.4061 0.6956 0.7105
				-15.54 -13.30 12.61 0.17
C(9)	-C(10)	2.111	-17.171	1.3981 0.6965 0.7017
				-16.43 -13.61 12.87 0.21
C(10)	-C(11)	2.090	-16.774	1.4031 0.7016 0.7015
				-16.15 -13.53 12.90 0.19
C(10)	-C(14)	1.757	-11.497	1.4977 0.7476 0.7501
. ,	, , ,			-12.35 -12.17 13.03 0.01
C(11)	-C(12)	2.115	-17.269	1.3969 0.7007 0.6962
- ()	- (/			-16.48 -13.64 12.86 0.21
C(11)	-C(13)	1 700	-10 814	1 5081 0 7632 0 7450
0(11)	0(10)	1.,00	10.011	
C(14)	-C(15)	2 349	-20 354	1 3373 0 6717 0 6656
0(14)	0(10)	2.349	20.004	
C(14)	-C(16)	1 801	-12 /01	1 / 821 0 7/22 0 7399
○(⊥¬)	0(10)	T.00T	12.101	
C(16)	-C(17)	2 110	-17 023	1 3080 0 7001 0 6080
C(10)	$\bigcirc (\perp /)$		II.UZJ	-16 3 $/$ -13 6 $^{\circ}$ 13 00 0 10
C(16)	-C(21)	2 007	-16 570	1 4036 0 7027 0 7008
C(10)	-0(21)	2.091	-10.070	-16 25 -12 $A6$ 12 1 A 0 21
				-10.20 -10.40 13.14 U.21

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

C(17)	-C(18)	2.128	-17.626	1.3889	0.6944	0.6945	
				-16.66	-13.80	12.83	0.21
C(18)	-C(19)	2.128	-17.359	1.3937	0.6955	0.6982	
				-16.60	-13.73	12.97	0.21
C(19)	-C(20)	2.118	-17.149	1.3972	0.6994	0.6978	
				-16.40	-13.74	12.99	0.19
C(19)	-C(22)	1.906	-14.816	1.4825	0.7194	0.7631	
				-14.99	-12.96	13.13	0.16
C(20)	-C(21)	2.131	-17.680	1.3882	0.6940	0.6942	
				-16.69	-13.82	12.83	0.21

Table S3. Atomic charges q [e] and volumes V $[{\rm \AA}^3]$ for 1a

Atom	q	V_{tot}
Atom O(1) O(2) C(01) C(02) C(6) C(5) C(4) C(3) C(1) C(2) C(1) C(2) C(12) C(12) C(12) C(11) C(10) C(9) C(13) C(14) C(15)	q -0.89794976 -1.19123753 0.00635142 0.01429660 -0.09620140 -0.10727190 -0.05359138 -0.05371370 -0.09736782 -0.10977412 -0.05897468 -0.05563011 -0.05476702 -0.04567168 -0.03575246 -0.03184844 -0.08757006	V_{tot} 17.56412777 19.46640141 6.51852219 6.43851951 10.19830427 10.37835551 8.42480197 8.08897496 9.83188874 10.01198248 10.31594989 10.73044532 12.83271639 10.63866552 10.63348426 11.84731384 10.29716063 10.43546567 14.93812272
C (15) C (16) C (17) C (18) C (19) C (20) C (21) C (22) H (2) H (6A) H (6B)	-0.08757006 -0.04026596 -0.06005999 -0.05705953 -0.02895147 -0.05549273 -0.06043066 1.19991911 0.69382834 0.03961157 0.05871383	14.93812272 9.68738142 11.38064608 11.14913235 10.05040894 11.30647741 11.91801374 7.04391436 1.39809458 7.32890732 8.33540344
H (6C) H (5A) H (5B) H (5C) H (4A) H (4A) H (4B) H (3A) H (3B) H (1A) H (1B) H (1C)	0.05719853 0.05601229 0.05728322 0.05150929 0.03083914 0.03294499 0.03186794 0.03571053 0.05658007 0.05626853 0.05166024	7.11560086 8.43222601 7.46819232 7.17503775 7.43819803 7.18233751 7.27760906 7.10520178 6.55302684 7.58168708 9.44138041
H (2A) H (2B) H (2C) H (12) H (9) H (13A) H (13B) H (13C) H (15A) H (15B H (17) H (18)	0.05609267 0.05469296 0.05306518 0.07912896 0.07880109 0.04735157 0.04845721 0.05277718 0.06530839 0.06763278 0.07194459 0.07942495	7.74848813 7.02500522 6.71323639 6.89946421 6.39277784 9.35702879 6.54731257 8.00903269 7.25943843 7.27532230 8.21511246 6.31687924

 $V_{\rm tot}$ values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S4. Atomic charges q [e] and volumes V $[\text{\AA}^3]$ for 1b

Atom	q	V_{tot}
SI(1)	2.51411721	6.07173315
SI(2)	2.52541435	6.09581202
0(1)	-0.91173913	19.16898170
0(2)	-1.25648897	20.30414029
C(1)	-0.44728476	12.41112457
C(2)	-0.44459804	14.00925937
C(3)	-0.93325116	12.95698125
C(4)	-0.92/6342/	12.1/22928/
C(5)	-0.441110295	13 57647308
C(7)	-0.67960802	14.63346140
C(8)	-0.67901573	13.69622503
C(9)	-0.04000437	11.59681688
C(10)	-0.04888320	9.52396645
C(11)	-0.05053347	10.62437392
C(12)	-0.03609365	12.62601360
C(13)	0.00594818	9.38313385 9.60854571
C(14)	-0.03373200	14 13066992
C(16)	-0.03375995	10.12015617
C(17)	-0.04872628	11.76849544
C(18)	-0.03740760	12.65417106
C(19)	-0.02420372	11.28607962
C(20)	-0.02770937	13.05438236
C(21)	-0.02925570	11.60799213
U(ZZ)	1.21428007 0 74477329	1 09727193
H(1A)	0.03048719	6.79429831
H(1B)	0.01840063	7.16198248
H(1C)	0.02672631	7.31079553
H(2A)	0.02393344	7.92998630
H(2B)	0.00718340	8.52750469
H(2C)	0.03939396	7.76292468
H(3A) U(3D)	0.01956134	8./55506//
H(4A)	0.01652283	7 59828669
H(4B)	0.00893792	7.74290906
Н(5A)	0.02919923	9.10910734
H(5B)	0.02186689	7.66724185
H(5C)	-0.00321644	8.05395249
H(6A)	0.02929066	8.54742018
H(6B)	0.01437794	9.80485636
H(6C) H(9)	0.02902384	7.80526925 6.81378756
H(12)	0.03642454	7.05229707
H(13A)	0.03070071	8.61395327
н(13В)	0.02744340	7.10644848
H(13C)	0.01676752	7.93470996
H(15A)	0.04577407	6.46507373
H(15B)	0.03862208	7.05591524
H(1/)	0.04/09673	8.19842670
п(⊥ठ) Н(20)	U.U4334435 0 03371387	0./JY86183 9 68425006
	0.000/1004	J.00120000

 V_{tot} values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Tables S5 - S7 for Bexarotene (1a)

Table	S5. A	tomic coordinat	tes for la				
loop_							
_a	atom_s	ite_label					
_a	atom_s	ite_type_symbol	1				
- a	atom s	ite fract x					
- a	atom s	ite fract y					
- a	atom s	ite_fract_z					
- a	atom s	ite [–] U iso [–] or ed	quiv				
- a	tom s	ite occupancy	-				
- a	tom s	ite symmetry mu	ultiplicity				
0(1)	ō	-0.11509(18)	1.38352(9)	0.55247(5)	0.033	1	2
0(2)	0	0.2163(2)	1.38070(10)	0.49942(6)	0.035	1	2
C(01)	С	-0.2686(2)	0.46476(11)	0.79674(7)	0.019	1	2
C(02)	С	-0.2715(2)	0.71984(11)	0.92573(7)	0.02	1	2
C(6)	С	-0.3867(3)	0.85441(14)	0.94978(10)	0.032	1	2
C(5)	С	-0.1071(3)	0.70207(15)	0.99207(8)	0.029	1	2
C(4)	С	-0.4659(3)	0.58580(13)	0.90439(8)	0.025	1	2
C(3)	С	-0.3737(3)	0.44918(13)	0.87105(8)	0.025	1	2
C(1)	С	-0.0946(3)	0.35755(13)	0.78568(9)	0.028	1	2
C(2)	С	-0.4621(3)	0.42162(14)	0.73193(8)	0.028	1	2
C(8)	C	-0.1429(2)	0.62194(11)	0.79781(6)	0.017	1	2
C(7)	C	-0.1351(2)	0.73717(11)	0.85839(6)	0.017	1	2
C(12)	C	0.0062(2)	0.87160(12)	0.85678(7)	0.021	1	2
C(11)	C	0.1308(2)	0.90057(11)	0.79706(7)	0.021	1	2
C(10)	C	0.1063(2)	0.78940(11)	0.73320(6)	0.018	1	2
C(9)	C	-0.0265(2)	0.65300(11)	0.73570(7)	0.018	1	2
C(13)	C	0.2914(3)	1.04559(15)	0.80323(9)	0.032	1	2
C(14)	C	0.2187(2)	0.81461(11)	0.66418(7)	0.02	1	2
C(15)	C	0.3510(3)	0.72109(14)	0.63276(9)	0.034	1	2
C(16)	C	0.1747(2)	0.94385(11)	0.63020(6)	0.017	1	2
C(17)	C	-0.0283(2)	1.00290(12)	0.64011(7)	0.021	1	2
C(18)	C	-0.0648(2)	1.12673(12)	0.61021(7)	0.021	1	2
C(19)	C	0.1010(2)	1.19450(11)	0.56959(6)	0.018	1	2
C(20)	C	0.3040(2)	1.13625(12)	0.55888(7)	0.022	1	2
C(21)	C	0.3388(2)	1.01257(12)	0.58884(7)	0.02	1	2
C(22)	C	0.0593(3)	1.32786(12)	0.53956(7)	0.023	1	2
H(2)	H	0.184(4)	1.464(3)	0.4789(13)	0.076(8)	1	2
н (6A)	Н	-0.484(3)	0.8767(17)	0.9052(10)	0.056(6)	1	2
H(6B)	H	-0.502(3)	0.8336(17)	0.9963(10)	0.059(5)	1	2
H(6C)	Н	-0.261(3)	0.9562(19)	0.9690(9)	0.059(5)	1	2
H(5A)	Н	0.029(3)	0.8003(17)	1.0099(9)	0.048(5)	1	2
H(5B)	Н	-0.205(4)	0.6817(19)	1.0417(11)	0.073(6)	1	2
H(5C)	Н	-0.010(3)	0.6122(18)	0.9804(10)	0.060(5)	1	2
H(4A)	Н	-0.598(3)	0.6122(14)	0 8635(9)	0 044(4)	1	2
H(4B)	Н	-0.560(3)	0.5652(14)	0 9534 (9)	0.042(4)	1	2
н(ЗД)	н	-0.245(3)	0.3032(11) 0.4231(14)	0.9331(9) 0.9112(9)	0.012(1) 0.041(4)	1	2
H(3B)	Н	-0.511(3)	0.3489(16)	0 8633(8)	0.048(4)	1	2
н(3 <u></u>) н(1 <u></u>)	н	-0 021(3)	0.3540(14)	0.7294(9)	0.039(4)	1	2
н(1в)	н Ц	0.021(3) 0.054(4)	0.3882(18)	0.7291(9) 0.8302(11)	0.064(6)	1	2
н (1С)	H	-0.177(3)	0 2475(17)	0 7885(9)	0 049(5)	1	2
н(2д)	н	-0.396(3)	0.4341(16)	0.6771(10)	0.056(5)	1	2
H(2R)	H	-0.547(3)	0.3076(18)	0.7272(9)	0.050(5)	1	2
H(2C)	н	-0.604(4)	0.4813(18)	0.7412(10)	0.062(5)	1	2
H(12)	н	0.026(3)	0.9617(15)	0,9050(8)	0,040(4)	1	2
(/	**		0.001/(10)			-	-

ц(О)	ц	-0 039(2)	0 5676(14)	0 6856(8)	0 030(4)	1	2
11 (9)	11	-0.039(2)	0.3070(14)	0.0000(0)	0.030(4)	Ŧ	2
H(13A)	Η	0.445(3)	1.0372(16)	0.7777(10)	0.060(5)	1	2
H(13B)	Н	0.218(4)	1.1209(19)	0.7747(11)	0.070(6)	1	2
H(13C)	Н	0.337(3)	1.0974(17)	0.8612(11)	0.065(5)	1	2
H(15A)	Η	0.426(3)	0.7328(15)	0.5814(9)	0.047(5)	1	2
Н(15В)	Η	0.384(3)	0.6317(18)	0.6601(10)	0.057(5)	1	2
H(17)	Η	-0.157(3)	0.9555(14)	0.6729(8)	0.040(4)	1	2
H(18)	Η	-0.227(3)	1.1705(15)	0.6196(8)	0.045(4)	1	2
Н(20)	Н	0.435(3)	1.1894(15)	0.5307(8)	0.041(4)	1	2
H(21)	Η	0.500(3)	0.9767(15)	0.5816(9)	0.045(4)	1	2

Table S6. Anisotropic displacement parameters for 1a

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23

0(1)	0.0375(7)	0.0296(4)	0.0425(6)	0.0188(4)	0.0169(5) (0.0234(4)
0(2)	0.0394(7)	0.0312(5)	0.0448(7)	0.0133(5)	0.0171(5) 0	.0249(5)
C(01)	0.0225(8)	0.0124(5)	0.0213(6)	-0.0001(5) 0.0028(6)	0.0049(4)
C(02)	0.0246(8)	0.0175(5)	0.0188(6)	0.0043(5)	0.0052(6)	0.0048(5)
C(6)	0.0376(10)	0.0253(7)	0.0364(9)	0.0123(6)	0.0114(8)	0.0037(6)
C(5)	0.0356(9)	0.0321(7)	0.0206(7)	0.0045(6)	0.0006(7) (0.0094(6)
C(4)	0.0247(8)	0.0238(6)	0.0260(7)	0.0002(5)	0.0084(7) 0	.0055(5)
C(3)	0.0331(9)	0.0168(6)	0.0249(7)	-0.0016(5)	0.0077(7)	0.0076(5)
C(1)	0.0312(9)	0.0157(6)	0.0400(9)	0.0055(5)	0.0081(8) (0.0073(6)
C(2)	0.0288(9)	0.0247(6)	0.0276(8)	-0.0063(6)	-0.0032(7)	0.0073(5)
C(8)	0.0205(7)	0.0118(5)	0.0173(6)	0.0003(5)	0.0030(5) (0.0037(4)
C(7)	0.0217(7)	0.0123(5)	0.0163(6)	0.0007(4)	0.0021(5) (0.0046(4)
C(12)	0.0297(8)	0.0137(5)	0.0189(7)	-0.0019(5) 0.0029(6)	0.0043(5)
C(11)	0.0268(8)	0.0138(5)	0.0199(6)	-0.0031(5) 0.0012(6)	0.0055(5)
C(10)	0.0219(7)	0.0142(5)	0.0183(6)	0.0001(5)	0.0026(5)	0.0071(4)
C(9)	0.0239(7)	0.0128(5)	0.0191(6)	-0.0001(5)	0.0049(6)	0.0059(5)
C(13)	0.0428(10) 0.0195(6) 0.0282(8) -0.0129(6) -0.0001	(7) 0.0074(6)
C(14)	0.0235(8)	0.0179(5)	0.0219(7)	0.0052(5)	0.0061(6)	0.0094(5)
C(15)	0.0453(10) 0.0272(7) 0.0407(9) 0.0196(6) 0.0238(8)	0.0196(6)
C(16)	0.0182(7)	0.0168(5)	0.0178(6)	0.0026(5)	0.0030(5)	0.0078(4)
C(17)	0.0194(8)	0.0214(6)	0.0256(7)	0.0040(5)	0.0063(6)	0.0121(5)
C(18)	0.0206(8)	0.0216(6)	0.0246(7)	0.0048(5)	0.0045(6)	0.0120(5)
C(19)	0.0226(8)	0.0161(5)	0.0182(6)	0.0038(5)	0.0033(6)	0.0085(4)
C(20)	0.0255(8)	0.0201(6)	0.0246(7)	0.0060(5)	0.0096(6)	0.0124(5)
C(21)	0.0217(8)	0.0197(6)	0.0241(7)	0.0052(5)	0.0083(6)	0.0119(5)
C(22)	0.0289(9)	0.0201(6)	0.0236(7)	0.0082(5)	0.0063(6)	0.0116(5)

Table S7. Multipole parameters for 1a

loop_

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P00 _atom_rho_multipole_coeff_P11 _atom_rho_multipole_coeff_P1-1

```
atom rho multipole coeff P10
    atom rho multipole coeff P20
    atom rho multipole coeff P21
    _atom_rho_multipole coeff P2-1
    _atom_rho_multipole_coeff P22
    atom rho multipole coeff P2-2
    atom rho multipole coeff P30
    atom rho multipole coeff P31
    _atom_rho_multipole_coeff_P3-1
    _atom_rho_multipole coeff P32
    _atom_rho_multipole_coeff P3-2
    _atom_rho_multipole_coeff P33
    atom rho multipole coeff P3-3
    atom rho multipole coeff P40
    _atom_rho_multipole_coeff_P41
    _atom_rho_multipole_coeff_P4-1
    _atom_rho_multipole coeff P42
    _atom_rho_multipole_coeff_P4-2
    atom rho multipole coeff P43
    atom rho multipole coeff P4-3
    atom rho multipole coeff P44
    atom rho multipole coeff P4-4
    _atom_rho_multipole_kappa
    _atom_rho_multipole_kappa prime0
    _atom_rho_multipole_kappa_prime1
    _atom_rho_multipole_kappa prime2
    atom rho multipole kappa prime3
    atom rho multipole kappa prime4
0(1) 6.1166 0
0 0 -0.0675
0.0293 0 0 -0.1531 0
0.0283 0 0 0.0172 0 0 0
-0.0118 0 0 0.0113 0 0 0 -0.0026 0
1.003017 1.109004 1.109004 1.109004 1.109004 1.109004
0(2) 6.0788 0
-0.0536 -0.0866 0
0.1041 0 0 -0.028 0.042
0 -0.0147 -0.0263 0 0 0.065 -0.0215
0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153
1.001632 1.113461 1.113461 1.113461 1.113461 1.113461
C(01) 3.9904 0
0 0 0.0002
0.0001 0 0 0 0
0.2157 0 0 0 0 0.1761 0
0.0438 0 0 0 0 -0.068 0 0 0
1.015965 1 1 1 1 1
C(02) 3.9904 0
0 0 0.0002
0.0001 0 0 0 0
0.2157 0 0 0 0 0.1761 0
0.0438 0 0 0 0 -0.068 0 0 0
1.015965 1 1 1 1 1
```

C(7) 4.0587 0 0.0178 0.0231 0 -0.1669 0 0 0.0156 -0.0213 0 0.0165 0.0239 0 0 0.231 -0.0068 0.0121 0 0 0.0076 -0.0048 0 0 0.0016 0 1.014932 1 1 1 1

C(12) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1

C(11) 4.0587 0 0.0178 0.0231 0 -0.1669 0 0 0.0156 -0.0213 0 0.0165 0.0239 0 0 0.231 -0.0068 0.0121 0 0 0.0076 -0.0048 0 0 0.0016 0 1.014932 1 1 1 1

C(10) 4.0587 0 0.0178 0.0231 0 -0.1669 0 0 0.0156 -0.0213 0 0.0165 0.0239 0 0 0.231 -0.0068 0.0121 0 0 0.0076 -0.0048 0 0 0.0016 0 1.014932 1 1 1 1

C(9) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1

C(13) 3.8152 0 0 0 0.0105 -0.0042 0 0 0 0 0.2189 0 0 0 0 0.1664 0 0.0291 0 0 0 0 -0.0668 0 0 0 1.018201 1 1 1 1

C(14) 4.0496 0 0 0 0.0529 0.1303 0 0 -0.1148 0 0.1668 0 0 0.1898 0 0 0 -0.0176 0 0 -0.0056 0 0 0 0.0142 0 1.016433 1 1 1 1 1

C(15) 3.9346 0 0 0 0.0644 0.1329 0 0 -0.118 0 0.1525 0 0 0.1882 0 0 0 -0.0159 0 0 -0.0135 0 0 0 0.0228 0 1.01604 1 1 1 1 1 C(16) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(17) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(18) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(19) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(20) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(21) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(22) 3.9888 0 0.0778 -0.0438 0 -0.2417 0 0 0.0853 0.0499 0 0.0167 -0.0152 0 0 0.3037 -0.0254

0.0143 0 0 0.0075 0.0018 0 0 -0.0649 0.019 1.015931 1 1 1 1 1 H(2) 0.9836 0 0.1799 0.0343 0 -0.0969 0 0 0.1745 -0.0122 0 -0.0337 -0.0181 0 0 0.0523 0.0583 0.0224 0 0 -0.0119 -0.0179 0 0 0.0025 0.0049 1.016284 1.2 1.2 1.2 1.2 1.2 H(6A) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2 H(6B) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2 H(6C) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2 H(5A) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2 H(5B) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2 H(5C) 0.9808 0 0 0 0.1322 0.0462 0 0 0 0 0.0064 0 0 0 0 0 0 0.0008 0 0 0 0 0 0 0 0 1.138421 1.2 1.2 1.2 1.2 1.2

H(9)

Η

0.823(2)

Tables S8 - S10 Disila-Bexarotene (1b)

Table S8. Atomic coordinates for 1b loop atom site label atom site type symbol atom site fract x atom site fract y atom site fract Z atom site U iso or equiv atom site occupancy atom site symmetry multiplicity Si(1) Si 1.15990(5) 0.49708(2)0.213229(19)0.018 1 Si(2) Si 1.25016(5) 0.31344(2) 0.375599(19) 0.021 1 0(1)0 1.05821(15)0.01957(7)-0.37705(5)0.034 1 0(2) 0 0.77230(17)0.07361(7)-0.46397(6)0.037 1 C(1) С 1.3445(2) 0.50600(9) 0.10937(8) 0.029 1 С 0.031 1 C(2) 0.9569(2)0.59426(9)0.20720(10)C(3) С 1.3321(2) 0.51880(9)0.33902(8) 0.027 1 C(4) С 1.4511(2)0.42473(9) 0.36044(8) 0.027 1 C(5) С 1.3976(3) 0.19790(12)0.38817(13) 0.044 1 1 C(6) С 1.1007(3)0.34292(14)0.49093(9)0.043 1 C(7) С 1.04117(18)0.29067(7)0.26030(7)0.019 0.017 1 C(8) С 1.00759(17)0.36506(7)0.19477(6)1 С 0.018 C(9) 0.85210(18)0.33911(7)0.10923(7)1 C(10) С 0.72455(18)0.24488(7)0.08858(7)0.017 0.75169(19) C(11) С 0.17243(7)0.15582(7)0.022 1 C(12) С 0.9110(2)0.19655(8)0.23922(7) 0.023 1 C(13) С 0.6126(3)0.07111(9)0.13954(10)0.034 1 С 1 C(14) 0.56236(18)0.22535(7)-0.00439(7)0.019 С 0.029 1 C(15) 0.3525(2)0.24463(9)0.00261(8) 1 C(16) С 0.64216(18)0.18514(7)-0.10200(7)0.018 С 0.022 1 C(17) 0.83101(19)0.13261(8)-0.10140(7)C(18) С 0.9091(2)0.09346(8)-0.19158(7)0.024 1 С 1 C(19) 0.79946(19)0.10556(8)-0.28495(7)0.022 1 C(20) С 0.6100(2) 0.15742(8)-0.28692(7)0.025 1 C(21) С 0.5335(2)0.19691(8)-0.19653(7)0.024 -0.37942(7) 1 C(22) С 0.06297(8)0.025 0.8885(2)Η 1 H(2) 0.839(4)0.0354(16)-0.5243(17)0.061(6)1 H(1A) Η 1.478(3)0.4597(12)0.1198(11)0.054(5)1.408(3)0.5812(13)0.1102(11)0.045(4)1 H(1B) Η 1 H(1C) Η 1.257(3)0.4764(13) 0.0391(14)0.063(5)H(2A) Η 1.045(4)0.6677(16)0.2202(14)0.076(6)1 H(2B) Η 0.851(4)0.5923(14) 0.2636(14)0.070(6)1 H(2C) Η 0.867(3) 0.5874(13)0.1341(14) 0.060(5) 1 H(3A) Η 1.457(3)0.5900(15)0.3399(12)0.066(5)1 H(3B) Η 1.231(3)0.5408(13)0.4016(13)0.061(5)1 H(4A) Η 1.563(3) 0.4419(13)0.4326(13) 0.061(5)1 H(4B) Η 1.548(3)0.4011(13)0.2940(13)0.059(5)1 H(5A) 1.520(4)0.2132(18)1 Η 0.4434(18)0.101(8)0.1767(18) H(5B) 0.3237(18)0.095(8)1 Η 1.460(4)1 H(5C) Η 1.286(5) 0.140(2) 0.4057(17) 0.108(9)H(6A) Η 1.203(4)0.3562(18) 0.5541(19)0.101(8)1 1 H(6B) Η 0.989(4)0.2804(17)0.4974(15)0.085(7)H(6C) Η 1.010(4)0.4057(17) 0.4833(15)0.084(7)1

0.3936(10)

0.0567(10)

0.035(4)

1

2 2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

н	0.936(2)	0 1392(11)	0 2865(10)	0 040(4)	1	2
н	0.446(4)	0.0816(15)	0.1274(14)	0.076(6)	1	2
и Ц	0.440(4)	0.0299(12)	0.1274(14) 0.2036(12)	0.070(0)	1	2
и П	0.050(5)	0.0216(15)	0.2030(12) 0.0735(15)	0.033(4)	⊥ 1	2
п	0.034(3)	0.0240(13)	0.0735(13)	0.077(0)	1	2
н	0.226(3)	0.2322(12)	-0.0626(12)	0.053(4)	1	2
H	0.295(3)	0.2/43(13)	0.0758(13)	0.059(5)	1	2
Н	0.921(3)	0.1234(11)	-0.0296(11)	0.045(4)	1	2
Н	1.053(3)	0.0518(10)	-0.1909(10)	0.040(4)	1	2
Η	0.527(3)	0.1665(11)	-0.3596(11)	0.042(4)	1	2
Η	0.395(3)	0.2389(11)	-0.1971(10)	0.045(4)	1	2
	H H H H H H H	<pre>H 0.936(2) H 0.446(4) H 0.638(3) H 0.654(3) H 0.226(3) H 0.295(3) H 0.921(3) H 1.053(3) H 0.527(3) H 0.395(3)</pre>	H0.936(2)0.1392(11)H0.446(4)0.0816(15)H0.638(3)0.0299(12)H0.654(3)0.0246(15)H0.226(3)0.2322(12)H0.295(3)0.2743(13)H0.921(3)0.1234(11)H1.053(3)0.0518(10)H0.395(3)0.2389(11)	H0.936(2)0.1392(11)0.2865(10)H0.446(4)0.0816(15)0.1274(14)H0.638(3)0.0299(12)0.2036(12)H0.654(3)0.0246(15)0.0735(15)H0.226(3)0.2322(12)-0.0626(12)H0.295(3)0.2743(13)0.0758(13)H0.921(3)0.1234(11)-0.0296(11)H1.053(3)0.0518(10)-0.1909(10)H0.395(3)0.2389(11)-0.1971(10)	H0.936(2)0.1392(11)0.2865(10)0.040(4)H0.446(4)0.0816(15)0.1274(14)0.076(6)H0.638(3)0.0299(12)0.2036(12)0.053(4)H0.654(3)0.0246(15)0.0735(15)0.077(6)H0.226(3)0.2322(12)-0.0626(12)0.053(4)H0.295(3)0.2743(13)0.0758(13)0.059(5)H0.921(3)0.1234(11)-0.0296(11)0.045(4)H1.053(3)0.0518(10)-0.1909(10)0.042(4)H0.395(3)0.2389(11)-0.1971(10)0.045(4)	H $0.936(2)$ $0.1392(11)$ $0.2865(10)$ $0.040(4)$ 1H $0.446(4)$ $0.0816(15)$ $0.1274(14)$ $0.076(6)$ 1H $0.638(3)$ $0.0299(12)$ $0.2036(12)$ $0.053(4)$ 1H $0.654(3)$ $0.0246(15)$ $0.0735(15)$ $0.077(6)$ 1H $0.226(3)$ $0.2322(12)$ $-0.0626(12)$ $0.053(4)$ 1H $0.295(3)$ $0.2743(13)$ $0.0758(13)$ $0.059(5)$ 1H $0.921(3)$ $0.1234(11)$ $-0.0296(11)$ $0.045(4)$ 1H $1.053(3)$ $0.0518(10)$ $-0.1909(10)$ $0.040(4)$ 1H $0.527(3)$ $0.12389(11)$ $-0.1971(10)$ $0.045(4)$ 1

Table S9. Anisotropic displacement parameters for 1b

loop_

_atom_site_aniso label _atom_site_aniso_U_11 _atom_site_aniso_U_22 atom site aniso U 33 atom site aniso U 12 atom site aniso U 13 atom site aniso U 23 Si(1) 0.01670(17) 0.01940(14) 0.01672(12) -0.00137(11) -0.00121(10) -0.00039(10)Si(2) 0.02070(19) 0.02753(15) 0.01430(13) 0.00152(12) -0.00219(10) 0.00203(10) 0(1) 0.0386(6) 0.0479(5) 0.0171(4) 0.0175(4) 0.0038(3) 0.0006(3) 0(2) 0.0464(6) 0.0490(5) 0.0176(4) 0.0192(5) 0.0010(3) 0.0010(3) C(1) 0.0305(8) 0.0284(6) 0.0267(5) -0.0026(5) 0.0071(5) 0.0048(4)C(2) 0.0267(8) 0.0254(6) 0.0384(6) 0.0039(5) -0.0022(5) -0.0019(5)C(3) 0.0274(7) 0.0288(6) 0.0219(5) -0.0028(5) -0.0058(4) -0.0029(4)C(4) 0.0221(7) 0.0354(6) 0.0221(5) -0.0021(5) -0.0057(4) 0.0018(4)C(5) 0.0391(10) 0.0404(8) 0.0515(9) 0.0109(7) -0.0100(7) 0.0118(6)C(6) 0.0413(10) 0.0655(10) 0.0200(6) -0.0042(8) 0.0066(5) -0.0022(6) C(7) 0.0203(6) 0.0210(5) 0.0148(4) 0.0001(4) -0.0014(4) 0.0014(3) C(8) 0.0174(6) 0.0198(5) 0.0129(4) -0.0008(4) -0.0013(3) 0.0003(3)C(9) 0.0180(6) 0.0185(5) 0.0151(4) -0.0015(4) -0.0017(4) 0.0012(3)C(10) 0.0175(6) 0.0190(5) 0.0143(4) -0.0004(4) -0.0005(3) -0.0011(3) C(11) 0.0248(7) 0.0197(5) 0.0198(4) -0.0031(4) -0.0011(4) 0.0013(4)C(12) 0.0276(7) 0.0214(5) 0.0188(4) -0.0012(4) -0.0034(4) 0.0052(4) C(13) 0.0392(9) 0.0243(6) 0.0334(6) -0.0089(5) -0.0061(5) 0.0049(5) C(14) 0.0164(6) 0.0210(5) 0.0169(4) -0.0001(4) -0.0002(4) -0.0026(3)C(15) 0.0180(7) 0.0412(6) 0.0247(5) 0.0051(5) 0.0001(4) -0.0052(4)C(16) 0.0183(6) 0.0199(5) 0.0152(4) 0.0001(4) -0.0007(4) -0.0015(3)C(17) 0.0206(6) 0.0286(5) 0.0149(4) 0.0051(4) -0.0004(4) -0.0009(4)C(18) 0.0240(7) 0.0306(5) 0.0170(5) 0.0066(5) 0.0007(4) -0.0007(4)C(19) 0.0264(7) 0.0241(5) 0.0144(4) 0.0039(4) 0.0015(4) -0.0006(4)C(20) 0.0294(7) 0.0302(5) 0.0158(4) 0.0070(5) -0.0008(4) 0.0009(4)C(21) 0.0242(7) 0.0280(5) 0.0177(5) 0.0066(5) -0.0020(4) 0.0002(4)C(22) 0.0331(7) 0.0258(5) 0.0159(4) 0.0070(5) 0.0036(4) -0.0002(4)

Table S10. Multipole parameters for 1b

loop

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P11

```
atom rho multipole coeff P1-1
    atom rho multipole coeff P10
    atom rho multipole coeff P20
    atom rho multipole coeff P21
    atom rho multipole coeff P2-1
    atom rho multipole coeff P22
    atom rho multipole coeff P2-2
    atom rho multipole coeff P30
    _atom_rho_multipole_coeff_P31
    _atom_rho_multipole coeff P3-1
    _atom_rho_multipole_coeff P32
    _atom_rho_multipole coeff P3-2
    atom rho multipole coeff P33
    atom rho multipole coeff P3-3
    _atom_rho_multipole_coeff_P40
    _atom_rho_multipole coeff P41
    _atom_rho_multipole coeff P4-1
    _atom_rho_multipole_coeff P42
    atom rho multipole coeff P4-2
    atom rho multipole coeff P43
    atom rho multipole coeff P4-3
    atom rho multipole coeff P44
    _atom_rho_multipole_coeff_P4-4
    _atom_rho_multipole kappa
    _atom_rho_multipole_kappa_prime0
    _atom_rho_multipole_kappa prime1
    atom rho multipole kappa prime2
    atom rho multipole kappa prime3
     atom rho multipole kappa prime4
Si(1) 3.8273 0
-0.0036 0.0028 0.0072
0.0007 -0.0055 -0.0059 0.003 0.0018
0.2865 -0.0018 -0.0002 -0.0065 -0.0031 0.0002 -0.2317
0.0587 0.0009 -0.0022 -0.0058 -0.0055 0.0016 0.0755 0.0028 0.0015
0.990386 1 1 1 1 1
Si(2) 3.8273 0
-0.0036 0.0028 0.0072
0.0007 -0.0055 -0.0059 0.003 0.0018
0.2865 -0.0018 -0.0002 -0.0065 -0.0031 0.0002 -0.2317
0.0587 0.0009 -0.0022 -0.0058 -0.0055 0.0016 0.0755 0.0028 0.0015
0.990386 1 1 1 1 1
0(1) 6.1166 0
0 0 -0.0675
0.0293 0 0 -0.1531 0
0.0283 0 0 0.0172 0 0 0
-0.0118 0 0 0.0113 0 0 0 -0.0026 0
1.003017 1.109004 1.109004 1.109004 1.109004 1.109004
0(2) 6.0788 0
-0.0536 -0.0866 0
0.1041 0 0 -0.028 0.042
0 -0.0147 -0.0263 0 0 0.065 -0.0215
0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153
```

C(8) 4.1421 0 0.0238 -0.0021 0 -0.1791 0 0 0.005 -0.0026 0 0.0007 0.0034 0 0 0.2038 0.0243 0.0071 0 0 0.0032 0.0017 0 0 -0.0172 -0.0024 1.00633 1 1 1 1 1

C(9) 3.9596 0 0.0166 0.0354 0 -0.1753 0 0 0.013 -0.0221 0 0.0108 0.022 0 0 0.2313 0.007 0.0164 0 0 0.008 -0.0146 0 0 0.0014 0 1.015464 1 1 1 1 1

C(10) 4.0587 0 0.0178 0.0231 0 -0.1669 0 0 0.0156 -0.0213 0 0.0165 0.0239 0 0 0.231 -0.0068 0.0121 0 0 0.0076 -0.0048 0 0 0.0016 0 1.014932 1 1 1 1

C(11) 4.0587 0 0.0178 0.0231 0 -0.1669 0 0 0.0156 -0.0213 0 0.0165 0.0239 0 0 0.231 -0.0068 0.0121 0 0 0.0076 -0.0048 0 0 0.0016 0 1.014932 1 1 1 1

C(12) 3.9596 0 0.0166 0.0354 0 -0.1753 0 0 0.013 -0.0221 0 0.0108 0.022 0 0 0.2313 0.007 0.0164 0 0 0.008 -0.0146 0 0 0.0014 0 1.015464 1 1 1 1 1

C(13) 3.8152 0 0 0 0.0105 -0.0042 0 0 0 0 0.2189 0 0 0 0 0.1664 0 0.0291 0 0 0 0 -0.0668 0 0 0 1.018201 1 1 1 1

C(14) 4.0496 0 0 0 0.0529 0.1303 0 0 -0.1148 0 0.1668 0 0 0.1898 0 0 0 -0.0176 0 0 -0.0056 0 0 0 0.0142 0 1.016433 1 1 1 1 1

C(15) 3.9346 0

0 0 0.0644 0.1329 0 0 -0.118 0 0.1525 0 0 0.1882 0 0 0 -0.0159 0 0 -0.0135 0 0 0 0.0228 0 1.01604 1 1 1 1 1 C(16) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(17) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(18) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(19) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(20) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(21) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(22) 3.9888 0 0.0778 -0.0438 0 -0.2417 0 0 0.0853 0.0499

```
1.114183 1.2 1.2 1.2 1.2 1.2
H(3A) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 \ 0 \ 0 \ 0 \ 0 \ 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(3B) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(4A) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(4B) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(5A) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(5B) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
H(5C) 1.0291 0
0 0 0.1563
0.0668 0 0 0 0
0.0189 0 0 0 0 0 0
0.0047 0 0 0 0 0 0 0 0
1.114183 1.2 1.2 1.2 1.2 1.2
```

0 0 0.1532 0.0659 0 0 0 0 0.0196 0 0 0 0 0 0 0.0059 0 0 0 0 0 0 0 0 1.122183 1.2 1.2 1.2 1.2 1.2 H(15A) 1.0221 0 0 0 0.1534 0.0613 0 0 0 0 0.0137 0 0 0 0 0 0 0.0044 0 0 0 0 0 0 0 0 1.12308 1.2 1.2 1.2 1.2 1.2 H(15B) 1.0221 0 0 0 0.1534 0.0613 0 0 0 0 0.0137 0 0 0 0 0 0 0.0044 0 0 0 0 0 0 0 0 1.12308 1.2 1.2 1.2 1.2 1.2 H(17) 1.004 0 0 0 0.1546 0.0629 0 0 0 0 0.0127 0 0 0 0 0 0 -0.002 0 0 0 0 0 0 0 0 1.13642 1.2 1.2 1.2 1.2 1.2 H(18) 1.004 0 0 0 0.1546 0.0629 0 0 0 0 0.0127 0 0 0 0 0 0 -0.002 0 0 0 0 0 0 0 0 1.13642 1.2 1.2 1.2 1.2 1.2 H(20) 1.004 0 0 0 0.1546 0.0629 0 0 0 0 0.0127 0 0 0 0 0 0 -0.002 0 0 0 0 0 0 0 0 1.13642 1.2 1.2 1.2 1.2 1.2 H(21) 1.004 0 0 0 0.1546 0.0629 0 0 0 0 0.0127 0 0 0 0 0 0 -0.002 0 0 0 0 0 0 0 0 1.13642 1.2 1.2 1.2 1.2 1.2 Dipole moments in Debye (D) (origin: center of mass) (1a): $\mu_x = -0.1;$ $\mu_v = -6.6;$ $\mu_z = 5.7;$ $\mu_{\text{total}} = 8.7$ $\mu_z = 8.6;$ (1b): $\mu_x = -1.9; \quad \mu_v = 1.8;$ $\mu_{\text{total}} = 9.0$ Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013