SUPPLEMENTARY INFORMATION

Low-molecular-weight gelators consisting of hybrid cyclobutane-based peptides

Sergi Celis,^a Pau Nolis,^b Ona Illa,^a Vicenç Branchadell^a and Rosa M. Ortuño*^a

^a Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain b Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain

CONTENTS

Appearance of gels from compounds 1-4	S2
SEM micrographs of xerogels from compound 1 in toluene at	
different concentrations	S 3
IR data for 1-4	S4
Computational calculations: alternative gelation pattern for 1	S5
NMR studies on gelation of tetrapeptide 1	S 7

Appearance of the gels from compounds 1-4

	3													
	Pentane	Toluene		Et ₂ 0	CHCI ₃	EtOAc	CH ₂ Cl ₂	тнг	iPrOH	Acetone	EtOH	ACN	MeOH	H ₂ O
1	Ι	(IV)	ard	Ι				1 201			经济		3)]-	-
2	I	I IV	[[o]]	Ι	S	(In-		(+))			(F 75))		[[J]]	Ι
3	I	07	(vi)	I	S		(i)))		1 彩川				्रिट्रो होत्	Ι
4	Ι	Nicol	[- o]]	I	S			(J)				S	S	Ι

Fig. S1 Appearance of the gels formed from compounds 1 - 4 in the different solvents tested. I = insoluble; S = soluble.

SEM micrographs of xerogels from compound 1 in toluene

at different concentrations

Fig. S2 SEM micrographs of xerogels from 7 mM (mgc), 15 mM,and 40mM peptide **1** in toluene at two different magnifications each.

<u>IR data</u>

		NH		СО			
Compound	Crystalline	Xerogel ^c	Solution ^d	Crystalline	Xerogel ^c	Solution ^d	
	solid ^b			solid ^b			
					1759	1739	
1	3307	3305	3423	1703	1729	1706	
				1650	1686	1662	
					1638	1002	
				1734	1734	1712	
2	3308	3305	3438	1689	1689	1/12	
				1642	1642	1652	
				1735	1733	1719	
3	3308	3307	3439	1688	1688	1/1)	
				1639	1640	1030	
4	3307	3307	3441	1688	1690	1703	
4	3307	5507	3310	1639	1641	1653	

Table S1. N-H and C=O bands^a in the IR spectra of peptides **1** - **4** as solids, as xerogels from toluene, and in solution.

^a In cm⁻¹. ^b ATR. ^c Xerogel from toluene gel at 30 mM in KBr. ^d 5 mM solution in CDCl₃

Computational calculations: an alternative gelation pattern for 1

An alternative interaction pattern has also been explored for dimeric (**D**') and tetrameric (**T**') aggregates of tetrapeptide **1**. The resultant structures are shown in Figure S2. They are clearly unfavoured with respect to those shown in Figure 6 of the main text as can be deduced from comparison between data for D and T with data for D' and T' in Table S2.

Fig. S2 Structures of dimeric (**D'**) and tetrameric (**T'**) aggregates of peptide **1** optimized at the M06-2X/6-31G(d) level of calculation. Selected interatomic distances are in Å.

	In vacu	o^b	In toluene ^c		
	ΔΕ	$\Delta E/n$	ΔΕ	$\Delta E/n$	
D (n=2)	-22.1	-11.0	-15.8	-7.9	
D' (n=2)	-11.1	-5.6			
T (n=4)	-76.9	-19.2	-50.6	-12.6	
T' (n=4)	-35.4	-8.8			

^{*a*} All values in kcal mol⁻¹. ΔE corresponds to the $n \mathbf{X} \rightarrow (\mathbf{X})_n$ process. ^{*b*} M06-2X/6-31G(d) level of calculation. ^{*c*} SMD-M06-2X/6-311+G(d,p)// M06-2X/6-31G(d) level of calculation.

<u>NMR studies on gelation of tetrapeptide 1:</u>

<u>Graphical representation of intensity and chemical-shift variations</u> <u>with temperature</u>

H7a/H7b pair:

H17_R/H17_s pair:

H26_R/H26_s pair:

H20 and H11:

NH₁₉:

Unfortunately, in this case, curve is "broken" due to overlapping with toluene signals

NH₁₆:

$\rm NH_{10}\, and\, \rm NH_{25}$:

