Azastilbenes: A cut off to p38 MAPK inhibitors

Jia-Fei Poon,^a John-Patrick Alao,^b Per Sunnerhagen,^b and Peter Dinér^{*a}

^a Department of Chemistry – BMC, Uppsala University Box 576, SE-75123 Uppsala, Sweden.

E-mail: peter.diner@kemi.uu.se

^b Department of Chemistry and Molecular Biology, University of Gothenburg Box 462, SE-405 30 Göteborg, Sweden.

Supporting Information

Contents

General and Materials	S2
Docking of compounds 6a-b, 7, 9, 14a-b, 15a-b, 16a-c	S3-S6
Confirmation of E/Z stereochemistry for compounds 6a-b, 7, 9	S7
COSY-relayh spectrum of compound 14b	S8
NOESY spectrum of compound 14b	S9
Confirmation of E/Z stereochemistry for compounds 14a-d , 15a-b ,	16a-c S10
Biochemical evaluation	S11
¹ H NMR, ¹³ C NMR, IR spectra of synthesized compounds	S12-S52

General and Materials.

All reagents and chemicals were purchased from Sigma-Aldrich and used without further purification. ¹H NMR (399.97 MHz) and ¹³C NMR (100.58 MHz) spectra were recorded on a Varian Unity 400 spectrometer, using solvent residual peaks (1H: CDCl₃: ∂ 7.26 ppm, DMSO-*d*₆: ∂ 2.50 ppm; 13C: CDCl₃: ∂ 77.0 ppm, DMSO-*d*₆: ∂ 39.52 ppm) as an indirect reference to TMS. Chemical shifts and literature NMR shifts were used as references in identification and characterization of the synthesized compounds. Flash column chromatography was performed using Merck silica gel (0.04-0.06 mm). Thin Layer Chromatography (TLC) was performed on ALUGRAM® SIL G/UV254 plates (0.2 mm), using UV-light (254 nm) for visualization. IR spectra were recorded on a Perkin-Elmer Spectrum One (ATR Technique). HPLC analysis was performed using a Young Lin (YL-9100) system equipped with a Kromasil 5-CellCoat column and using hexane and isopropanol as an eluent (detection: 220 nm and 254 nm). The protein preparation was prepared according to the standard procedure in the Schrödinger package. Docking of compounds was done in Glide (Schrödinger) with extraprecision (XP) settings and standard parameters for ligand docking.

Docking of compounds 6a-b, 7, 9, 14a-b, 15a-b, 16a-c

SB203580 Docking score (XP): -7.38

Compound 7 Docking score (XP): -7.33

Compound 16c Docking score (XP): -7.27

Compound 16a Docking score (XP): -7.11

Compound 16b Docking score (XP): -7.06

Compound 15a Docking score (XP): -6.68

Compound 14a Docking score (XP): -6.62

Compound 15b Docking score (XP): -6.35

Compound 14b Docking score (XP): -6.25

Confirmation of E/Z stereochemistry for compounds 6a-b, 7, 9

The stereochemistry was determined by comparison of coupling constants and chemical shifts (see Table below). Vinylic protons with a *trans*-configuration is known to have a larger coupling constant (around 16 Hz) compared the vinylic protons with a *cis*-configuration (around 10-12 Hz).¹ All the synthesized compounds with *cis*-configuration **6a-b**, **7**, **9** have coupling constants lower than the compounds from the *trans*-configuration (formed as a by-product in the synthesis).

	Coupling constant / Hz	Chemical shift (ppm)
6a	12.2	6.82, 6.53
6b	12.4	6.67, 6.43
7	12.5	6.62
8	12.2	6.71, 6.49

Confirmation of E/Z stereochemistry for compounds 14a-d, 15a-b, 16a-c

¹H NMR signals were assigned with a relayh-COSY experiment (¹H NMR spectrum available later in the supporting information) of compound **14b**. Cross-peaks were observed between the aromatic protons H1 and H2 on the pyridine ring and between H4 and H5 on the *p*-fluorophenyl ring. Protons H6 and H7 (-CH₂ and -CH₃) were assigned by chemical shift (¹H NMR spectrum available later in the supporting information).

The stereochemistry of compound **14b** was assign with a NOESY experiment. In the NOESY spectrum, NOE were observed between H1-H2, H4-H5, and H2-H3 (negative compared to the positive diagonal). More importantly, NOE was also observed between H2-H4 (negative compared to the positive diagonal) in the two different aromatic rings, which suggest that the two aromatic rings are placed on the same side of the double bond.

The main difference in the ¹H NMR of the (Z)- and (E)-compounds is in the absorption of the olefinic proton. The stereochemistry was determined by comparison of chemical shifts of the vinylic proton with a (E)-configuration and a (Z)-configuration. Previously, it has been observed that in the (Z)-isomer, the vinylic proton resonates at 6.9 ppm, while in the (E)-isomer, the absorption of this proton moves downfield for about 1 ppm to occur at 7.9 ppm due to the deshielding effect of the nearby carbonyl and the aromatic ring in similar compounds.^{1,2} In compounds **14a-14d**, one clearly can see the difference in chemical shift between the (E)- and the (Z)-isomer and the same trend is observed for compounds **15a-b**, **16a-c** (see Table below).

			$X \xrightarrow{CO_2R^2} H \xrightarrow{K_1} CO_2R^2$	X CO ₂ R ² H Chemical shift R ¹
Χ	R ¹	R^2	Chemical shift (ppm)	Chemical shift (ppm)
Н	Н	Et	7.67 (14a)	6.92
F	Н	Et	7.69 (14b)	6.87
Н	NHBoc	Et	7.93 (14c)	6.93-6.96
F	NHBoc	Et	7.87 (14d)	6.87
Н	Н	Н	7.70 (15a)	-
F	Н	Н	7.73 (15b)	-
Н	NH_2	Et	7.63 (16a)	-
F	NH_2	Et	7.62 (16b)	-
F	<i>i</i> -Pr-NH	Et	7.64 (16c)	-

Table. Chemical shift of the vinylic proton for (Z)- and (E)-compounds.

Biological evaluation

Biochemical inhibition. The IC_{50} -values were determined using Millipore's IC50-profiler services (www.millipore.com/life_sciences/flx4/ld_kinases). The technical details of the assay protocal is available at: http://www.millipore.com/techpublications/tech1/pf3036.

General Assay Protocols: SAPK2a (h) is incubated with 25 mM Tris pH 7.5, 0.02 mM EGTA, 0.33 mg/mL myelin basic protein, 10 mM MgAcetate and [γ -³³P-ATP] (specific activity approx. 500 cpm/pmol, concentration as required). The reaction is initiated by the addition of the MgATP mix. After incubation for 40 minutes at room temperature, the reaction is stopped by the addition of 3% phosphoric acid solution. 10 µL of the reaction is then spotted onto a P30 filtermat and washed three times for 5 minutes in 75 mM phosphoric acid and once in methanol prior to drying and scintillation counting.

Compound Preparation and Assay Controls: All compounds are prepared to 50x final assay concentration in 100% DMSO. This working stock of the compound is added to the assay well as the first component in the reaction, followed by the remaining components as detailed in the general assay protocols below. In the standard KinaseProfiler service, there is no pre-incubation step between the compound and the kinase prior to initiation of the reaction. Our positive control wells contain all components of the reaction, except the compound of interest; however, DMSO (at a final concentration of 2%) is included in these wells to control for solvent effects. Our blank wells contain all components of the reacting the compound of interest. This abolishes kinase activity and establishes the baseline (0% kinase activity remaining).

References

1. Tian, J.; Zhang, Z; Yang, X.; Fun, H.; Xu, J.; J.Org. Chem 2001, 66,8230-8235. 2. Boros, L.; Felföldi, K.; Pálinkó, I. *Molecules* **2004**, *9*, 256-263.

¹³C NMR

Compound 6a

Compound 6b

¹H NMR

HPLC

Result Table (Uncal -	6B 95HEX-STPROH	0.5MLMIN	STILBENES -	Channel 1)
Result Table (Unical -	OD_SSHEA-SIFKON	_0.5PhEPhIN_3	STILDENLS -	Channer 1)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	9,623	31,855	0,804	0,1	0,1	0,65	
2	11,207	8,355	0,474	0,0	0,0	0,29	
3	12,623	8,204	0,231	0,0	0,0	0,27	
4	14,057	84,476	2,907	0,3	0,3	0,45	
5	15,357	28797,292	946,426	99,5	99,5	0,45	
	Total	28930,181	950,842	100,0	100,0		

Compound 6c ¹H NMR NBoc Н -9.943 _ 0.93 0.91 13 10 12 7 , , , ,,,, 1.012.31 2.00 0.45.08 3 2 11 9 6 5 4 1 -0 ppm ب 8.33

IR 98,4 95 3193,47 90 85 80 75 29 70 %T ⁶⁵ 60 53 55 12 50. 45 857 7,68 1055,19 1506,75 ,22 1716,31 40. 830 1565,53 1233 35-31,8 4000,0 650,0 3600 3200 2800 2400 2000 1800 cm-1 1600 1400 1200 1000 800

HPLC

Result Table (Uncal - 6C__95HEX-5IPROH_0.5MLMIN_STILBENES - Channel 1)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	7,390	7,453	0,408	0,0	0,0	0,29	
2	8,123	27,041	0,768	0,1	0,0	0,57	
3	9,457	13,390	0,562	0,0	0,0	0,25	
4	10,557	130,334	6,813	0,3	0,3	0,29	
5	11,473	46094,064	1946,198	99,6	99,5	0,35	
6	15,573	14,357	0,452	0,0	0,0	0,47	
	Total	46286,640	1955,200	100,0	100,0		

Compound 7

Compound 8

¹H NMR

Compound 9

¹³C NMR

Compound 11

¹³C NMR

Compound 13a

¹H NMR

Compound 13b

Compound 14a

NOESY

¹H NMR (CDCl₃): δ 8.35 (d, *J* = 5.6 Hz, 2H, NCH), 7.67 (s, 1H, PyrCH), 7.15-7.67 (m, 3H, NCHC*H*, PyrCHCCCHCHC*H*), 7.13-7.15 (m, 2H, PyrCHCCCHC*H*), 6.81 (d, *J* = 6.4 Hz, 2H, PyrCHCCC*H*), 4.23 (q, *J* = 7.2 Hz, 2H, CH₂), 1.24 (t, *J* = 7.2 Hz, 3H, CH₃).

Compound 14b

Compound 14c

¹³C NMR

Compound 14d

Compound 15a

Compound 15b

13

11

12

10

έ

ģ

7

6

5

ġ

ł

ź

i

-0

ppm

Compound 16a

¹H NMR

98,0 96 94 92 90 88. 86 3159,28 84 82 3428,20 80 13 78 %T 76 1633 74 1431,68 1028,34 867 926,82 90 543,62 72 70 1597,42 68 66 7 64 809.54 1702,67 62-60-58-57,0-

4000,0

3600

3200

2800

2400

2000

IR

1800 cm-1 1400

1600

1200

1000

800

. 650,0

Result Table (Uncal - 16A_90MIN_70HEX-30IPROH_0.5MLMIN_STILBENES - Channel 1)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]	Compound Name
1	8,300	342,807	12,164	0,3	0,4	0,42	
2	9,400	167,578	6,593	0,1	0,2	0,39	
3	10,617	109712,482	3297,236	96,7	97,9	0,50	
4	13,050	1638,089	25,173	1,4	0,7	0,99	
5	16,000	422,007	7,466	0,4	0,2	0,67	
6	19,733	100,118	1,172	0,1	0,0	1,35	
7	22,100	977,327	16,961	0,9	0,5	0,87	
8	27,950	60,313	0,556	0,1	0,0	1,75	
	Total	113420,722	3367,322	100,0	100,0		

S46

Compound 16b

¹H NMR

OH A SMIMIN STUDENES - Ch

11

 Result Table (Uncar - 100_00/LX-2017 KOh_0.5/LPIIN_5/ILBENES - Chaimer 1)									
	Reten. Time	Area	Height	Area	Height	W05	Compound		
	[min]	[mV.s]	[mV]	[%]	[%]	[min]	Name		
1	13,850	13172,390	377,838	95,8	97,6	0,52			
2	15,917	284,546	5,796	2,1	1,5	0,76			
3	17,917	286,729	3,685	2,1	1,0	0,94			
	Total	13743,666	387,318	100,0	100,0				

Compound 16c

¹H NMR

IR

100,0 95 3395,18 3254,95 90 2981,70 85 2969,22 80 75 909.23 70 %Т 105 65 1442,03 60 1036,66 1710,15 840,07 55 174 56 730,99 1508,42 1598,42 1158,31 50 45 40 1231,75 37,0 1800 cm-1 3600 3200 2800 2400 2000 1600 1400 1200 1000 800 650,0

Compound 17

¹H NMR

