Electronic Supplementary Information

# Dual signaling of hydrazine by selective deprotection of dichlorofluorescein and resorufin acetates

Myung Gil Choi, Jung Ok Moon, Jihee Bae, Jung Woo Lee and Suk-Kyu Chang\*

# Contents

- Fig. S1.Time course plot for the changes in absorbance at 512 nm of F1 and<br/>F2 in the absence and presence of hydrazine.
- **Fig. S2**. Absorbance ratio  $(A/A_0)$  at 512 nm of **F1** in the presence of hydrazine, representative metal ions, and anions.
- **Fig. S3**. Changes in fluorescence intensity at 534 nm of **F1** in the presence of hydrazine, representative metal ions, and anions.
- **Fig. S4**. Partial <sup>1</sup>H NMR spectra of **F1** in the absence and presence of hydrazine.
- **Fig. S5**. UV-vis spectra of **F1** and dichlorofluorescein in the absence and presence of hydrazine.
- **Fig. S6**. Fluorescence spectra of **F1** and dichlorofluorescein in the absence and presence of hydrazine.
- **Fig. S7**. Fluorescence spectra of **F1** and **F1** in the presence of hydrazine or acetylhydrazine.
- **Fig. S8**. Signaling of hydrazine by **F1** in the presence of common metal ions and anions as background.
- Fig. S9. Time course plot for the changes in absorbance at 583 nm of R1 and R2 in the absence and presence of hydrazine.
- **Fig. S10**. Absorbance ratio  $(A_{583}/A_{453})$  at 453 nm and 583 nm of **R1** in the presence of hydrazine, representative metal ions, and anions.
- **Fig. S11**. Changes in fluorescence intensity at 595 nm of **R1** in the presence of hydrazine, representative metal ions, and anions.
- Fig. S12. Concentration-dependence of hydrazine detection by R1.
- **Fig. S13**. <sup>1</sup>H NMR spectrum of **F1** in CDCl<sub>3</sub>.
- **Fig. S14**.  $^{13}$ C NMR spectrum of **F1** in CDCl<sub>3</sub>.
- **Fig. S15**. <sup>1</sup>H NMR spectrum of F2 in CDCl<sub>3</sub>.
- **Fig. S16**.  $^{13}$ C NMR spectrum of **F2** in CDCl<sub>3</sub>.
- **Fig. S17**. <sup>1</sup>H NMR spectrum of **R2** in CDCl<sub>3</sub>.
- **Fig. S18**.  $^{13}$ C NMR spectrum of **R2** in CDCl<sub>3</sub>.

**Fig. S1**. Time course plot for the changes in absorbance at 512 nm of **F1** and **F2** in the absence and presence of hydrazine.  $[F1] = [F2] = 5.0 \times 10^{-6} \text{ M}$ , [Hydrazine] =  $5.0 \times 10^{-4} \text{ M}$  in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).





b) 2',7'-Dichlorofluorescein chloroacetate derivative F2



**Fig. S2**. Absorbance ratio  $(A/A_0)$  at 512 nm of **F1** in the presence of hydrazine, representative metal ions, and anions. [**F1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] = [M<sup>n+</sup>] =  $[A^{n-}] = 5.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).

a) Metal ions



## b) Anions



**Fig. S3**. Changes in fluorescence intensity at 534 nm of **F1** in the presence of hydrazine, representative metal ions, and anions. [**F1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] =  $[M^{n+}] = [A^{n-}] = 5.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).  $\lambda_{ex} = 480$  nm.

a) Metal ions







**Fig. S4**. Partial <sup>1</sup>H NMR spectra of **F1** in the absence and presence of hydrazine. [**F1**] = [DCF] =  $1.0 \times 10^{-2}$  M, [Hydrazine] =  $5.0 \times 10^{-2}$  M in a D<sub>2</sub>O/DMSO-d<sub>6</sub> solution (1:1, v/v). DCF: 2',7'-dichlorofluorescein.



**Fig. S5**. UV-vis spectra of **F1** and dichlorofluorescein in the absence and presence of hydrazine. [**F1**] = [DCF] =  $5.0 \times 10^{-6}$  M, [Hydrazine] =  $1.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v). DCF: 2',7'-dichlorofluorescein.



Fig. S6. Fluorescence spectra of F1 and dichlorofluorescein in the absence and presence of hydrazine. [F1] = [DCF] =  $5.0 \times 10^{-6}$  M, [Hydrazine] =  $1.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).  $\lambda_{ex}$  = 480 nm. DCF: 2',7'-dichlorofluorescein.



Fig. S7. Fluorescence spectra of F1 and F1 in the presence of hydrazine or acetylhydrazine. [F1] =  $5.0 \times 10^{-6}$  M, [Hydrazine] = [Acetylhydrazine] =  $1.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).  $\lambda_{ex} = 480$  nm.



Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is O The Royal Society of Chemistry 2013

**Fig. S8**. Signaling of hydrazine by **F1** in the presence of common metal ions and anions as background. [**F1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] =  $2.5 \times 10^{-4}$  M, [M<sup>n+</sup>] =  $[A^{n-}] = 5.0 \times 10^{-4}$  M,  $[Co^{2+}] = [Cu^{2+}] = [Zn^{2+}] = [Cd^{2+}] = [Hg^{2+}] = 2.5 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).  $\lambda_{ex} = 480$  nm.



Fig. S9. Time course plot for the changes in absorbance at 583 nm of R1 and R2 in the absence and presence of hydrazine.  $[R1] = [R2] = 5.0 \times 10^{-6} \text{ M}$ , [Hydrazine] =  $5.0 \times 10^{-4} \text{ M}$  in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).



a) Resorufin acetate derivative R1

b) Resorufin chloroacetate derivative R2



**Fig. S10**. Absorbance ratio  $(A_{583}/A_{453})$  at 453 nm and 583 nm of **R1** in the presence of hydrazine, representative metal ions, and anions. [**R1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] = [ $M^{n+}$ ] = [ $A^{n-}$ ] =  $5.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).

a) Metal ions



### b) Anions



**Fig. S11**. Changes in fluorescence intensity at 595 nm of **R1** in the presence of hydrazine, representative metal ions, and anions. [**R1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] = [ $M^{n+}$ ] = [ $A^{n-}$ ] =  $5.0 \times 10^{-4}$  M in a mixture of DMSO and tris buffer solution (pH = 8.0, 10 mM), (1:1, v/v).  $\lambda_{ex}$  = 492 nm.

a) Metal ions



### b) Anions



Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

**Fig. S12**. Concentration-dependence of hydrazine detection by **R1**. [**R1**] =  $5.0 \times 10^{-6}$  M, [Hydrazine] = from 0 to  $3.0 \times 10^{-5}$  M, in a mixture of DMSO and tris buffer solution (pH 8.0, 10 mM), (1:1, v/v).





Fig. S13. <sup>1</sup>H NMR spectrum of F1 in CDCl<sub>3</sub>.

Fig. S14. <sup>13</sup>C NMR spectrum of F1 in CDCl<sub>3</sub>.



Fig. S15. <sup>1</sup>H NMR spectrum of F2 in CDCl<sub>3</sub>.



Fig. S16. <sup>13</sup>C NMR spectrum of F2 in CDCl<sub>3</sub>.



Fig. S17. <sup>1</sup>H NMR spectrum of R2 in CDCl<sub>3</sub>.



Fig. S18. <sup>13</sup>C NMR spectrum of R2 in CDCl<sub>3</sub>.

