Supporting Information

Copper-catalysed oxidative C–H/N–H cross-coupling between formamides and amides through chelation-assisted N–H activation

Xiaoyu Li, Bijin Li, Jingsong You and Jingbo Lan*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China

Fax: 86-28-85412203; E-mail: jingbolan@scu.edu.cn

Table of contents

I. Ge	neral remarks	•••••	•••••				S3
II.	Optimization	of	the	oxidative	C-H/N-H	cross-coupling	of
N,N-c	limethylformami	de wit	h <i>N</i> -ph	enyl-2-picolir	namide		S3
III. (General procedure	for th	e oxida	ative C–H/N–	H cross-coupli	ng of formamides	with
amide	es						S4
IV . P	rocedure for the r	emova	al of th	e 2-pyridoyl g	group		S5
V. Pro	ocedure for the re	moval	of the	benzoyl grou	p		S5
VI. E	xperimental data	for the	e descr	ibed substanc	es		S5
VII.	References	•••••	•••••			••••••	.S17
VIII.	Copies of ¹ H and	1 ¹³ C N	MR sp	pectra			.S18

I. General remarks

NMR spectra were obtained on a Bruker AMX-400. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.16 ppm). High-resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. CuBr (99.0 %) was purchased from Shanghai Xin Bao Fine Chemical Engineering Reagent (China) CO., Ltd., TBHP (65 wt% in water) Sinopharm Chemical was purchased from Reagent (China) Co., Ltd., *N*,*N*-dimethylformamide was purchased from Chengdu Ke Long Chemical Engineering Reagent (China) CO., Ltd., N,N-diethylformamide was purchased from Chendu Best-reagent (China) CO., Ltd., and 4-formylmorpholine was purchased from Accela ChemBio (China) Co. Ltd.. N-Substituted-2-picolinamides¹, N-(pyridin-2-yl)amides², N-phenyl-3-picolinamide¹, N-(pyridin-3-yl)benzamide², 1-formylpiperidine³, and 1-formylpyrrolidine³ were prepared according to the literature procedures.

II. Optimization of the oxidative C–H/N–H cross-coupling of *N*,*N*-dimethylformamide with *N*-phenyl-2-picolinamide

	N N N	+ N -	cata lyst, oxida Temp., time	nt		
	1a	2a			3a	
Entry	Catalyst	Oxidant	Temp.	Time	Solvent	Yield
			(°C)	(h)		$(\%)^b$
1	CuBr ₂	TBHP	80	12	none	76
2	CuBr	TBHP	80	12	none	85
3	$CuCl_2 \cdot 2H_2O$	TBHP	80	12	none	79
4	CuCl	TBHP	80	12	none	79
5	CuI	TBHP	80	12	none	46
6	Cu(OAc) ₂	TBHP	80	12	none	72

Table S1: Optimization of reaction conditions^{*a*}

7	$Cu(OTf)_2$	TBHP	80	12	none	79
8	$CuSO_4$	TBHP	80	12	none	54
9	CoCl ₂ ·6H ₂ O	TBHP	80	12	none	59
10	$Pd(OAc)_2$	TBHP	80	12	none	N.D. ^c
11	FeCl ₃	TBHP	80	12	none	N.D.
12	NiCl ₂	TBHP	80	12	none	N.D.
13	none	TBHP	80	12	none	N.D.
14	CuBr	DTBP	80	12	none	< 5
15	CuBr	TBPB	80	12	none	< 5
16	CuBr	DDQ	80	12	none	N.D.
17	CuBr	H_2O_2	80	12	none	N.D.
18	CuBr	$K_2S_2O_8$	80	12	none	N.D.
19	CuBr	$(NH_4)_2S_2O_8$	80	12	none	N.D.
20	CuBr	TBHP	60	12	none	83
21	CuBr	TBHP	40	12	none	80
22	CuBr	TBHP	r.t.	12	none	57
23	CuBr	TBHP	120	12	none	67
24	CuBr	TBHP	80	1	none	75
25	CuBr	TBHP	80	3	none	80
26	CuBr	TBHP	80	6	none	84
27	CuBr	TBHP	80	24	none	78
28^d	CuBr	TBHP	80	12	DMSO^{e}	< 5
29^d	CuBr	TBHP	80	12	Toluene ^e	< 5
30^d	CuBr	TBHP	80	12	CH ₃ CN ^e	< 5
31 ^{<i>d</i>}	CuBr	TBHP	80	12	DCE^{e}	< 5
32^d	CuBr	TBHP	80	12	none	< 5
33 ^f	CuBr	TBHP	80	12	none	N.D.

^{*a*} Reaction contidions: *N*-phenyl-2-picolinamide (**1a**, 0.5 mmol, 1.0 equiv), *N*,*N*-dimethylformamide (**2a**, 1 mL), catalyst (5 mol%), oxidant (1.5 equiv). ^{*b*} Isolated yield. ^{*c*} Not Detected. ^{*d*} 3.0 equiv DMF. ^{*e*} 1 mL. ^{*f*} 1.0 equiv TEMPO (2,2,6,6-tetramethylpiperidine *N*-oxide). TBHP = *tert*-butyl hydroperoxide. DTBP = di-*tert*-butyl peroxide. TBPB = *tert*-butyl perbenzoate. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

III. General procedure for the oxidative C–H/N–H cross-coupling of formamides with amides

TBHP (65 wt% in water, 1.5 equiv) was added to a mixture of amide (1 or 4, 0.5 mmol, 1.0 equiv), CuBr (5 mol%) and formamide (2, 1 mL) in a Schlenk tube under N_2 atmosphere. Then the reaction temperature was increased to 80 °C and the reaction mixture was stirred for 12 hours. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate (20 mL), washed with water followed by

brine, and dried over anhydrous Na₂SO₄. Removal of the solvent under vacuum afforded the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = $2/1 \sim 1/2$, v/v) to afford the required product (**3** or **5**).

IV. Procedure for the removal of the 2-pyridoyl group

The mixture of **3a** (0.4 mmol, 1.0 equiv) and NaOH (3.0 equiv) in MeOH (2 mL) was stirred at 50 °C for 12 hours. TLC (petroleum ether/ethyl acetate/dichloromethane = 1/2/1, v/v/v) indicated that **3a** was disappeared and the product was generated. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate (20 mL), washed with water followed by brine, and dried over anhydrous Na₂SO₄. Removal of the solvent under vacuum afforded the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) to afford the required product **6a**.

V. Procedure for the removal of the benzoyl group

The mixture of **5a** (0.4 mmol, 1.0 equiv) and NaOH (3.0 equiv) in MeOH (2 mL) was stirred at 50 °C for 12 hours. TLC (petroleum ether/ethyl acetate/dichloromethane = 1/3/1, v/v/v) indicated that **5a** was disappeared and the product was generated. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate (20 mL), washed with water followed by brine, and dried over anhydrous Na₂SO₄. Removal of the solvent under vacuum afforded the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/3, v/v) to afford the required product **7a**.

VI. Experimental data for the described substances

N-(Dimethylcarbamoyl)-*N*-phenylpicolinamide (3a)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3a** as a white solid (115 mg, 85% yield). M.p.: 97-99 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.99 (s, 6H), 7.29-7.33 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.40-7.46 (m, 3H), 7.84 (t, *J* = 7.6 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 8.57 (d, *J* = 3.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.1, 38.5, 119.8, 124.5, 125.6, 126.2, 127.0, 129.2, 129.4, 137.1, 138.5, 148.3, 152.2, 157.9, 168.3 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₅N₃NaO₂ [M+Na]⁺ 292.1062, found 292.1064.

N-(Dimethylcarbamoyl)-N-(o-tolyl)picolinamide (3b)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3b** as a white solid (120 mg, 85% yield). M.p.: 125-126 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.27 (s, 3H), 2.89 (s, 3H), 2.93 (s, 3H), 7.21-7.24 (m, 3H), 7.28-7.30 (m, 1H), 7.38 (t, *J* = 6.2 Hz, 1H), 7.81 (t, *J* = 7.8 Hz, 1H), 7.97 (d, *J* = 7.6 Hz, 1H), 8.54 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.4, 37.2, 37.7, 124.2, 125.7, 126.0, 126.9, 127.7, 131.3, 135.2, 136.9, 137.4, 148.3, 152.3, 158.3, 168.7 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇N₃NaO₂ [M+Na]⁺ 306.1218, found 306.1215.

N-(Dimethylcarbamoyl)-*N*-(4-methoxyphenyl)picolinamide (3c)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3c** as a white solid (114 mg, 76% yield). M.p.: 170-172 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.89 (s, 3H), 2.91 (s, 3H), 3.75 (s, 3H), 6.85-6.89 (m, 2H), 7.18-7.22 (m, 2H), 7.31 (dd, *J* = 7.6 Hz, 4.8Hz, 1H), 7.73 (td, *J* = 7.6 Hz, 1.6Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 8.46 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz,

CDCl₃): δ = 37.1, 38.5, 55.6, 114.7, 121.3, 122.4, 124.4, 126.1, 127.1, 131.2, 137.0, 148.2, 152.3, 158.0, 158.4, 168.4 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇N₃NaO₃ [M+Na]⁺ 322.1168, found 322.1164.

N-(Dimethylcarbamoyl)-N-(2-fluorophenyl)picolinamide (3d)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3d** as a white solid (126 mg, 87% yield). M.p.: 139-141 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.97 (s, 6H), 7.16-7.21 (m, 2H), 7.30-7.36 (m, 2H), 7.39 (dd, *J* = 7.4 Hz, 5.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 8.54 (d, *J* = 4.4Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.1, 38.1, 116.6, 116.8, 124.6, 124.9, 125.0, 126.4, 127.3, 129.2, 129.3, 137.1, 148.4, 151.3, 155.9, 157.2, 158.5, 167.4 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄FN₃NaO₂ [M+Na]⁺ 310.0968, found 310. 0968.

N-(2-Chlorophenyl)-N-(dimethylcarbamoyl)picolinamide (3e)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3e** as a white solid (121 mg, 80% yield). M.p.: 99-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.97 (s, 6H), 7.27-7.40 (m, 4H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 8.54 (d, *J* = 2.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.2, 38.1, 120.4, 124.6, 126.3, 128.0, 128.9, 130.7, 131.9, 136.5, 137.0, 142.1, 148.5, 151.6, 168.1 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄ClN₃NaO₂ [M+Na]⁺ 326.0672, found 326.0675.

N-(3-Bromophenyl)-N-(dimethylcarbamoyl)picolinamide (3f)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3f** as a white solid (133 mg, 76% yield). M.p.: 107-109 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.96 (s, 6H), 7.24-7.28 (m, 2H), 7.38-7.42 (m, 2H), 7.50 (s, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 8.52 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.1, 38.5, 122.7, 124.2, 124.6, 126.4, 128.6, 130.1, 130.6, 137.2, 139.8, 148.3, 151.7, 157.3, 168.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄BrN₃NaO₂ [M+Na]⁺ 370.0167, found 370.0167.

N-(Dimethylcarbamoyl)-*N*-(4-iodophenyl)picolinamide (3g)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3g** as a white solid (159 mg, 80% yield). M.p.: 130-132 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.96 (s, 6H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.40 (t, *J* = 6.2 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 8.53 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.1, 38.5, 121.7, 122.6, 124.6, 126.4, 127.4, 137.2, 138.1, 138.3, 138.5, 148.3, 151.8, 157.1, 168.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄IN₃NaO₂ [M+Na]⁺ 418.0028, found 418.0030.

N-Benzyl-N-(dimethylcarbamoyl)picolinamide (3h)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3h** as pale yellow oil (82 mg, 58% yield). Increasing the loading of

TBHP to 2.5 equiv, **3h** was afforded in 81% yield (115 mg). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.47$ (s, 3H), 2.79 (s, 3H), 4.96 (s, 2H), 7.26-7.34 (m, 3H), 7.36-7.39 (m, 1H), 7.48 (d, J = 6.8 Hz, 2H), 7.80 (td, J = 7.8 Hz, 1.2 Hz, 1H), 7.99 (d, J = 7.6 Hz, 1 H), 8.54 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 36.6$, 37.9, 50.3, 124.3, 126.0, 127.8, 128.6, 129.1, 136.7, 137.0, 148.1, 151.7, 158.1, 166.9 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇N₃NaO₂ [M+Na]⁺ 306.1218, found 306.1220.

N-(Dimethylcarbamoyl)-N-propylpicolinamide (3i)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3i** as pale yellow oil (70 mg, 59% yield). Increasing the loading of TBHP to 2.5 equiv, **3i** was afforded in 78% yield (92 mg). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.4 Hz, 3H), 1.70-1.79 (m, 2H), 2.85 (s, 6H), 3.65 (s, 2H), 7.33-7.37 (m, 1H), 7.78 (td, J = 7.6 Hz, 1.6Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.50-8.51 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 11.5$, 21.6, 36.6, 38.2, 48.5, 124.2, 126.7, 137.0, 148.1, 151.9, 158.6, 167.1 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₇N₃O₂ [M+Na]⁺ 258.1218, found 258.1216.

N-(Diethylcarbamoyl)-N-phenylpicolinamide (3j)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3j** as a white solid (116 mg, 78% yield), M.p.: 74-77 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.61 (t, *J* = 6.8 Hz, 3H), 1.09 (t, *J* = 6.8 Hz, 3H), 3.25 (s, 2H), 3.38 (s, 2H), 7.19-7.23 (m, 1H), 7.26-7.36 (m, 5H), 7.73 (t, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 8.42 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.3, 12.1, 40.7, 42.9, 119.8, 124.4, 125.7, 126.1, 126.9, 128.8, 129.3, 137.0, 139.0, 147.8,

152.5, 156.8, 168.7 ppm. HRMS (ESI⁺): calcd for $C_{17}H_{19}N_3NaO_2 [M+Na]^+$ 320.1375, found 320.1374.

N-(Diethylcarbamoyl)-N-propylpicolinamide (3k)

Employing the general procedure except that the loading of TBHP was 2.5 equiv, and purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3k** as pale yellow oil (94 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.4 Hz, 3H), 1.10 (t, J = 7.2 Hz, 6H), 1.71-1.80 (m, 2H), 3.30-3.36 (m, 6H), 7.33 (dd, J = 7.6 Hz, 4.8Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 8.46 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 11.3$, 11.6, 13.2, 21.4, 40.1, 42.7, 48.8, 124.1, 125.8, 136.9, 147.7, 151.9, 157.6, 167.4 ppm. HRMS (ESI⁺): calcd for C₁₄H₂₁N₃NaO₂ [M+Na]⁺ 286.1531, found 286.1532.

N-Phenyl-*N*-(piperidine-1-carbonyl)picolinamide (3l)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3l** as a white solid (81 mg, 52% yield), M.p.: 96-99 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (s, 2H), 1.56 (s, 4H), 3.46 (s, 4H), 7.26-7.30 (m, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.38-7.43 (m, 3H), 7.81 (t, J = 7.8 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 8.54 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 24.3$, 25.1, 45.1, 48.0, 119.8, 124.4, 125.6, 126.2, 126.9, 128.8, 129.3, 137.0, 139.0, 148.0, 152.3, 156.3, 168.7 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉N₃NaO₂ [M+Na]⁺ 332.1375, found 332.1379.

N-(2-Chlorophenyl)-*N*-picolinoylmorpholine-4-carboxamide (3m)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3m** as a white solid (101 mg, 58 % yield), M.p.: 120-123 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.51-3.77 (m, 8H), 7.30-7.35 (m, 3H), 7.43-7.44 (m, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 8.57 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 44.4, 66.2, 121.0, 124.7, 126.6, 128.1, 129.1, 130.8, 131.5, 136.5, 137.2, 143.5, 148.1, 151.2, 168.2 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆ClN₃NaO₃ [M+Na]⁺ 368.0778, found 368.0775.

N-Benzyl-N-(pyrrolidine-1-carbonyl)picolinamide (3n)

Employing the general procedure except that the loading of TBHP was 2.5 equiv, and purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3n** as a white solid (99 mg, 64 % yield), M.p.: 82-83 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.48 (s, 2H), 1.63 (s, 2H), 2.80 (s, 2H), 3.33 (s, 2H), 4.98 (s, 2H), 7.26-7.33 (m, 3H), 7.38 (dd, *J* = 7.4 Hz, 5.0 Hz, 1H), 7.49 (d, *J* = 7.2Hz, 2H), 7.80 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 8.54 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.4, 25.4, 46.5, 47.5, 49.8, 124.1, 125.9, 127.7, 128.5, 129.0, 136.8, 136.9, 147.9, 151.8, 155.8, 166.4 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉N₃NaO₂ [M+Na]⁺ 332.1375, found 332.1371.

N-(Dimethylcarbamoyl)-*N*-(pyridin-2-yl)benzamide (5a)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5a** as a white solid (108 mg, 80% yield). M.p.: 121-122 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.96 (s, 6H), 7.15 (dd, *J* = 7.2 Hz, 5.2Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 3H), 7.48 (t, *J* = 7.0 Hz, 1H), 7.67-7.71 (m, 3H), 8.44 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 36.8, 37.7, 121.0, 121.7, 128.45, 128.54, 132.1, 134.9, 138.2, 148.8, 152.8, 156.3, 169.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₅N₃NaO₂ [M+Na]⁺ 292.1062, found 292.1061.

N-(Dimethylcarbamoyl)-2-fluoro-*N*-(pyridin-2-yl)benzamide (5b)

Employing the general procedure except that the reaction was carried out at room temperature, purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5b** as pale yellow oil (58 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 3.00$ (s, 6H), 6.99 (t, J = 9.2 Hz, 1H), 7.14-7.21 (m, 2H), 7.38-7.43 (m, 2H), 7.62-7.71 (m, 2H), 8.40 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 36.9$, 37.9, 115.7, 115.9, 119.9, 121.7, 123.7, 123.9, 124.4, 124.5, 130.31, 130.34, 132.75, 132.84, 137.9, 148.8, 152.0, 155.2, 157.7, 160.1, 165.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄FN₃NaO₂ [M+Na]⁺ 310.0968, found 310. 0969.

4-Chloro-N-(dimethylcarbamoyl)-N-(pyridin-2-yl)benzamide (5c)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5c** as a white solid (95 mg, 63% yield). M.p.: 132-133 °C. ¹H NMR

(400 MHz, CDCl₃): δ = 2.97 (s, 6H), 7.18 (dd, *J* = 7.2 Hz, 5.2 Hz, 1H), 7.34-7.38 (m, 3H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.73 (td, *J* = 7.8 Hz, 1.6 Hz, 1H), 8.45 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 36.3, 37.6, 120.8, 121.8, 128.8, 129.8, 133.1, 138.2, 138.5, 148.6, 152.3, 155.9, 168.4 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄ClN₃NaO₂ [M+Na]⁺ 326.0672, found 326.0668.

4-Bromo-N-(dimethylcarbamoyl)-N-(pyridin-2-yl)benzamide (5d)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5d** as a white solid (123 mg, 71% yield). M.p.: 141-143 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.97 (s, 6H), 7.18 (t, *J* = 6.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.50-7.57 (m, 4H), 7.73 (t, *J* = 7.8 Hz, 1H), 8.44 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 36.8, 37.7, 120.9, 122.0, 126.9, 130.0, 131.9, 133.7, 138.6, 148.7, 152.4, 156.0, 168.6 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄BrN₃NaO₂ [M+Na]⁺ 370.0167, found 370.0169.

N-(Dimethylcarbamoyl)-2-iodo-N-(pyridin-2-yl)benzamide (5e)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5e** as a white solid (150 mg, 76% yield). M.p.: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.99 (s, 6H), 7.05 (t, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 5.6 Hz, 1H), 7.28 (t, *J* = 7.2Hz, 1H), 7.40 (d, *J* = 6.0 Hz, 1H), 7.58 (s, 1H), 7.70 (t, *J* = 7.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 8.39 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.0, 38.5, 93.4, 120.4, 121.9, 127.6, 128.7, 131.3, 138.4, 140.1, 148.6, 151.6, 154.7, 168.6 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄IN₃NaO₂ [M+Na]⁺ 418.0028, found 418.0029.

N-(Dimethylcarbamoyl)-3-methyl-N-(pyridin-2-yl)benzamide (5f)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5f** as a white solid (97 mg, 69%). M.p.: 97-99°C. ¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3H), 2.96 (s, 6H), 7.13 (dd, *J* = 7.2 Hz, 4.8 Hz, 1H), 7.21-7.28 (m, 2H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.53 (s, 1H), 7.67 (td, *J* = 7.8 Hz, 2.0 Hz, 1H), 8.42-8.44 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 37.3, 120.8, 121.5, 125.3, 128.2, 129.0, 132.7, 134.7, 137.9, 138.3, 148.8, 152.9, 156.2, 169.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇N₃NaO₂ [M+Na]⁺ 306.1218, found 306.1222.

N-(Dimethylcarbamoyl)-*N*-(3-methylpyridin-2-yl)benzamide (5g)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **5g** as a white solid (89 mg, 63%). M.p.: 144-147°C. ¹H NMR (400 MHz, CDCl₃): δ = 2.27 (s, 3H), 2.99 (s, 6H), 7.17 (dd, *J* = 7.4 Hz, 5.0 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 6.8 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 8.33 (d, *J* = 3.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 17.6, 36.9, 38.1, 123.3, 128.4, 128.5, 132.1, 134.6, 140.7, 146.4, 151.8, 156.3, 167.3, 169.4 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇N₃NaO₂ [M+Na]⁺ 306.1218, found 306.1224.

N-(Diethylcarbamoyl)-N-(pyridin-2-yl)benzamide (5i)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5i** as pale yellow oil (111 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, J = 7.2 Hz, 6H), 3.37 (s, 2H), 3.38 (s, 2H), 7.12 (dd, J = 7.4 Hz, 5.0 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.40-7.47 (m, 2H), 7.67 (d, J = 7.2 Hz, 3H), 8.41 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.4, 13.0, 40.9, 42.9, 120.3, 121.5, 128.3, 128.4, 131.7, 135.1, 138.0, 148.8, 152.9, 155.3, 170.0 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₉N₃NaO₂ [M+Na]⁺ 320.1375, found 320.1373.

4-Bromo-N-(diethylcarbamoyl)-N-(pyridin-2-yl)benzamide (5j)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5j** as pale yellow oil (120 mg, 64 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.00$ (s, 6H), 3.38 (s, 2H), 3.39 (s, 2H), 7.17 (dd, J = 7.2 Hz, 5.2 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.49-7.55 (m, 4H), 7.73 (t, J = 7.8 Hz, 1H), 8.42 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 11.5$, 13.0, 40.9, 42.5, 120.3, 121.8, 126.5, 130.0, 131.7, 134.0, 138.2, 149.0, 152.7, 155.1, 169.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₈BrN₃NaO₂ [M+Na]⁺ 398.0480, found 398.0477.

N-Benzoyl-N-(pyridin-2-yl)pyrrolidine-1-carboxamide (5k)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/2, v/v) afforded **5k** as a white solid (74 mg, 50 %). M.p.: 120-123 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.82 (s, 4H), 3.40 (s, 2H), 3.46 (s, 2H), 7.13-7.14 (m, 1H), 7.35-7.38 (m, 3H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.68-7.72 (m, 3H), 8.43 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.6, 25.6, 47.0, 47.5, 120.8, 121.5, 128.4, 128.5, 131.9,

135.1, 138.0, 148.9, 152.8, 154.2, 169.4 ppm. HRMS (ESI⁺): calcd for $C_{17}H_{17}N_3NaO_2$ [M+Na]⁺ 318.1218, found 318.1220.

N-Benzoyl-N-(pyridin-2-yl)morpholine-4-carboxamide (5l)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/2, v/v) afforded **51** as a white solid (99 mg, 64 %). M.p.: 126-128 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.49 (s, 4H), 3.57-3.58 (m, 4H), 7.18 (t, *J* = 6.2 Hz, 1H), 7.37-7.42 (m, 3H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.69-7.74 (m, 3H), 8.44 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 45.9, 66.2, 120.7, 121.8, 128.4, 128.6, 132.2, 134.7, 138.1, 149.0, 152.8, 155.2, 169.5 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₇N₃NaO₃ [M+Na]⁺ 334.1168, found 334.1167.

N-(3-Methylbenzoyl)-*N*-(pyridin-2-yl)piperidine-1-carboxamide (5m)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **5m** as pale yellow oil (116 mg, 72 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (s, 4H), 1.51 (s, 2H), 2.35 (s, 3H), 3.42 (s, 4H), 7.12 (t, J = 6.0 Hz, 1H), 7.22-7.29 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.54 (s, 1H), 7.69 (t, J = 7.8 Hz, 1H), 8.42 (d, J = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.4$, 24.1, 25.3, 46.6, 120.5, 121.5, 125.4, 128.2, 129.0, 132.7, 135.0, 138.0, 138.3, 148.9, 153.0, 155.0, 170.0 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₁N₃NaO₂ [M+Na]⁺ 346.1531, found 346.1528.

1,1-Dimethyl-3-phenylurea (6a)⁴

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **6a** as a white solid (63 mg, 96 %). ¹H NMR (400 MHz, CDCl₃): δ = 3.00 (s, 6H), 6.34 (s, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 36.5, 120.0, 123.0, 128.9, 139.3, 155.9 ppm. HRMS (ESI⁺): calcd for C₉H₁₂N₂NaO [M+Na]⁺ 187.0847, found 187.0850.

1,1-Dimethyl-3-(pyridin-2-yl)urea (7a)⁵

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/3, v/v) afforded **7a** as pale yellow oil (45 mg, 68 %). ¹H NMR (400 MHz, CDCl₃): δ = 3.03 (s, 6H), 6.91 (dd, J = 6.2 Hz, 5.8 Hz, 1H), 7.23 (s, 1H), 7.62 (t, J = 7.8 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 36.5, 113.2, 118.4, 138.2, 147.5, 152.9, 155.0 ppm. HRMS (ESI⁺): calcd for C₈H₁₁N₃NaO [M+Na]⁺ 188.0800, found 188.0802.

VII. References

- 1 M. D. Markey, Y. Fu and T. R. Kelly, Org. Lett., 2007, 9, 3255.
- 2 L. H. Heitman, J. P. D. van Veldhoven, A. M. Zweemer, K. Ye, J. Brussee and A. P. IJzerman, *J. Med. Chem.*, 2008, **51**, 4724.
- 3 M. Lei, L. Ma and L. Hu, Tetrahedron Lett., 2010, 51, 4186.
- 4 W. Rauf and J. M. Brown, Angew. Chem.; Int. Ed., 2008, 47, 4228.
- 5 B. Kuhn, P. Mohr and M. Stahl, J. Med. Chem., 2010, 53, 2601.

