Supplementary Information

for

Palladium(II)-Catalyzed Synthesis of Functionalized Indenones via Oxidation and Cyclization of 2-(2-Arylethynylphenyl)acetonitriles

Xuxing Chen, Qian He, Yuyuan Xie, and Chunhao Yang*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China

chyang@simm.ac.cn

Table of Contents

General information	S2
Optimization of reaction conditions	S2
General procedure for the synthesis of substrates	S3
General procedure for the synthesis of indenones	S9
Transformations of 3-cynoindenones	S16
Isolation of 1,2-dicarbonyl compound 3a	S19
¹ H NMR and ¹³ C NMR spectra	S20
X-ray structure of 2d	S104

General information

Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness, Yantai Huiyou Company, China). Column chromatography was carried out on silica gel (200-300 mesh). Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded at Varian Mercury-300 and Varian Mercury-500 spectrometers. Tetramethylsilane (TMS) was used as internal standard. Chemical shifts were reported in parts per million (ppm, δ). Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multipet (m) and broad (br). Low- and high-resolution mass spectra (LRMS and HRMS) were recorded on a Finnigan/MAT-95 (EI), Finnigan LCQ/DECA and Micromass Ultra Q-TOF (ESI) spectrometer. Melting points (m.p.) were measured by Büchi 510 melting point apparatus and were uncorrected.

Optimization of reaction conditions

Table S1 Optimization of reaction conditions for synthesis of indenones in a cascade process.^a

	CN CN	conditions -	NC O) + (O CN			
	1a		3a		2a			
Entry	Catalysts	Sulfoxide	Additive	Solvent	Temp	Time	Yield(%) ^b	
	(mol%)	(3.0 equiv)	(1.2 equiv)	(1 mL)	(°C)	(h)	3 a	2a
1	PdCl ₂ (10)	DMSO	none	DMSO	140	15	0	65
2	$PdCl_2(10)/AgSbF_6(20)$	DMSO	none	DMSO	100	12	44	0
3	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	none	DCE	100	1	98	0
4	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	MsOH	DCE	100	5	45	0
5	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	TsOH	DCE	100	5	51	0
6	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	KOAc	DCE	100	5	0	0
7	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	K ₃ PO ₄ ·3H ₂ O	DCE	100	5	0	18
8	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	K ₃ PO ₄	DCE	100	5	35	18
9	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	K ₂ CO ₃	DCE	100	5	8	29
10	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	Cs ₂ CO ₃	DCE	100	5	0	36
11	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	CsF	DCE	100	5	0	0
12	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	TEA	DCE	100	5	0	0
13	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	DIPEA	DCE	100	5	0	0
14	$PdCl_2(10)/AgSbF_6(20)$	Ph ₂ SO	DBU	DCE	100	5	0	0

^{*a*} **1a** (0.23 mmol, 1.0 equiv), all of reagents were mixed and heated. ^{*b*} Determined by ¹H NMR analysis of the crude product using CH_2Br_2 as an internal standard.

General procedure for the synthesis of substrates

The aryl iodides **9** (2.06 mmol), Pd(PPh₃)₂Cl₂ (2 mol%), CuI (2 mol%), PPh₃ (4 mol%) were placed in a nitrogen-filled Schlenk tube. After addition of *i*-Pr₂NH (4.12 mmol) and toluene (10 mL), the mixture was stirred at room temperature for 5 minutes and terminal alkynes **10** (2.5 mmol) was added. The reaction mixture was allowed to stir at 50 °C for 12 h and the resulting solution was filtered and washed with saturated brine and extracted with ethyl acetate (2 × 20 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel using petroleum ether/ethyl acetate (30:1) as the eluent.

2-(2-(phenylethynyl)phenyl)acetonitrile (1a)^[1]: As a brown solid; yield: 95%; m.p. 58–60 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.66–7.45 (m, 4 H), 7.43–7.31 (m, 5 H), 3.98 (s, 2 H); MS (EI): m/z 217 [M]⁺.

2-(2-(p-tolylethynyl)phenyl)acetonitrile (**1b**)^[2]: As a white crystalline solid; yield: 93%; m.p. 78–80 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.60–7.54 (m, 1 H), 7.53–7.48 (m, 1 H), 7.48–7.41 (m, 2 H), 7.41–7.29 (m, 2 H), 7.23–7.15 (m, 2 H), 3.98 (s, 2 H), 2.38 (s, 3 H); MS (EI): m/z 231 [M]⁺.

2-(2-(m-tolylethynyl)phenyl)acetonitrile (1c): As a brown solid; yield: 96%; m.p. 34–36 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dd, J = 7.2, 1.8 Hz, 1 H), 7.51 (d, J = 7.0 Hz, 1 H), 7.42–7.30 (m, 4 H), 7.27 (t, J = 7.5 Hz, 1 H), 7.19 (d, J = 7.5 Hz, 2 H), 3.98 (s, 1H), 2.37 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 138.25, 132.36, 132.15, 131.67, 129.80, 128.97, 128.71, 128.42, 128.17, 128.13, 122.91, 122.29, 117.50, 95.92, 85.65, 22.80, 21.27; HRMS (EI): m/z Calcd. For C₁₇H₁₃N [M]⁺: 231.1048; Found: 231.1041.

2-(2-(o-tolylethynyl)phenyl)acetonitrile (1d): As a pale yellow solid; yield: 96%; m.p. 34–36 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, J = 6.5 Hz, 1 H), 7.53(d, J = 7.3 Hz, 2 H), 7.44–7.31 (m, 2 H), 7.32–7.13 (m, 3 H), 3.99 (s, 2 H), 2.53 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.07, 132.47, 132.08, 131.44, 129.66, 128.99, 128.94, 128.20, 128.16, 125.79, 123.08, 122.33, 117.50, 94.62, 89.87, 22.88, 20.98; HRMS (EI): m/z Calcd. For C₁₇H₁₃N [M]⁺: 231.1048; Found: 231.1040.

2-(2-((4-methoxyphenyl)ethynyl)phenyl)acetonitrile (1e): As a white crystalline solid; yield: 91%; m.p. 66–68 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.58–7.52 (m, 1 H), 7.53–7.44 (m, 3 H), 7.40–7.28 (m, 2 H), 6.90 (d, *J* = 8.9 Hz, 2 H), 3.97 (s, 2 H), 3.84 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.45, 161.95, 142.30, 141.38, 135.42, 131.05, 129.59, 128.33, 124.17, 121.27, 120.76, 119.02, 114.71, 114.57, 55.47; HRMS (EI): m/z Calcd. For C₁₇H₁₃NO [M]⁺: 247.0997; Found: 247.1002.

2-(2-((4-fluorophenyl)ethynyl)phenyl)acetonitrile (1f): As a white crystalline solid; yield: 83%; m.p. 75–77 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.59–7.46 (m, 4 H), 7.43–7.30 (m, 2 H), 7.14–7.02 (m, 2 H), 3.96 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 162.84 (d, *J* = 251.4 Hz, C-F), 133.57 (d, *J* = 8.5 Hz, CH-CH-CF), 132.39, 131.65, 129.13, 128.29, 128.25, 122.69, 118.62 (d, *J* = 3.5 Hz, C-CH-CH-CF), 117.40, 115.87 (d, *J* = 22.1 Hz, CH-CF), 94.61, 85.71, 22.85; HRMS (EI): m/z Calcd. For C₁₆H₁₀FN [M]⁺: 235.0797; Found: 235.0790.

2-(2-((3-fluorophenyl)ethynyl)phenyl)acetonitrile (1g): As a brown powder; yield: 97%; m.p. 79–81 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.61–7.55 (m, 1 H), 7.54–7.48 (m, 1 H), 7.44–7.31 (m, 4 H), 7.28–7.21 (m, 1 H), 7.15–7.01 (m, 1 H), 3.96 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 162.40 (d, J = 247.1 Hz, C-F), 132.54, 131.81, 130.15 (d, J = 8.6 Hz, CH-CH-CF), 129.42, 128.32, 128.28, 127.54 (d, J = 3.1 Hz, CH-CH-CH-CF), 124.30 (d, J = 9.4 Hz, C-CH-CF), 122.35, 118.38 (d, J = 23.0 Hz, CH-CF), 117.35, 116.25 (d, J = 21.1 Hz, CH-CF), 94.29 (d, J = 3.5 Hz, C-C-CH-CF), 86.80, 22.84; HRMS (EI): m/z Calcd. For C₁₆H₁₀FN [M]⁺: 235.0797; Found: 235.0796.

2-(2-((2-fluorophenyl)ethynyl)phenyl)acetonitrile (1h): As a brown powder; yield: 99%; m.p. 76–78 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62–7.57 (m, 1 H), 7.57–7.50 (m, 2 H), 7.45–7.29 (m, 3 H), 7.20–7.07 (m, 2 H), 4.02 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 162.69 (d, *J* = 251.8 Hz, C-F), 133.20, 132.31, 131.97, 130.63 (d, *J* = 8.1 Hz, CH-CH-CF), 129.40, 128.18, 128.16 (d, *J* = 6 Hz, CH-CH-CF), 124.17 (d, *J* = 3.7 Hz, CH-CH-CF), 122.39, 117.49, 115.65 (d, *J* = 20.7 Hz, CH-CF), 111.22 (d, *J* = 15.5 Hz, C-CF), 91.12 (d, *J* = 3.4 Hz, C-C-CF), 88.98, 22.69; HRMS (EI):

m/z Calcd. For C₁₆H₁₀FN [M]⁺: 235.0797; Found: 235.0793.

2-(2-((4-chlorophenyl)ethynyl)phenyl)acetonitrile (1i)^[2]**:** As a wihte powder; yield: 84%; m.p. 94–96 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.60–7.53 (m, 1 H), 7.53–7.45 (m, 3 H), 7.44–7.30 (m, 4 H), 3.96 (s, 2 H); MS (EI): m/z 251 [M]⁺.

2-(2-((4-formylphenyl)ethynyl)phenyl)acetonitrile (1j): As a pale yellow powder; yield: 97%; m.p. 106–108 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.04 (s, 1 H), 7.90 (dt, J = 8.2, 1.9 Hz, 2 H), 7.71 (dd, J = 8.2, 1.8 Hz, 2 H), 7.61 (dd, J = 7.3, 1.5 Hz, 1 H), 7.56–7.49 (m, 1 H), 7.44 (td, J =7.5, 1.6 Hz, 1 H), 7.38 (td, J = 7.5, 1.6 Hz, 1 H), 3.98(s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 191.36, 135.84, 132.70, 132.15, 131.93, 129.78, 129.69, 128.67, 128.47, 128.38, 122.11, 117.23, 94.57, 89.73, 22.89; HRMS (EI): m/z Calcd. For C₁₇H₁₁NO [M]⁺: 245.0841; Found: 245.0835.

methyl 4-((2-(cyanomethyl)phenyl)ethynyl)benzoate (1k): As a white powder; yield: 89%; m.p. 132–134 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (dt, J = 8.3, 1.6 Hz, 2 H), 7.65–7.57 (m, 3 H), 7.55–7.49 (m, 1 H), 7.42 (td, J = 7.8, 1.6 Hz, 1 H), 7.37 (td, J = 7.6, 1.6 Hz, 1 H), 3.98 (s, 2 H), 3.94 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.43, 132.61, 131.86, 131.53, 130.06, 129.65, 129.57, 128.36, 128.31, 127.11, 122.28, 117.29, 94.75, 88.74, 52.34, 22.86; HRMS (EI): m/z Calcd. For C₁₈H₁₃NO₂ [M]⁺: 275.0946; Found: 275.0949.

2-(2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)acetonitrile (11)^[2]: As a pale yellow solid; yield: 98%; m.p. 64–66 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71–7.56 (m, 5 H), 7.51 (d, *J* = 7.5 Hz, 1 H), 7.46–7.32 (m, 2 H), 3.97 (s, 2 H); MS (EI): m/z 285 [M]⁺.

4-((**2**-(**cyanomethyl**)**phenyl**)**ethynyl**)**benzonitrile** (**1m**)**:** As a white powder; yield: 93%; m.p. 108–110 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71–7.62 (m, 4 H), 7.62–7.56 (m, 1 H), 7.55–7.48 (m, 1 H), 7.43 (td, *J* = 7.2, 1.6 Hz 1 H), 7.39 (td, *J* = 7.5, 1.6 Hz 1 H), 3.95 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 132.74, 132.20, 132.11, 131.96, 129.95, 128.57, 128.43, 127.36, 121.86, 118.36, 117.15, 112.15, 93.75, 90.11, 22.91; HRMS (EI): m/z Calcd. For C₁₇H₁₀N₂ [M]⁺: 242.0844; Found: 242.0843.

2-(2((3,4-dimethylphenyl)ethynyl)phenyl)acetonitrile (1n): As a brown solid; yield: 84%; m.p. 31–33 °C ; ¹H NMR (300 MHz, CDCl₃) δ 7.61–7.48 (m, 2 H), 7.42–7.32 (m, 3 H), 7.29 (dd, J = 7.3, 1.7 Hz, 1 H), 7.13 (d, J = 7.7 Hz, 1 H), 3.98 (s, 2 H), 2.29 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 137.98, 136.91, 132.59, 132.26, 131.58, 129.82, 129.08, 128.79, 128.14, 128.07, 123.10, 119.70, 117.57, 96.13, 85.18, 22.80, 19.88, 19.64. HRMS (EI): m/z Calcd. For C₁₈H₁₅N [M]⁺: 245.1204; Found: 245.1201.

2-(2-((3,5-dimethylphenyl)ethynyl)phenyl)acetonitrile (10): As a pale brown solid; yield:

81%; m.p. 32–33 °C ; ¹H NMR (300 MHz, CDCl₃) δ 7.58–7.46 (m, 2 H), 7.42–7.29 (m, 2 H), 7.18 (t, *J* = 0.7 Hz, 2 H), 7.01 (t, *J* = 0.7 Hz, 1 H), 3.98 (s, 2 H), 2.33 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 138.13, 132.32, 131.65, 130.84, 129.28, 128.90, 128.16, 128.09, 122.99, 122.09, 117.55, 96.13, 85.32, 22.79, 21.16; HRMS (EI): *m*/*z* Calcd. For C₁₈H₁₅N [M]⁺: 245.1204; Found: 245.1197.

2-(2-((3,5-dimethoxyphenyl)ethynyl)phenyl)acetonitrile (1p): As a pale yellow solid; yield: 63%; m.p. 93–95 °C ; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.0, 1.9 Hz, 1 H), 7.51 (d, *J* = 7.6 Hz, 1 H), 7.42–7.29 (m, 2 H), 6.71 (d, *J* = 2.2 Hz, 2 H), 6.50 (t, *J* = 2.3 Hz, 1 H), 3.97 (s, 2 H), 3.81 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 160.65, 132.44, 131.79, 129.15, 128.19, 123.76, 122.65, 117.51, 110.18, 109.39, 102.20, 95.66, 85.56, 55.50, 22.82; HRMS (EI): m/z Calcd. For C₁₈H₁₅NO₂ [M]⁺: 277.1103; Found: 277.1104.

2-(2-(benzo[d]][1,3]dioxol-5-ylethynyl)phenyl)acetonitrile (1q): As a pale yellow solid; yield: 84%; m.p. 114–115 °C ; ¹H NMR (300 MHz, CDCl₃) δ 7.57–7.44 (m, 2 H), 7.40–7.29 (m, 2 H), 7.09 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.99 (d, *J* = 1.6 Hz, 1 H), 6.81 (d, *J* = 8.0 Hz, 1 H), 6.00 (s, 2 H), 3.95 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 148.42, 147.60, 132.25, 131.54, 128.84, 128.18, 126.45, 122.95, 117.50, 115.69, 111.46, 108.65, 101.49, 95.72, 84.51, 22.83; HRMS (EI): m/z Calcd. For C₁₇H₁₁NO₂ [M]⁺: 261.0790; Found: 261.0782.

2-(2-((4-chlorophenyl)ethynyl)-4,5-dimethoxyphenyl)acetonitrile (1r): As a white powder;

yield: 83%; m.p. 118–121 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2 H), 7.34 (d, *J* = 8.5 Hz, 2 H), 7.03 (s, 1 H), 6.95 (s, 1 H), 3.95 (s, 3 H), 3.92 (s, 2 H), 3.91 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 150.01, 148.57, 134.66, 132.66, 128.85, 124.84, 121.22, 117.69, 114.53, 114.43, 111.13, 92.91, 87.17, 56.16, 56.14, 22.41; HRMS (EI): m/z Calcd. For C₁₈H₁₄ClNO₂ [M]⁺: 311.0713; Found: 311.0713.

2-(2-(naphthalen-1-ylethynyl)phenyl)acetonitrile (1s): As a yellow powder; yield: 88%; m.p. 72–74 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, *J* = 8.0 Hz, 1 H), 7.89 (d, *J* = 8.2 Hz, 2 H), 7.80 (dd, *J* = 7.1, 1.1 Hz, 1 H), 7.74–7.68 (m, 1 H), 7.66–7.54 (m, 3 H), 7.53–7.44 (m, 1 H), 7.44–7.36 (m, 2 H), 4.09 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 133.21, 133.03, 132.64, 131.62, 130.87, 129.44, 129.20, 128.49, 128.29, 128.26, 127.13, 126.63, 125.92, 125.32, 122.95, 120.13, 117.54, 93.79, 90.75, 23.00; HRMS (EI): m/z Calcd. For C₂₀H₁₃N [M]⁺: 267.1048; Found: 267.1048.

General procedure for the synthesis of indenones

After stirring for 5 min at room temperature, the mixture of **1** (0.23 mmol), PdCl₂ (5 mol%), AgSbF₆ (10 mol%) and Ph₂SO (0.69 mmol) in dry DCE (1 mL) was heated at 60 °C under air for the specified time, then Cs₂CO₃ (0.28 mmol, 1.2 equiv) was added, stirred for additional 20~120 min. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (80:1) as the eluent to give the pure product.

1-oxo-2-phenyl-1*H***-indene-3-carbonitrile (2a):** As a red powder: yield: 97%; m.p. 149–151 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.02–7.88 (m, 2 H), 7.65–7.54 (m, 2 H), 7.55–7.46 (m, 3 H), 7.42–7.32 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.79, 143.04, 140.86, 135.42, 131.07, 130.18, 129.19, 128.98, 128.44, 128.34, 124.32, 122.33, 121.18, 114.11; HRMS (EI): *m/z* Calcd. For C₁₆H₉NO [M]⁺: 231.0684; Found: 231.0684.

1-oxo-2-(p-tolyl)-1*H***-indene-3-carbonitrile (2b):** As a red powder; yield: 81%; m.p. 156–158 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2 H), 7.60–7.55 (m, 1 H), 7.55–7.49 (m, 1 H), 7.41–7.28 (m, 4 H), 2.43 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.09, 143.01, 141.82, 141.10, 135.38, 129.91, 129.75, 129.13, 128.38, 125.73, 124.23, 121.06, 120.99, 114.35, 21.68; HRMS (EI): m/z Calcd. For C₁₇H₁₁NO [M]⁺: 245.0841; Found: 245.0838.

1-oxo-2-(m-tolyl)-1*H***-indene-3-carbonitrile (2c):** As a dark red powder; yield: 85%; m.p. 128–130 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.74 (brs, 2 H), 7.56 (dd, J = 16.2, 7.6 Hz, 2 H), 7.45–7.28 (m, 4 H), 2.44 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.86, 143.22, 140.94, 138.72, 135.39, 131.96, 130.09, 129.66, 128.89, 128.39, 128.36, 126.38, 124.26, 122.10, 121.11, 114.17, 21.51; HRMS (EI): m/z Calcd. For C₁₇H₁₁NO [M]⁺: 245.0841; Found: 245.0846.

1-oxo-2-(o-tolyl)-1H-indene-3-carbonitrile (2d): As a red crystalline solid; yield: 87%; m.p.

98–100 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.48 (m, 2 H), 7.45–7.27 (m, 6 H), 2.35 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.24, 147.57, 140.62, 137.34, 135.28, 131.02, 130.43, 130.34, 129.82, 128.18, 127.93, 126.55, 126.01, 124.49, 121.28, 113.29, 20.79; HRMS (EI): *m*/*z* Calcd. For C₁₇H₁₁NO [M]⁺: 245.0841; Found: 245.0841.

2-(4-methoxyphenyl)-1-oxo-1*H***-indene-3-carbonitrile (2e):** As a reddish brown powder; yield: 95%; m.p. 142–144 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (dt, J = 8.9, 2.0 Hz, 2 H), 7.61–7.45 (m, 2 H), 7.38–7.27 (m, 2 H), 7.02 (dt, J = 8.9, 2.0 Hz, 2 H), 3.88 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.45, 161.95, 142.30, 141.38, 135.42, 131.05, 129.59, 128.33, 124.17, 121.27, 120.76, 119.02, 114.71, 114.57, 55.47; HRMS (EI): *m*/*z* Calcd. For C₁₇H₁₁NO₂ [M]⁺: 261.0790; Found: 261.0787.

2-(4-fluorophenyl)-1-oxo-1H-indene-3-carbonitrile (2f): As a red powder; yield: 80%; m.p. 136–138 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05–7.96 (m, 2 H), 7.61–7.51 (m, 2 H), 7.41–7.30 (m, 2 H), 7.25–7.15 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.73, 164.25 (d, *J* = 254.2 Hz, C-F), 141.77, 140.77, 135.53, 131.46 (d, *J* = 8.6 Hz, CH-CH-CF), 130.23, 128.19, 124.71 (d, *J* = 3.4 Hz, C-CH-CH-CF), 124.41, 121.84 (d, *J* = 2.4 Hz, C-C-CH-CH-CF), 121.21, 116.34 (d, *J* = 21.9 Hz, CH-CF), 114.08; HRMS (EI): *m/z* Calcd. For C₁₆H₈FNO [M]⁺: 249.0590; Found: 249.0598.

2-(3-fluorophenyl)-1-oxo-1H-indene-3-carbonitrile (2g): As a red powder; yield: 75%; m.p.

155–157 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.77 (ddd, J = 7.9, 1.7, 0.8 Hz, 1 H), 7.69 (dt, J = 10.0, 2.0 Hz, 1 H), 7.63–7.44 (m, 3 H), 7.43–7.36 (m, 2 H), 7.27–7.13 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.26 (s), 162.70 (d, J = 247.2 Hz, C-F), 141.47 (d, J = 2.8 Hz, C-C-CH-CF), 140.50 (s), 135.55 (s), 130.63 (d, J = 8.5 Hz, CH-CH-CF), 130.57 (s), 130.24 (d, J = 8.4 Hz, C-CH-CF), 128.24 (s), 124.86 (d, J = 3.2 Hz, CH-CH-CH-CF), 124.50 (s), 123.44 (s), 121.47 (s), 118.08 (d, J = 21.3 Hz, CH-CF), 116.14 (d, J = 23.6 Hz, CH-CF), 113.76 (s); HRMS (EI): *m*/*z* Calcd. For C₁₆H₈FNO [M]⁺: 249.0590; Found:249.0590.

2-(2-fluorophenyl)-1-oxo-1*H***-indene-3-carbonitrile (2h):** As a red powder; yield: 68%; m.p. 154–156 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.65–7.45 (m, 4 H), 7.44–7.35 (m, 2 H), 7.33–7.26 (m, 1 H), 7.25–7.19 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 192.63, 160.53 (d, *J* = 253.8 Hz, C-F), 140.72, 139.38 (d, *J* = 2.3 Hz, C-C-C-CF), 135.39, 132.54 (d, *J* = 8.5 Hz, CH-CH-CF), 131.40 (d, *J* = 2.3 Hz, CH-C-CF), 130.54, 128.03, 126.80 (d, *J* = 2 Hz, C-C-CF), 124.50, 124.46 (d, *J* = 3.5 Hz, CH-CH-CF), 121.51, 116.52 (d, *J* = 21.6 Hz, CH-CF), 116.42 (d, *J* = 14.8 Hz, C-CF), 112.98; HRMS (EI): *m/z* Calcd. For C₁₆H₈FNO [M]⁺: 249.0590; Found: 249.0589.

2-(4-chlorophenyl)-1-oxo-1*H***-indene-3-carbonitrile (2i):** As an orange red powder; yield: 82%; m.p. 150–152 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (dt, *J* = 8.9, 2.1 Hz, 2 H), 7.57 (ddd, *J* = 15.2, 7.5, 1.2 Hz, 2 H), 7.38 (dt, *J* = 8.9, 2.1 Hz, 2 H), 7.43–7.33 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.63, 141.76, 140.79, 137.55, 135.67, 130.54, 130.51, 129.48, 128.36, 126.99, 124.57, 122.60, 121.45, 114.06; HRMS (EI): *m*/*z* Calcd. For C₁₆H₈ClNO [M]⁺: 265.0294; Found: 265.0289.

2-(4-formylphenyl)-1-oxo-1*H***-indene-3-carbonitrile (2j):** As a scarlet powder; yield: 67%; m.p. 168–170 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.09 (s, 1 H), 8.12 (d, *J* = 8.4 Hz 2 H), 8.01 (d, *J* = 8.4 Hz 2 H), 7.66–7.56 (m, 2 H), 7.43 (t, *J* = 6.4 Hz, 2 H);¹³C NMR (126 MHz, CDCl₃) δ 193.01, 191.45, 141.51, 140.38, 137.24, 135.63, 133.86, 130.92, 129.96, 129.74, 128.24, 124.79, 124.62, 121.72, 113.60; HRMS (EI): *m*/*z* Calcd. For C₁₇H₉NO₂ [M]⁺: 259.0633; Found: 259.0633.

methyl 4-(3-cyano-1-oxo-1*H***-inden-2-yl)benzoate (2k):** As an orange red powder; yield: 75%; m.p. 156–158 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (dt, *J* = 8.6, 2.0 Hz, 2 H), 8.02 (dt, *J* = 8.5, 1.9 Hz, 2 H), 7.59 (ddd, *J* = 16.4, 7.7, 1.2 Hz, 2 H), 7.46–7.36 (m, 2 H), 3.96 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.21, 166.27, 141.81, 140.50, 135.55, 132.48, 131.89, 130.71, 130.01, 129.11, 128.28, 124.52, 124.17, 121.57, 113.71, 52.45; HRMS (EI): *m/z* Calcd. For C₁₈H₁₁NO₃ [M]⁺: 289.0739; Found: 289.0747.

1-oxo-2-(4-(trifluoromethyl)phenyl)-1*H***-indene-3-carbonitrile (2l):** As an orange yellow crystalline solid; yield: 54%; m.p. 145–148 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2 H), 7.77 (d, *J* = 8.3 Hz, 2 H), 7.65–7.54 (m, 2 H), 7.42 (t, *J* = 7.0 Hz, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.06, 141.44, 140.35, 135.61, 132.37 (q, *J* = 32.8 Hz, C-CF₃), 131.68, 130.83, 129.47, 128.20, 125.88 (q, *J* = 3.8 Hz, CH-C-CF₃), 124.60, 124.51, 123.66 (q, *J* = 272.7 Hz, C-F₃), 121.67,

113.57; HRMS (EI): *m/z* Calcd. For C₁₇H₈F₃NO [M]⁺: 299.0558; Found: 299.0569.

2-(4-cyanophenyl)-1-oxo-1*H***-indene-3-carbonitrile (2m):** As an orange red powder; yield: 49%; m.p. 175–178 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (dt, *J* = 8.4, 1.9 Hz, 2 H), 7.80 (dt, *J* = 8.4, 1.9 Hz, 2 H), 7.68–7.53 (m, 2 H), 7.49–7.37 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 192.75, 140.70, 140.16, 135.71, 132.57, 132.55, 131.12, 129.60, 128.15, 125.16, 124.73, 121.87, 118.13, 114.19, 113.40; HRMS (EI): *m/z* Calcd. For C₁₇H₈N₂O [M]⁺: 256.0637; Found: 256.0639.

2-(3,4-dimethylphenyl)-1-oxo-1*H***-indene-3-carbonitrile (2n):** As a red powder; yield: 87%; m.p. 143–145 °C ; ¹H NMR (300 MHz, CDCl₃) δ 7.77–7.68 (m, 2 H), 7.61–7.49 (m, 2 H), 7.39–7.27 (m, 3 H), 2.34 (s, 3 H), 2.33 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.19, 194.19, 143.15, 141.17, 140.67, 137.41, 135.37, 130.30, 130.10, 129.84, 129.20, 128.41, 126.83, 126.13, 124.19, 120.94, 114.41, 20.03, 19.91; HRMS (EI): *m*/*z* Calcd. For C₁₈H₁₃NO [M]⁺: 259.0997; Found: 259.1002.

2-(3,5-dimethylphenyl)-1-oxo-1*H***-indene-3-carbonitrile (20):** As a red powder; yield: 92%; m.p. 159–160 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62–7.47 (m, 4 H), 7.40–7.32 (m, 2 H), 7.14 (s, 1 H), 2.39 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.97, 143.48, 141.02, 138.61, 135.37, 132.97, 130.00, 128.39, 128.32, 126.88, 124.23, 121.92, 121.05, 114.21, 21.38; HRMS (EI): *m/z* Calcd. For C₁₈H₁₃NO [M]⁺: 259.0997; Found: 259.0995.

2-(3,5-dimethoxyphenyl)-1-oxo-1*H***-indene-3-carbonitrile (2p):** As a dark red powder; yield: 60%; m.p. 178–181 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62–7.49 (m, 2 H), 7.41–7.33 (m, 2 H), 7.14 (d, *J* = 2.3 Hz, 2 H), 6.59 (t, *J* = 2.3 Hz, 1 H), 3.85 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 194.98, 162.32, 144.20, 142.14, 136.82, 131.65, 131.34, 129.82, 125.71, 124.05, 122.64, 115.55, 108.31, 105.43, 56.97; HRMS (EI): *m/z* Calcd. For C₁₈H₁₃NO₃ [M]⁺: 291.0895; Found: 291.0892.

2-(benzo[*d*][1,3]dioxol-5-yl)-1-oxo-1*H*-indene-3-carbonitrile (2q): As a reddish brown powder; yield: 54%; m.p. 201–203 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (dd, *J* = 8.3, 1.8 Hz, 1 H), 7.58–7.53 (m, 1 H), 7.53–7.48 (m, 2 H), 7.37–7.28 (m, 2 H), 6.94 (d, *J* = 8.3 Hz, 1 H), 6.06 (s, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 195.45, 151.68, 149.66, 143.64, 142.57, 136.90, 131.19, 129.68, 126.37, 125.69, 124.01, 122.32, 121.11, 115.93, 110.42, 110.30, 103.21; HRMS (EI): *m/z* Calcd. For C₁₇H₉NO₃ [M]⁺: 275.0582; Found: 275.0589.

2-(4-chlorophenyl)-5,6-dimethoxy-1-oxo-1*H***-indene-3-carbonitrile** (**2r**): As a celadon powder; yield: 53%; m.p. 208–211 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (dt, *J* = 6.8, 2.0 Hz, 2 H), 7.47 (dt, *J* = 6.8, 2.0 Hz, 2 H), 7.14 (s, 1 H), 6.87 (s, 1 H), 4.02 (s, 3 H), 3.93 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 192.82, 154.77, 150.18, 141.22, 137.06, 135.43, 130.19, 129.28, 127.16, 120.87, 120.32, 114.25, 108.22, 105.04, 56.73, 56.52; HRMS (EI): *m/z* Calcd. For C₁₈H₁₂ClNO₃ [M]⁺: 325.0506; Found: 325.0509.

2-(naphthalen-1-yl)-1-oxo-1*H***-indene-3-carbonitrile (2s):** As a red powder; yield: 57%; m.p. 141–143 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.06–7.88 (m, 2 H), 7.78-7.72 (m, 1 H), 7.70–7.49 (m, 6 H), 7.44 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 194.92, 147.58, 142.17, 136.85, 135.20, 132.65, 132.48, 131.89, 130.18, 130.10, 129.69, 128.60, 128.18, 128.01, 127.47, 127.08, 126.60, 126.07, 122.82, 114.61; HRMS (EI): *m/z* Calcd. For C₂₀H₁₁NO [M]⁺: 281.0841; Found: 281.0831.

Transformations of 3-cynoindenones

3-(butylamino)-2-phenyl-1*H***-inden-1-one (4)^[3]: The mixture of 2a** (0.13 mmol), butylamine (0.39 mmol) and Cs₂CO₃ (0.39 mmol) in dry dioxane (2 mL) was heated at 60 °C for 1 h. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate (2 \times 15 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (4:1) as the eluent to give **4** as an orange red powder in 84% yield; m.p. 101–102 °C; ¹H NMR (300 MHz, DMSO-*d6*) δ 8.07 (t, *J* = 6.0 Hz, 1 H), 7.70 (d, *J* = 7.0 Hz, 1 H), 7.48–7.27 (m, 5 H), 7.23 (m, 3 H), 3.10 (brs, 2 H), 1.29 (t, *J* = 7.2 Hz, 2 H), 0.94 (q, *J* = 7.6 Hz, 2 H), 0.62 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, DMSO-*d6*) δ 191.10, 159.60, 139.74, 135.18, 134.97, 131.79, 131.62, 130.62, 128.13, 126.75, 120.15, 119.02, 105.19, 44.69, 31.95, 19.88, 14.04; HRMS (ESI): *m/z* Calcd. For C₁₉H₂₀NO [M+H]⁺: 278.1545; Found: 278.1548.

3-morpholino-2-phenyl-1*H***-inden-1-one (5):** The mixture of **2a** (0.13 mmol), morpholine (0.39 mmol) and Cs₂CO₃ (0.39 mmol) in dry dioxane (2 mL) was heated at 60 °C for 1 h. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (4:1) as the eluent to give **5** as red oil in 44% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.59–7.49 (m, 1 H), 7.44–7.28 (m, 8 H), 3.77 (t, *J* = 4.6 Hz, 4 H), 3.47 (t, *J* = 4.7 Hz, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 192.73, 162.80, 139.82, 134.72, 133.05, 131.62, 130.32, 129.70, 128.02, 126.90, 121.38, 120.97, 112.98, 66.74, 50.76; HRMS (EI): *m*/*z* Calcd. For C₁₉H₁₇NO₂ [M]⁺: 291.1259; Found: 291.1258.

2-phenyl-1*H***-indene-1,3(2***H***)-dione (6)^[4]: The mixture of 2a** (0.13 mmol) and Cs₂CO₃ (0.26 mmol) in 2 mL of dioxane/H₂O (1:1) was heated at 80 °C for 4 h. After cooling, the reaction solution was acidified by HCl aq. (1 N) to pH 4.0, then washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (4:1) as the eluent to give **6** as white shiny flakes in 38% yield; m.p. 135–137 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (dd, *J* = 5.7, 3.1 Hz, 2 H), 7.91 (dd, *J* = 5.6, 3.1 Hz, 2 H), 7.39–7.28 (m, 3 H), 7.23–7.11 (m, 2 H), 4.27 (s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 198.33, 142.67, 136.04, 133.15, 129.03, 128.78, 127.89, 123.80, 59.84; HRMS (EI): *m/z* Calcd. For C₁₅H₁₀O₂ [M]⁺: 222.0681; Found: 222.0682.

1-ethyl-1-hydroxy-2-phenyl-1*H***-indene-3-carbonitrile (7):** To a solution of **2a** (0.13 mmol) in THF (2 mL), EtMgBr (0.16 mmol) was added at -20 °C, and was stirred for 5 min. Then saturated aq. NH₄Cl (2 mL) was added dropwise, the resulting solution washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions was dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (8:1) as the eluent to give **7** as colorless oil in 71% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.19–8.02 (m, 2 H), 7.55–7.40 (m, 5 H), 7.42–7.31 (m, 2 H), 2.30 (s, 1 H), 2.26–2.09 (m, 1 H), 2.08–1.89 (m, 1 H), 0.44 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.80, 146.13, 138.21, 132.15, 130.80, 129.87, 129.14, 128.36, 128.28, 122.70, 120.81, 115.55, 110.50, 87.77, 31.12, 7.83; HRMS (ESI): *m/z* Calcd. For C₁₈H₁₅NONa [M+Na]⁺: 284.1051; Found: 284.1046.

11*H***-indeno[1,2-c]cinnolin-11-one (8):** The mixture of **2h** (0.13 mmol), hydrazine monohydrochloride (0.26 mmol), CuCl₂ (10 mol%) and Cs₂CO₃ (0.33 mmol) in dry dioxane (2 mL) was heated at 90 °C under air for 20 h. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (4:1) as the eluent to give **8** as an orange red powder in 93% yield; m.p. > 300 °C ; ¹H NMR (300 MHz, CDCl₃) δ 8.72–8.59 (m, 1 H), 8.57–8.43 (m, 1 H), 8.18 (d, *J* = 7.4 Hz, 1 H), 7.87–7.73 (m, 3 H), 7.67 (t, *J* = 7.4 Hz, 1 H), 7.47 (t, *J* = 7.5 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 193.37, 157.84, 152.98, 142.77, 135.88, 134.29, 133.79, 131.22, 130.84, 130.56, 124.91, 123.30, 121.92, 121.35, 119.90; HRMS (EI): *m/z* Calcd. For C₁₅H₈N₂O [M]⁺: 232.0637; Found: 232.0638.

Isolation of 1,2-dicarbonyl compound 3a

2-(2-(2-oxo-2-phenylacetyl)phenyl)acetonitrile (3a): After stirring for 5 min at room temperature, the mixture of **1a** (0.23 mmol), PdCl₂ (5 mol%), AgSbF₆ (10 mol%) and Ph₂SO (0.69 mmol) in dry DCE (1 mL) was heated at 60 °C under air for 3 h. After cooling, the reaction solution was washed with saturated brine and extracted with ethyl acetate (2 × 15 mL). The combined organic fractions was dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product. The crude product was chromatographed on silica gel, with petroleum ether/ethyl acetate (10:1 to 6:1) as the eluent to give the 1,2-dicarbonyl compound **3a** as a brown oil in 82% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.3 Hz, 2 H), 7.77-7.64 (m, 3 H), 7.54 (t, *J* = 7.7 Hz, 2 H), 7.46 (t, *J* = 7.4 Hz, 2 H), 4.36 (s, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 196.22, 193.83, 135.20, 134.90, 134.27, 132.75, 132.62, 131.04, 130.27, 130.00, 129.20, 128.63, 117.39, 23.25; HRMS (EI): *m/z* Calcd. For C₁₆H₁₁NO₂ [M]⁺: 249.0790; Found: 249.0792.

Reference

- (1) Shen, H.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 11473.
- (2) Severin, R.; Reimer, J.; Doye, S. J. Org. Chem. 2010, 75, 3518.
- (3) Ismail, I. M.; El-Sharief, A. M. S.; Ammar, Y. A.; Amer, R. M. Egypt. J. Chem. 1985, 27, 229.
- (4) Lu, C.-D.; Chen, Z.-Y.; Liu, H.; Hu, W.-H.; Mi, A.-Q.; Doyle, M. P. J. Org. Chem. 2004, 69, 4856.

¹H NMR and ¹³C NMR spectra

1b

1h

1k

1n

10

1p

1q 6.88 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.99 ---- 6. 00 2.07년 2.36년 1.10년 0.97년 1.07년 2.00≖ 2.16H 4.0 3.5 f1 (ppm) 8.0 2.5 0.5 2.0 1.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 1.5 0.0

1r $\nearrow \frac{7,48}{7,36}$ $\underbrace{\bigwedge}_{3.91}^{3.95}$ N СН₃ Ó. ρ । CH₃ CI 2.234 2.154 1.02√ 1.01-[⊥] 3.00 2.03 2.74 4.0 3.5 f1 (ppm) 7.5 3.0 1.5 1.0 7.0 6.0 5.5 4.5 2.5 0.5 0.0 6.5 5.0 2.0

1s

2a

7, 337 7, 37 7, 37 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 94 7, 95 7, 94 7, 94 7, 94 7, 95 7

2d

2e

2f // 0 2.09 1.98 2.00 4 1.95.1 8.5 4.0 f1 (ppm) 4.5 3.5 2.0 1.5 1.0 0.5 -0.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 2.5 0.0

2i

2k

8 8 11 8 8 10

21

2m

8. 88 89. 05 89. 05 80. 05

2n

2r

6 87 44 7 88 44 7 8

6 $\begin{smallmatrix} 0.0 \\ 0.$ 0 0.84.T 2.00H 2.11⊣ 3.121 2.074 4.0 f1 (ppm) 6.5 6.0 4.5 1.5 1.0 0.5 -0.5 8.5 8.0 7.5 7.0 5.5 5.0 3.5 3.0 2.5 2.0 0.0

8

3a Q 0 1.97.1 22.00 3.84 2.38 1.75 5.5 4.5 4.0 f1 (ppm) 2.5 1.5 8.0 7.5 7.0 6.5 3.5 2.0 1.0 0.5 0.0 6.0 5.0 3.0

X-ray structure of 2d

