Supplementary Information

Revitalizing the aromatic aza-Claisen rearrangement: implications for the mechanism of 'on-water' catalysis.

Kaitlin D. Beare and Christopher S. P. McErlean*

School of Chemistry, the University of Sydney, NSW, 2006, Australia.

General Experimental Details	 S2
Comparative Rate Plots for the Aza-	 S 3
Claisen Rearrangement of	
Compounds 2b, 2c, 2d, 9a, 9b, 9c	
NMR spectra	 S6

General Experimental Details:

All solvents and reagents were used as received from commercial sources. Melting points were determined using a Stanford Research Systems Optimelt automated melting point system and are uncorrected. Infrared spectra were acquired neat on a Bruker Alpha-E ATR spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker ASCEND 500 (¹H frequencies 500 MHz; ¹³C frequencies 125 MHz), a Bruker AVANCE DPX300 (¹H frequencies 300 MHz; ¹³C frequencies 75 MHz) or a Bruker AVANCE DPX200 (¹H frequencies 200 MHz; ¹³C frequencies 50 MHz). ¹H chemical shifts are expressed as parts per million (ppm) with residual chloroform (δ 7.26) as reference and are reported as chemical shift ($\delta_{\rm H}$); relative integral; multiplicity (s singlet, br broad, d doublet, t triplet, dd doublet of doublets, dt doublet of triplets, q quartet, m multiplet); and coupling constants (*J*) reported in Hz. ¹³C NMR chemical shifts are expressed as parts per million (ppm) with residual chloroform (δ 77.1) as internal reference and are reported as chemical shift ($\delta_{\rm C}$); multiplicity (assigned from DEPT experiments). High resolution mass spectra were recorded on a Bruker ApexII Fourier Transform Ion Cyclotron Resonance mass spectrometer with a 7.0 T magnet, fitted with an off-axis Analytical electrospray source.

Comparative Rate Plots for the Aza-Claisen Rearrangement of Compounds 2b, 2c, 2d, 9a, 9b, 9c:

₽8.82 -----

LL.₽2 ——

24.58 77.00 77.42

70°.807 -----

b1.711 b1.7111 b1.7111 b1.7111 b1.7111 b1.7111 b1.7111 b1.71111 b1.7111 b1.7111 b1.7111 b1.7111 b1.7111 b1.

N-(2-methylbut-3-en-2-yl)naphthalen-1-amine

S7

ppr

2

20

30

6

50

09

2

8

6

100

110

120

130

160

150

160

170

180

190

200

S9

τ9ς. τοτ.	5T 8T	
τ₽9.	52	\sim

τς8.	52	
٤٢٤.	τε	

562 282 307	- 130. - 131. - 122.	ſ
244 365 365 228 365 258	- 134 - 130 - 130 - 133 - 133 - 133 - 133	

المتحدث ومنافعة المواجعة والمستعلم والمستعلم والمعالية والمستقل والمستقل والمستعين والمعاولية معالي المواجع

udd

22.17

4-chloro-N-(2-methylbut-3-en-2-yl)aniline

