Supporting information

Cross metathesis of allyl alcohols: how to suppress and how to promote double bond isomerization

Bernd Schmidt, * Sylvia Hauke Universitaet Potsdam, Institut fuer Chemie, Organische Synthesechemie, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany bernd.schmidt@uni-potsdam.de

Table of Content

А	General Remarks	S	2
В	Experimental procedure, analytical data and copies of NMR spectra of 4e	S	3
С	Copies of NMR spectra of cross metathesis products 5	S	6
D	Copies of NMR spectra of cross metathesis/isomerization products 6	S 3	38
E	Copies of NMR spectra of compounds 7, 8a, 8b, 9a, 9b, 10 and 11	S	70

A General Remarks

All experiments were conducted in dry reaction vessels under an atmosphere of dry nitrogen. Solvents were purified by standard procedures. ¹H NMR spectra were obtained at 300 MHz or at 600 MHz in CDCl₃ with CHCl₃ (δ = 7.24 ppm) as an internal standard. Coupling constants (*J*) are given in Hz. ¹³C NMR spectra were recorded at 75 MHz or at 150 MHz in CDCl₃ with CDCl₃ (δ = 77.0 ppm) as an internal standard. The number of coupled protons was analyzed by APT-experiments and is denoted by a number in parantheses following the chemical shift value. IR spectra were recorded neat on NaCl or KBr plates. Wavenumbers (*v*) are given in cm⁻¹. The peak intensities are defined as strong (s), medium (m) or weak (w). Mass spectra were obtained at 70 eV. The allyl alcohols **4a**^[1], **4b**^[2], **4c**^[3], **4d**^[4], **4f**^[5], **4g**^[6], **4h**^[7], **4i**^[8], **4j**^[9], **4k**^[10], **4l**^[11], **4m**^[12], **4n**^[13], **4o**^[14], **4p**^[15] were synthesized following literature procedures.

¹² B. Schmidt, J. Org. Chem. 2004, 69, 7672-7687.

¹⁴ T. J. Deming, B. M. Novak and J. W. Ziller, J. Am. Chem. Soc. 1994, **116**, 2366-2374.

¹ S. V. Ley, A. Armstrong, D. Díez-Martín, M. J. Ford, P. Grice, J. G. Knight, H. C. Kolb, A. Madin, C. A. Marby, S. Mukherjee, A. N. Shaw, A. M. Z. Slawin, S. Vile, A. D. White, D. J. Williams and M. Woods, *J. Chem. Soc., Perkin Trans. 1*, 1991, 667-692.

² S. Jautze and R. Peters, Angew. Chem., Int. Ed. 2008, 47, 9284-9288.

³ J. Stambasky, A. V. Malkov and P. Kocovsky, J. Org. Chem. 2008, 73, 9148-9150.

⁴ D. Wigfield, S. Feiner, G. Malbacho and K. Taymaz, *Tetrahedron* 1974, **30**, 2949-2959.

⁵ H. Azuma, K. Miyasaka, T. Yokotani, T. Tachibana, A. Kojima-Yuasa, I. Matsui-Yuasa, and K. Ogino, *Bioorg. Med. Chem.* 2006, **14**, 1811-1818.

⁶ J. Krauss and D. Unterreitmeier, Arch. Pharm. Chem. Life Sci. 2002, 335, 94-98.

⁷ A. W. J. Logan, M. S. Hallside, J. W. Burton, and J. S. Parker, *Org. Lett.* 2012, **14**, 2940-2943.

⁸ H. Lin, Y. Liu and Z.-L. Wu, Chem. Comm. 2011, 47, 2610-2612.

⁹ B. Trost and R. Kulawiec, J. Am. Chem. Soc. 1993, 115, 2027-2036.

¹⁰ M. E. Maier, H. Kandler, B. U. Haller, J. H. Hofmann and H. Fischer, H. *Liebigs Ann. Chem.* 1990, 323-330.

¹¹ N. Sarkar, A. Nayek, and S. Ghosh, Org. Lett. 2004, 6, 1903-1905.

¹³ H. E. Ramsden, J. R. Leebrick, S. D. Rosenberg, E. H. Miller, J. J. Walburn, A. E. Balint and R. Cserr, *J. Org. Chem.* 1957, **22**, 1602-1605.

¹⁵ R. G. Woolford, J. Org. Chem. 1958, 23, 2042-2043.

B Experimental procedure, analytical data and copies of NMR spectra of 4e

Synthesis of 1-(3-methoxy-4-(methoxymethoxy)-phenyl)-prop-2-en-1-ol (4e)

To a solution of MOM-protected vanilline^[16] (577 mg, 2.9 mmol) in CH₂Cl₂ ОМОМ MeO (15 mL) was added a solution of vinyl magnesium chloride in THF (1.7 M, 1.8 mL, 3.1 mmol) at 0°C. The mixture was stirred for 0.5 h and then poured onto an aqueous NH₄Cl solution. The organic layer was separated, and the aqueous layer was extracted twice with MTBE. The combined organic extracts were dried with $MgSO_4$, filtered, and the solvent was evaporated under reduced pressure. After purification by column chromatography the allyl alcohol 4e (548 mg, 83%) was obtained as a colourless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.09 (d, J = 8.2, 1H), 6.93 (d, J = 1.9, 1H), 6.85 (dd, J = 8.2, 1.6, 11H), 6.02 (ddd, J = 17.1, 10.3, 5.8, 1H), 5.33 (ddd, J = 17.1, 1.4, 1.4, 1H), 5.19 (s, 2H), 5.17 (ddd, J = 10.3, 1.4, 1.3, 1H), 5.13 (d, J = 5.9, 1H), 3.86 (s, 3H), 3.49 (s, 3H), 2.20 (bs, 3H);¹³C NMR (75 MHz, CDCl₃) δ 150.0 (0), 146.0 (0), 140.2 (1), 137.2 (0), 118.7 (1), 116.6 (1), 114.9 (2), 110.1 (1), 95.6 (2), 75.0 (1), 56.1 (3), 55.9 (3); IR (neat): v 3418 (w), 2937 (w), 1509 (s), 1260 (s), 1152 (s), 1131 (s), 985 (s); MS (EI): m/z 224 ([M]⁺, 38), 162 (35), 119 (17), 55 (17), 45 (100); HRMS (EI): calcd for $C_{12}H_{16}O_4$ [M]⁺: 224.1056, found: 224.1049.

¹⁶ Prepared according to: K. Tangdenpaisal, S. Sualek, S. Ruchirawat and P. Ploypradith, *Tetrahedron* 2009, **65**, 4316-4325.

¹³C NMR-APT (CDCl₃, 75 MHz) of **4e**

C Copies of NMR spectra of cross metathesis products 5

1 H NMR (CDCl₃, 300 MHz) of **5a**

¹H NMR (CDCl₃, 300 MHz) of **5b**

¹H NMR (CDCl₃, 300 MHz) of **5c**

¹H NMR (CDCl₃, 300 MHz) of **5d**

¹H NMR (CDCl₃ + drop of aceton-d₆, 300 MHz) of **5e**

¹H NMR (CDCl₃, 300 MHz) of **5f**

¹H NMR (CDCl₃, 300 MHz) of **5g**

¹H NMR (CDCl₃, 300 MHz) of **5h**

¹H NMR (CDCl₃, 300 MHz) of **5**i

¹H NMR (CDCl₃, 300 MHz) of **5j**

¹H NMR (CDCl₃, 300 MHz) of **5**k

¹H NMR (CDCl₃, 300 MHz) of **5**l

¹H NMR (CDCl₃, 300 MHz) of **5m**

¹H NMR (CDCl₃, 300 MHz) of **5n**

¹³C NMR-APT (CDCl₃, 75 MHz) of **5n**

	150.6	119.6	70.8	د.1 <i>د</i> —	38.7	та.а та.а
HO CO ₂ Me						
al, aktoh, antio provikasi ng katon kana panghan kana kana kana pang kanganan ing pangan kangan pangan pangan Panangkapangan pangan pangan pangan pangan terpina pangang kangganan ing pangang terpina pangan pangan pangan p P	lard a blaa ka lin harawada ya an Jalasa da baba ku yana a shaha ya ya sha Mangar wa mayayayaya Mangar wa mayayayaya	אראין אין איז	iyan dan difalikan dan dikan likan dan baran dan b An tari serin dan baran dan bar An tari serin dan baran dan bar	anda, mada ada ada ada ada da da ada ada ada	aynadd all lafan a charaith af ar si a bharaith Grae Bergarl (Chreath Chreath an San San San San San San San San San	ultering of a self on a second data series of the second sec

	.																[
-	190 1	.80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

 ^{13}C NMR-APT (CDCl₃ + drop of aceton-d₆, 75 MHz) of **50**

¹H NMR (CDCl₃, 300 MHz) of **5p**

D Copies of NMR spectra of cross metathesis/isomerization products 6

¹H NMR (CDCl₃, 300 MHz) of **6a**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

¹H NMR (CDCl₃, 300 MHz) of **6c**

¹H NMR (CDCl₃, 600 MHz) of **6e** 5.28 3.68 3.49 3.28 3.27 2.74 2.73 2.72 3.91 2.14 \mathbf{V} $\langle | \rangle$ OMOM MeO ℃O₂Me O, Л 1.00 2.04 3.04 6 - N 2.00 3.05 2.01 96 00. N \sim 7.5 7.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 9.5 9.0 8.5 8.0 6.5 6.0 5.5 5.0 4.5 0.5 ppm

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

¹H NMR (CDCl₃, 300 MHz) of **6f**

49

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

¹H NMR (CDCl₃, 300 MHz) of **6h**

¹H NMR (CDCl₃, 300 MHz) of **6i**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

¹H NMR (CDCl₃, 300 MHz) of **6**j 31 30 22 23 20 17 20 17 N/// `Ph `CO₂Me O 3.00 4.10 01 <u>،</u> 4. 9.5 9.0 8.5 8.0 7.5 7.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 6.5 6.0

¹³C NMR-APT (CDCl₃, 75 MHz) of **6j**

¹H NMR (CDCl₃, 300 MHz) of **6k**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

¹³C NMR-APT (CDCl₃, 75 MHz) of **6k**

¹H NMR (CDCl₃, 300 MHz) of **6**l

¹H NMR (CDCl₃, 300 MHz) of **6m**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

¹H NMR (CDCl₃, 300 MHz) of **6n**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

¹³C NMR-APT (CDCl₃, 75 MHz) of **6n**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

¹H NMR (CDCl₃, 300 MHz) of **6p**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

E Copies of NMR spectra of compounds 7, 8a, 8b, 9a, 9b, 10 and 11

¹H NMR (CDCl₃, 300 MHz) of **7**

¹³C NMR-APT (CDCl₃, 75 MHz) of **7**

¹H NMR (CDCl₃, 300 MHz) of 8a

¹H NMR (CDCl₃, 300 MHz) of **9a**

74

¹³C NMR-APT (CDCl₃, 75 MHz) of **9a**

174.1	96.5	9.09 	8. c c	Σ C </th <th></th>	
v,OTBS					
MOMO CO ₂ Me					
	hiteren an en				a general de la service de
·····				·····	······

¹H NMR (CDCl₃, 300 MHz) of **8b**

''', ___OTBS

BOMO

76

¹³C NMR-APT (CDCl₃, 75 MHz) of **8b**

¹³C NMR-APT (CDCl₃, 75 MHz) of **9b**

¹³C NMR-APT (CDCl₃, 75 MHz) of **10** 170.5 128.4 127.8 127.7 137.3 93.2 78.3 72.9 70.0 26.4 23.2 14.3 くしく 0 -0 11, вомо

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

¹³C NMR-APT (CDCl₃, 75 MHz) of **11**

